

WARNING

DO NOT USE THIS MANUAL OR ANY OF THE RELATED MATERIALS IN ANY WAY IN THE OPERATION, USE OR MAINTENANCE OF ANY AIRCRAFT. THESE MATERIALS HAVE BEEN PREPARED AND ARE PROVIDED SOLELY TO GIVE GUIDANCE ON THE LAYOUT AND STRUCTURE OF A TYPICAL AIRCRAFT MANUAL. THESE MATERIALS HAVE NOT BEEN APPROVED BY ANY AVIATION ADMINISTRATION FOR USE ON ANY AIRCRAFT AND SHOULD NEVER BE SO USED UNDER ANY CIRCUMSTANCES. FAILURE TO FOLLOW THIS WARNING COULD LEAD TO SERIOUS INJURY OR DEATH.

767-300

Flight Crew Operations Manual

The Boeing Company

Copyright © 1999 The Boeing Company All Rights Reserved

Document Number D632T001-300

Revision Number: 6 Revision Date: February 15, 2010

Copyright Information

Boeing claims copyright in each page of this document only to the extent that the page contains copyrightable subject matter. Boeing also claims copyright in this document as a compilation and/or collective work.

The right to reproduce, distribute, display, and make derivative works from this document, or any portion thereof, requires a license from Boeing. For more information, contact The Boeing Company, P.O. Box 3707, Seattle, Washington 98124.

Boeing, the Boeing signature, the Boeing logo, 707, 717, 727, 737, 747, 757, 767, 777, 787, BBJ, DC-8, DC-9, DC-10, MD-10, MD-11, MD-80, MD-88, MD-90 and the Boeing livery are all trademarks of The Boeing Company. No trademark license is granted in connection with this document unless provided in writing by Boeing.

Preface Chapter Table of Contents	Chapter 0 Section 0
Volume 1	Section 0
Title Page	0
Preface	0
V1V2 Model Identification	0.1
Introduction	0.2
Abbreviations	0.3
V1V2 Revision Record	0.4
V1V2 List of Effective Pages	0.5
Bulletin Record	0.6
Limitations	L
Normal Procedures	NP
Supplementary Procedures	SP
Performance Inflight	PI
Volume 2	
Airplane General, Emergency Equipment, Doors, Windo	ows 1
Air Systems	
Anti-Ice, Rain	3
Automatic Flight	4
Communications	5
Electrical	6
Engines, APU - PW	7
Engines, APU - GE	7
Fire Protection	8
Flight Controls	9
Flight Instruments, Displays	10
Flight Management, Navigation	11
Fuel	12
Hydraulics	13
Landing Gear	14

Preface -

Preface Chapter Table of Contents DO NOT USE FOR FLIGHT

767 Flight Crew Operations Manual

767 Flight Crew Operations Manual

Preface V1V2 Model Identification

Chapter 0
Section 1

General

The airplanes listed in the table below are covered in the Flight Crew Operations Manual (FCOM). The numbers are used to distinguish data peculiar to one or more, but not all of the airplanes. Where data applies to all airplanes listed, no reference is made to individual airplane numbers.

Use of the table below permits flight crew correlation of configuration differences by number within an operator's fleet for airplanes covered in this manual. Configuration data reflects the airplane as delivered configuration and is updated for service bulletin incorporations in conformance with the policy stated in the introduction section of this chapter.

Registry number is supplied by the national regulatory agency. Serial and tabulation numbers are supplied by Boeing.

Registry Number	Serial Number	Tabulation Number
TBC-1	00000	BC001
TBC-2	00005	BC002

767 Flight Crew Operations Manual

Intentionally Blank

767 Flight Crew Operations Manual

PrefaceChapter 0IntroductionSection 2

General

This Flight Crew Operations Manual (FCOM) has been prepared by The Boeing Company. The purpose of this manual is to:

- provide the operating limitations, procedures, performance, and systems information the flight crew needs to safely and efficiently operate the 767 airplane during all anticipated operations
- serve as a comprehensive reference for use during transition training for the 767 airplane
- serve as a review guide for use in recurrent training and proficiency checks
- provide necessary operational data from the FAA approved airplane flight manual (AFM) to ensure that legal requirements are satisfied
- establish standardized procedures and practices to enhance Boeing operational philosophy and policy.

This manual is prepared for the owner/operator named on the title page specifically for the airplanes listed in the "Model Identification" section. It contains operational procedures and information, which apply only to these airplanes. The manual covers the Boeing delivered configuration of these airplanes. Changes to the delivered configuration are incorporated when covered by contractual revision agreements between the owner/operator and the Boeing Company.

This manual is not suitable for use for any airplanes not listed in the "Model Identification" section. Further, it may not be suitable for airplanes that have been transferred to other owners/operators.

Owners/operators are solely responsible for ensuring the operational documentation they are using is complete and matches the current configuration of the listed airplanes. This includes the accuracy and validity of all information furnished by the owner/operator or any other party. Owners/operators receiving active revision service are responsible to ensure that any modifications to the listed airplanes are properly reflected in the operational procedures and information contained in this manual.

The manual is periodically revised to incorporate pertinent procedural and systems information. Items of a more critical nature will be incorporated in operational bulletins and distributed in a timely manner. In all cases, such revisions and changes must remain compatible with the approved AFM with which the operator must comply. In the event of conflict with the AFM, the AFM shall supersede.

767 Flight Crew Operations Manual

This manual is written under the assumption that the user has had previous multi–engine jet aircraft experience and is familiar with basic jet airplane systems and basic pilot techniques common to airplanes of this type. Therefore, the operations manual does not contain basic flight information that is considered prerequisite training.

Any questions about the content or use of this manual can be directed to:

Boeing Commercial Airplanes

Commercial Aviation Services

Attn: 767 Manager, Flight Technical Data

P.O. Box 3707, M/C 20-89

Seattle, Washington, 98124-2207 USA

Email - flighttraining@boeing.com

Telephone: (206) 662-4000

Fax:(206) 662-4743

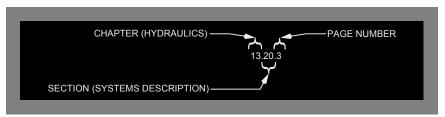
767 Flight Crew Operations Manual

Organization

The FCOM is organized in the following manner.

Volume 1 -

- Preface contains general information regarding the manual's purpose, structure, and content. It also contains lists of abbreviations, a record of revisions, bulletins, and a list of effective pages.
- Limitations and Normal Procedures chapters cover operational limitations and normal procedures. All operating procedures are based on a thorough analysis of crew activity required to operate the airplane, and reflect the latest knowledge and experience available.
- Supplementary Procedures chapter covers those procedures accomplished as required rather than routinely on each flight.
- Performance Inflight chapter contains performance information necessary for inflight use.

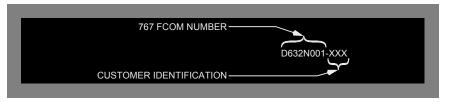

Volume 2 – Chapters 1 through 15 contain general airplane and systems information. These chapters are generally subdivided into sections covering controls and indicators and systems descriptions.

Quick Reference Handbook (QRH) – The QRH covers normal checklists, in–flight performance, non–normal checklists, and non–normal maneuvers.

Page Numbering

The FCOM uses a decimal page numbering system. The page number is divided into three fields; chapter, section, and page. An example of a page number for the hydraulics chapter follows: chapter 13, section 20, page 3.

Example Page Number



Page Identification

Each page is identified by a customer document number and a page date. The customer document number is composed of the general 767 FCOM, D632T001–, and is followed by the customer identification. The page date is the date of publication of the manual or the most recent revision date.

767 Flight Crew Operations Manual

Example Page Identification

Warnings, Cautions, and Notes

The following levels of written advisories are used throughout the manual and are not to be confused with EICAS messages, which are separately identified in the text.

WARNING: An operating procedure, technique, etc., that may result in personal injury or loss of life if not carefully followed.

CAUTION: An operating procedure, technique, etc., that may result in damage to equipment if not carefully followed.

Note: An operating procedure, technique, etc., considered essential to emphasize. Information contained in notes may also be safety related.

Flight Crew Operations Manual Configuration

Customer airplane configuration determines the data provided in this manual. The Boeing Company keeps a list of each airplane configuration as it is built and modified through the Service Bulletin process. The FCOM does not reflect customer originated modifications without special contract provisions.

767 Flight Crew Operations Manual

Airplane Effectivities

Differences in airplane configuration are shown by use of airplane effectivities throughout Volumes 1 and 2, and the Quick Reference Handbook The following rules are used to express airplane effectivities:

- Airplane effectivities are listed in alpha-numeric order. A range of airplanes
 is defined by the word "through", e.g. N601BC through N605BC includes all
 N6xxBC series aircraft in order as listed on the model ID page. A comma in the
 the range, e.g. N601BC through N603BC, N605BC indicates that N604BC
 is excluded from the range.
- 2. Airplane effectivities apply only to the paragraph, illustration, operational note, procedural step, etc. and to subordinate items (if any).

Example (with subordinate items):

N601BC through N604BC

Right radio tuning panel......Set
Verify that the OFF light is extinguished.

First officer's audio control panel......Set

In this example, the effectivity N601BC through N604BC applies to the first procedural step and further indented (subordinate) step only. The effectivity does not include the next equivalently indented step.

The first step (Right radio tuning panel) is effective for airplanes N601BC through N604BC, the second step (First officer's audio control panel) is effective for all airplanes:

Example (without subordinate items):

N601BC through N602BC Thrust reversers inoperative.

Autobrake system inoperative.

In this example, the effectivity N601BC through N602BC applies to the first operational note only. The effectivity does not apply to the next equivalently indented operational note.

The first operational note (Thrust reverser inoperative.) is effective for airplanes N601BC through N602BC only, the next operational note Autobrake ...) is effective for all airplanes.

767 Flight Crew Operations Manual

3. When airplane effectivities are stated immediately below a checklist title, the entire checklist applies to the listed airplanes only. In the following example, the OIL FILTER checklist is applicable to N601BC through N603BC only:

OIL FILTER N601BC through N603BC

4. When Boeing has been notified airplanes are to be modified by service bulletin (SB), the effectivity statement will include 'Add' and 'Delete' versions, as appropriate, in parentheses. Depending upon the modification, there may not be both an 'Add' and an 'Delete' version.

The text before the semicolon in the parentheses lists the range of airplanes being modified. The text after the semicolon indicates the 'before' or 'after' version and briefly describes what the SB does. The following examples illustrate this:

Example ('Add' version):

(SB Adds N604BC when Dual Oil Filters are installed) The engine may be operated normally.

"SB Adds N604BC" means the incorporation of the SB (i.e. installation of Dual Oil Filters in this example) is scheduled to begin for airplane N604BC. The words "SB Adds, when Dual Oil Filters are installed" indicate the associated operational note (The engine may be operated normally.) applies to N604BC when the SB has been incorporated.

Example ('Deletes' version):

(SB Deletes N604BC when Dual Oil Filters are installed) The engine must be operated at idle thrust.

For airplane N604BC the SB (i.e. installation of Dual Oil Filters in this example) has not been incorporated. The associated operational note (The engine must be operated at idle thrust) applies N604BC.

"SB Deletes N604BC" means the incorporation of the SB (i.e. installation of Dual Oil Filters in this example) is scheduled to begin for airplane N604BC. The words "The engine must be operated at idle thrust " will apply to N604BC until the SB has been incorporated.

767 Flight Crew Operations Manual

Preface Abbreviations

Chapter 0
Section 3

General

The following abbreviations may be found throughout the manual. Some abbreviations may also appear in lowercase letters. Abbreviations having very limited use are explained in the chapter where they are used.

	A
ABV	Above
AC	Alternating Current
ACARS	Aircraft Communications Addressing and Reporting System
ACP	Audio Control Panel
ACT	Active
ADC	Air Data Computer
ADF	Automatic Direction Finder
ADI	Attitude Director Indicator
ADIRS	Air Data Inertial Reference System
ADIRU	Air Data Inertial Reference Unit
AFDS	Autopilot Flight Director System
AFM	Airplane Flight Manual (FAA approved)
A/G	Air/Ground
AGL	Above Ground Level
AIL	Aileron
ALT	Altitude
ALTN	Alternate

AM	Amplitude Modulation
AMI	Airline Modifiable Information
ANP	Actual Navigational Performance
ANT	Antenna
AOA	Angle of Attack
AOC	Airline Operational Communication Data Link
A/P	Autopilot
APL	Airplane
APP	Approach
APU	Auxiliary Power Unit
ARINC	Aeronautical Radio, Incorporated
ARPT	Airport
ARR	Arrival
ASA	Autoland Status Annunciator
ASYM	Asymmetry
A/T	Autothrottle
ATA	Actual Time of Arrival
ATC	Air Traffic Control
ATT	Attitude

AUTO- THROT	Autothrottle
AUTO	Automatic
AUX	Auxiliary
AVAIL	Available
	В
BARO	Barometric
BAT	Battery
B/CRS	Back Course
BFO	Beat Frequency Oscillator
BKR	Breaker
BLD	Bleed
BLW	Below
BRG	Bearing
BRT	Bright
BTL	Bottle
	С
С	Captain Celsius Center Cool
CANC	Cancel
CAP	Capture
CAPT	Captain
СВ	Circuit Breaker
CDU	Control Display Unit
CG	Center of Gravity
CHR	Chronograph
CKT	Circuit
CL	Close
CLB	Climb

CLR	Clear
CMD	Command
CO	Company
COMM	Communication
COMP	Comparator
COMPT	Compartment
CON	Continuous
CONFIG	Configuration
CONT	Control
COOL	Cooling
CRS	Course
CRT	Cathode Ray Tube
CRZ	Cruise
CTL	Control
CTR	Center
CWS	Control Wheel Steering
	D
DA(H)	Decision Altitude (Height)
DC	Direct Current
DCU	Display Concentrator Unit
DDG	Dispatch Deviations Guide
DEL	Delete
DEP	Departure
DEPR	Depressurize
DES	Descent
DH	Decision Height
DIFF	Differential
DISC	Disconnect

0.3.3

DO NOT USE FOR FLIGHT

DISCH	Discharge
DK	Deck
DME	Distance Measuring Equipment
DN	Down
DSPL	Display
	Е
E/D	End of Descent
E/E	Electrical/Electronic
EEC	Electronic Engine Control
EFI	Electronic Flight Instruments
EFIS	Electronic Flight Instrument System
EGT	Exhaust Gas Temperature
EICAS	Engine Indication and Crew Alerting System
ELEC	Electrical
ELEV	Elevator
EMER	Emergency
ENG	Engine
ENT	Entry
EO	Engine Out
EPR	Engine Pressure Ratio
EQPT or EQUIP	Equipment
ETOPS	Extended Range Operation with Twin Engine Airplanes
EVAC	Evacuation
EXEC	Execute

EXT	Extend or External
	F
F	Fahrenheit
FADEC	Full Authority Digital Engine Control
FCC	Flight Control Computer
FCOM	Flight Crew Operations Manual
FD, F/D or FLT DIR	Flight Director
FF	Fuel Flow
FILT	Filter
FL CH or FLCH	Flight Level Change
FLT	Flight
FMA	Flight Mode Annunciations
FMC	Flight Management Computer
FMS	Flight Management System
F/O or F O	First Officer
FPA	Flight Path Angle
FPV	Flight Path Vector
FPM	Feet Per Minute
FREQ	Frequency
F/S	Fast/Slow
FT	Feet
FWD	Forward
FWSOV	Fire Wall Shut Off Valve
	G
GA	Go-Around
GEN	Generator

GMT	Greenwich Mean Time
GND	Ground
GPS	Global Positioning System
GPWS	Ground Proximity Warning System
G/S	Glide Slope
GS	Ground Speed
	Н
HDG	Heading
HF	High Frequency
НІ	High
HLD	Hold
HPSOV	High Pressure Shut Off Valve
HSI	Horizontal Situation Indicator
HYD	Hydraulic
_	I
IAS	Indicated Airspeed
IDENT	Identification
IGN	Ignition
IGS	Instrument Guidance System
IND LTS	Indicator Lights
INIT	Initialization
INSTR	Instrument
ILS	Instrument Landing System
INBD	Inboard
IND	Indicator
INOP	Inoperative
	•

INT or INTPH	Interphone
INTC	Intercept
ISFD	Integrated Standby Flight Display
IRS	Inertial Reference System
ISA	International Standard Atmosphere
ISLN	Isolation
	K
K or KTS	Knots
KGS	Kilograms
	L
L	Left
LBS	Pounds
LD	Load
LDA	Localizer-type Directional Aid
LDG	Landing
LE	Leading Edge
LIM	Limit
LKD	Locked
L NAV or LNAV	Lateral Navigation
LOC	Localizer
LT	Light
LWR CTR	Lower Center
LWR DSPLY	Lower Display
M	
M	Mach
MAG	Magnetic

MAN	Manual	
MAX	Maximum	
MCP	Mode Control Panel	
MDA(H)	Minimum Descent Altitude (Height)	
MEL	Minimum Equipment List	
MIC	Microphone	
MFD	Multifunction Display	
MIN	Minimum	
MLS	Microwave Landing System	
ММО	Maximum Mach Operating Speed	
MOD	Modify	
MSG	Message	
MTRS	Meters	
N		
N	Normal	
NAV	Navigation	
ND	Navigation Display	
NM	Nautical Miles	
NORM	Normal	
N1	Low Pressure Rotor Speed	
N2	High Pressure Rotor Speed (Pratt & Whitney engines) Intermediate Pressure Rotor Speed (Rolls–Royce engines)	
N3	High Pressure Rotor Speed (Rolls–Royce engines)	

	О
OAT	Outside Air Temperature
OFST	Offset
OP	Open
OUTBD DSPL	Outboard Display
OVHT	Overheat
OVRD	Override
OVSPD	Overspeed
OXY or O2	Oxygen
	P
PA	Passenger Address
PASS	Passenger
PCP	Pilot Call Panel
PERF	Performance
PES	Pitch Enhancement System
PF	Pilot Flying
PFD	Primary Flight Display
PM	Pilot Monitoring
PNL	Panel
POS	Position
PPOS	Present Position
PRES or PRESS	Pressure
PREV	Previous
P/RST	Push To Reset
PROX	Proximity
PRV	Pressure Regulating Valve
PSI	Pounds Per Square Inch

PTH	Path
PTT	Push To Talk
PTU	Power Transfer Unit
PWR	Power
PWS	Predictive Windshear System
	Q
QFE	Local Station Pressure
QNH	Local Station Pressure Corrected to MSL
QTY	Quantity
	R
R	Right
RA	Radio Altitude Resolution Advisory
RAD	Radio
RAT	Ram Air Turbine
RDMI	Radio Distance Magnetic Indicator
REC	Recorder
RECIR or RECIRC	Recirculation
REF	Reference
REV	Reverse
RF	Refill
RMI	Radio Magnetic Indicator
RNP	Required Navigational Performance
RPM	Revolutions Per Minute
RST	Reset
RNV	Area Navigation (RNAV)
RSVR	Reservoir

Radio Transmit
Route
Rejected Takeoff
Rudder
Reduced Vertical Separation Minimum
S
Static Air Temperature Satellite
Service Bulletin
Step Climb
Simplified Directional Facility
Select
Selective Calling
Sensitivity
Service
Speed
Speedbrake
Stabilizer
Standby
System
T
True
Track
Traffic Advisory
Thermal Anti-Ice
Total Air Temperature
Top of Climb

TCAS	Traffic Alert and Collision Avoidance System	
T/D	Top of Descent	
TE	Trailing Edge	
TEMP	Temperature	
TERR	Terrain	
TFC	Traffic	
TFR	Transfer	
THR	Throttle Thrust	
TO or T/O	Takeoff	
TO/GA	Takeoff/Go-Around	
TURB	Turbine Turbulence	
	U	
UNLKD	Unlocked	
UNSCHD Unscheduled or UNSCHED		
UPR DSPL	Upper Display	
USB	Upper Side Band	
UTC	Universal Time Coordinated	
UTIL	Utility	
V		
VA	Design maneuvering Speed	
VAL	Valve	
VERT	Vertical	
VHF	Very High Frequency	
VIB	Vibration	
VLV	Valve	

VMO	Maximum Operating Speed		
V NAV or VNAV	Vertical Navigation		
VOR	VHF Omnidirectional Range		
VR	Rotation Speed		
VREF	Reference Speed		
VSI	Vertical Speed Indicator		
V/S	Vertical Speed		
VTK	Vertical Track		
V1	Takeoff Decision Speed		
V2	Takeoff Safety Speed		
	W		
W	Warm		
WHL	Wheel		
WPT	Waypoint		
WXR	Weather Radar		
	X		
X-FEED	Crossfeed		
XPDR or XPNDR	Transponder		
XTK	Cross Track		

767 Flight Crew Operations Manual

Intentionally Blank

767 Flight Crew Operations Manual

Preface V1V2 Revision Record

Chapter 0
Section 4

Revision Transmittal Letter

To: All holders of The Boeing Company 767 Flight Crew Operations Manual (FCOM), Boeing Document Number D632T001-300.

Subject: Flight Crew Operations Manual Revision.

CAUTION. Before inserting this FCOM revision check the Bulletin Record, Section 6, against the enclosed Flight Crew Operations Manual Bulletins (OMBs). If all OMBs listed in Section 6 are enclosed, this FCOM has been completely reprinted for customer convenience due to the large number of changed pages.

This revision reflects the most current information available to The Boeing Company 45 days prior to the subject revision date. The following revision highlights explain changes in this revision. The Revision Record page explains the use of revision bars to identify new or revised information.

Revision Record

No.	Revision Date	Date Filed
0	February 14, 2007	
2	February 18, 2008	
4	February 19, 2009	
6	February 15, 2010	

No.	Revision Date	Date Filed
1	August 17, 2007	
3	August 21, 2008	
5	August 19, 2009	

General

The Boeing Company issues FCOM revisions to provide new or revised procedures and information. Formal revisions also incorporate appropriate information from previously issued FCOM bulletins.

The revision date is the approximate date the manual is mailed to the customer and is effective upon receipt.

Formal revisions include a Transmittal Letter, a new Revision Record, Revision Highlights, and a current List of Effective Pages. Use the information on the new Revision Record and List of Effective Pages to verify the FCOM content.

767 Flight Crew Operations Manual

Pages containing revised material have revision bars and highlights associated with the changed text or illustration. Revision bars associated with revised effectivity due to additions, deletions of airplanes or changes to previous registration numbers will not have highlights.

The record should be completed by the person incorporating the revision into the manual

Filing Instructions

Consult the List of Effective Pages (0.5). Pages identified with an asterisk (*) are either replacement pages or new (original) issue pages. Remove corresponding old pages and replace or add new pages. Remove pages that are marked DELETED; there are no replacement pages for deleted pages.

Be careful when inserting changes not to throw away pages from the manual that are not replaced. The List of Effective Pages determines the correct content of the manual.

Revision Highlights

Highlights have page numbers; section and paragraph titles are provided.

This section (0.4) replaces the existing section 0.4 in your manual.

Throughout the manual, airplane effectivity may be updated to reflect coverage as listed on the Preface - Model Identification page, or to show service bulletin airplane effectivity. Highlights are not supplied.

This manual is published from a database; the text and illustrations are marked with configuration information. Occasionally, because the editors rearrange the database markers, or mark items with configuration information due to the addition of new database content, some customers may receive revision bars on content that appears to be unchanged. Pages may also be republished without revision bars due to slight changes in the flow of the document.

Chapter 0 - Preface

Section 2 - Introduction

General

0.2.2 - Revised contact information.

Section 6 - Bulletin Record

- 0.6.1 Deleted reference to temporary information for cross model standardization
- 0.6.6 Revised to reflect current bulletin status

767 Flight Crew Operations Manual

Chapter 0-B - Bulletins

Section 72 - Bulletin

0-B.72.1 - Revised to include Service Bulletin information.

Section 73 - Bulletin

0-B.73.1 - Revised bulletin to include Service Bulletin information.

Chapter NP - Normal Procedures

Section 21 - Amplified Procedures

Preflight Procedure - Captain

NP.21.21 - Re-issued information related to RDMI to ensure proper distribution

Before Start Procedure

NP.21.25 - Revised to verify both PRESS lights illuminated.

Takeoff Procedure

NP.21.33 - Revised the takeoff procedure to incorporate NTSB recommendations (NTSB/AAR-07/05) and SAFO 06013.

NP.21.33 - Relocated wing landing light step to accommodate NTSB recommendations (NTSB/AAR-07/05) and SAFO 06013.

Climb and Cruise Procedure

NP.21.37 - Revised information to advise crews to refer to the Center Tank Fuel Pumps Operations manual bulletin for procedures in climb and cruise.

Chapter SP - Supplementary Procedures

Section 1 - Airplane General, Emer. Equip., Doors, Windows

Doors

SP.1.1 - Abbreviated section name to fit on the page correctly.

Section 4 - Automatic Flight

AFDS

SP.4.1 - Clarified comment to verify flight director and autoflight mode. Standardized across models.

Section 16 - Adverse Weather

Cold Weather Operations

SP.16.2 - Revised visibility limit to be consistent with the AFM.

767 Flight Crew Operations Manual

- SP.16.2 Added ice to surface contaminants which could change or affect normal system operations. Changes made for Boeing cross-model standardization.
- SP.16.2 Wording changed for Boeing cross-model standardization.

Chapter PI - Performance Inflight -

Section 12 - Advisory Information

Normal Configuration Landing Distance

PI.12.1-2 - Changed header to say APP SPD ADJ instead of VREF ADJ for clarification.

Section 22 - Advisory Information

Normal Configuration Landing Distance

PI.22.1-2 - Changed header to say APP SPD ADJ instead of VREF ADJ for clarification

Chapter 1 - Airplane General, Emergency Equipment, Doors, Windows

Section 22 - Instrument Panels

Control Stand

1.22.1 - Deleted Rich position from fuel control panel.

Chapter 2 - Air Systems

Section 20 - Air Conditioning System Description

Air Distribution

2.20.2 - Added information describing passenger airplane air distribution. This information was incorrectly removed by a previous change.

Chapter 8 - Fire Protection

Section 10 - Controls and Indicators

Cargo and APU Fire Panel

8.10.3 - Revised description for clarity. Replaced "the extinguisher bottle" with "either extinguisher bottle".

767 Flight Crew Operations Manual

Chapter 10 - Flight Instruments, Displays

Section 10 - EFIS Controls and Indicators

ADIs with Flight Mode Annunciations (FMA) on Top

- 10.10.1 Deleted ADI illustration with flight director bars, fast/slow airspeed indicators, and flight management information displayed on top.
- 10.10.1 Added ADI illustration with fast/slow airspeed indicators and A/T annunciated.
- 10.10.3 Added callout for airplanes with A/T annunciated below thrust mode.

ADI Speed Tape

- 10.10.7 Corrected spelling of the word maneuvering and airspeed.
- 10.10.9 Corrected spelling of the word maneuvering.

Radar

- 10.10.39-40 Corrected spelling of the word controlled.
- 10.10.41 Corrected spelling of the word annunciation.

Look-Ahead Terrain

- 10.10.45 Corrected spelling of the word look.
- 10.10.46 Corrected spelling of the word annunciation and display.

Chapter 11 - Flight Management, Navigation

Section 40 - FMC Preflight

Position Initialization Page

11.40.9 - Corrected callout title to "SET IRS POS" as displayed on POS INIT page.

Chapter 15 - Warning Systems

Section 10 - Controls and Indicators

GPWS Controls

15.10.14 - Deleted reference to the amber light to reflect actual fleet configuration. Pushing the switch inhibits certain GPWS alerts but does not cause a light to illuminate.

Predictive Windshear (PWS)

15.10.21 - Revised description of PWS alerting to reflect automatic pop-up of PWS symbology and weather radar display when terrain (TERR) mode is selected.

767 Flight Crew Operations Manual

15.10.21 - Added note regarding automatic pop-up of PWS symbology when terrain (TERR) mode is selected on the HSI display.

Section 20 - System Description

Predictive Windshear (PWS)

15.20.24 - Added information regarding the automatic pop-up of PWS symbology.

15.20.25-26 - Added description of automatic pop-up of weather radar display, including PWS symbology.

15.20.25-26 - Deleted reference to the terrain (TERR) switch for consistency.

Section 30 - EICAS Messages

TCAS

15.30.1 - Added message inhibit description for the EICAS advisory message "TCAS OFF".

767 Flight Crew Operations Manual

Preface V1V2 List of Effective Pages

Chapter 0
Section 5

Page	Date	
Volume 1		
* Title Page	February 15, 2010	
* Copyright	February 15, 2010	
0.TOC.0.1-2	August 21, 2008	
* 0.1.1-2	February 15, 2010	
0.2.1	February 18, 2008	
* 0.2.2	February 15, 2010	
0.2.3	February 19, 2009	
0.2.4	February 18, 2008	
0.2.5-6	August 19, 2009	
0.3.1	February 14, 2007	
0.3.2-5	August 21, 2008	
0.3.6	February 14, 2007	
0.3.7	February 18, 2008	
0.3.8	February 14, 2007	
Revision R	ecord (tab)	
* 0.4.1-6	February 15, 2010	
* 0.4.7-8	Deleted	
List of Effe	ective Pages	
* 0.5.1-12	February 15, 2010	
Bulletins (tab)		
* 0.6.1-6	February 15, 2010	
* 0.6.7-8	Deleted	
0-B.1.1	August 17, 2007	
* 0-B.1.2	February 15, 2010	
0-B.2.1	August 17, 2007	
* 0-B.2.2	February 15, 2010	
1		

	Section 3
Page	Date
Bulletin	s (cont)
0-B.3.1	August 17, 2007
* 0-B.3.2	February 15, 2010
0-B.4.1	August 17, 2007
* 0-B.4.2	February 15, 2010
0-B.5.1	August 17, 2007
* 0-B.5.2	February 15, 2010
0-B.6.1	August 17, 2007
* 0-B.6.2	February 15, 2010
0-B.7.1	August 17, 2007
* 0-B.7.2	February 15, 2010
0-B.8.1	August 17, 2007
* 0-B.8.2	February 15, 2010
0-B.9.1	August 17, 2007
* 0-B.9.2	February 15, 2010
0-B.10.1	August 17, 2007
* 0-B.10.2	February 15, 2010
0-B.11.1-2	August 17, 2007
* 0-B.11.3	February 15, 2010
0-B.11.4	February 18, 2008
0-B.12.1	August 17, 2007
* 0-B.12.2	February 15, 2010
0-B.13.1	August 17, 2007
* 0-B.13.2	February 15, 2010
0-B.14.1	August 17, 2007
* 0-B.14.2	February 15, 2010
0-B.15.1	August 17, 2007
* 0-B.15.2	February 15, 2010
0-B.16.1	August 17, 2007

^{* =} Revised, Added, or Deleted

Preface -V1V2 List of Effective Pages DO NOT USE FOR FLIGHT

Page	Date	Page	Date
Bulletin	s (cont)	Bulleti	ins (cont)
* 0-B.16.2	February 15, 2010	* 0-B.29.2	February 15, 2010
0-B.17.1-4	August 17, 2007	0-B.30.1	August 17, 2007
* 0-B.17.5	February 15, 2010	* 0-B.30.2	February 15, 2010
0-B.17.6	February 18, 2008	0-B.31.1-3	August 17, 2007
0-B.18.1-2	August 17, 2007	* 0-B.31.4	February 15, 2010
* 0-B.18.3	February 15, 2010	0-B.32.1	August 17, 2007
0-B.18.4-33	August 17, 2007	* 0-B.32.2	February 15, 2010
0-B.18.34	February 18, 2008	0-B.33.1	August 17, 2007
0-B.19.1	August 17, 2007	* 0-B.33.2	February 15, 2010
* 0-B.19.2	February 15, 2010	0-B.34.1	August 17, 2007
0-B.20.1	August 17, 2007	* 0-B.34.2	February 15, 2010
* 0-B.20.2	February 15, 2010	0-B.35.1	August 17, 2007
0-B.21.1	August 17, 2007	* 0-B.35.2	February 15, 2010
* 0-B.21.2	February 15, 2010	0-B.36.1	August 17, 2007
0-B.22.1	August 17, 2007	* 0-B.36.2	February 15, 2010
* 0-B.22.2	February 15, 2010	0-B.37.1	August 17, 2007
0-B.23.1	August 17, 2007	* 0-B.37.2	February 15, 2010
* 0-B.23.2	February 15, 2010	0-B.38.1	August 17, 2007
0-B.24.1	August 17, 2007	* 0-B.38.2	February 15, 2010
* 0-B.24.2	February 15, 2010	0-B.39.1	August 17, 2007
0-B.25.1	August 17, 2007	* 0-B.39.2-4	February 15, 2010
* 0-B.25.2	February 15, 2010	0-B.40.1-2	August 17, 2007
0-B.26.1	August 17, 2007	* 0-B.40.3	February 15, 2010
* 0-B.26.2	February 15, 2010	0-B.40.4	February 18, 2008
0-B.27.1-2	August 17, 2007	0-B.41.1	August 17, 2007
* 0-B.27.3	February 15, 2010	* 0-B.41.2	February 15, 2010
0-B.27.4	February 18, 2008	0-B.42.1	August 17, 2007
0-B.28.1	August 17, 2007	* 0-B.42.2	February 15, 2010
* 0-B.28.2	February 15, 2010	0-B.43.1-2	August 17, 2007
0-B.29.1	August 17, 2007	* 0-B.43.3	February 15, 2010

^{* =} Revised, Added, or Deleted

DO NOT USE FOR FLIGHT V1V2 List of Effective Pages

767 Flight Crew Operations Manual

Page	Date	Page	Date
Bulletin	Bulletins (cont)		ns (cont)
0-B.43.4	February 18, 2008	* 0-B.56.3	February 15, 2010
0-B.44.1	August 17, 2007	0-B.56.4	February 18, 2008
* 0-B.44.2	February 15, 2010	0-B.57.1-2	August 17, 2007
0-B.45.1	August 17, 2007	* 0-B.57.3	February 15, 2010
* 0-B.45.2	February 15, 2010	0-B.57.4	February 18, 2008
0-B.46.1	August 17, 2007	0-B.58.1-2	August 17, 2007
* 0-B.46.2	February 15, 2010	* 0-B.58.3	February 15, 2010
0-B.47.1	August 17, 2007	0-B.58.4	February 18, 2008
* 0-B.47.2	February 15, 2010	0-B.59.1	August 17, 2007
0-B.48.1-2	August 17, 2007	* 0-B.59.2	February 15, 2010
* 0-B.48.3	February 15, 2010	0-B.61.1	August 17, 2007
0-B.48.4	February 18, 2008	* 0-B.61.2	February 15, 2010
0-B.49.1-2	August 17, 2007	0-B.62.1-2	August 17, 2007
* 0-B.49.3	February 15, 2010	* 0-B.62.3	February 15, 2010
0-B.49.4	February 18, 2008	0-B.62.4	February 18, 2008
0-B.50.1-2	August 17, 2007	0-B.63.1	August 17, 2007
* 0-B.50.3	February 15, 2010	* 0-B.63.2	February 15, 2010
0-B.50.4	February 18, 2008	0-B.64.1	August 17, 2007
0-B.51.1	August 17, 2007	* 0-B.64.2	February 15, 2010
* 0-B.51.2	February 15, 2010	0-B.65.1	August 17, 2007
0-B.52.1	August 17, 2007	* 0-B.65.2	February 15, 2010
* 0-B.52.2	February 15, 2010	0-B.66.1-2	August 17, 2007
0-B.53.1	August 17, 2007	* 0-B.66.3	February 15, 2010
* 0-B.53.2	February 15, 2010	0-B.66.4	February 18, 2008
0-B.54.1	August 17, 2007	0-B.67.1-2	August 17, 2007
* 0-B.54.2	February 15, 2010	* 0-B.67.3	February 15, 2010
0-B.55.1-2	August 17, 2007	0-B.67.4	February 18, 2008
* 0-B.55.3	February 15, 2010	0-B.68.1-2	August 17, 2007
0-B.55.4	February 18, 2008	* 0-B.68.3	February 15, 2010
0-B.56.1-2	August 17, 2007	0-B.68.4	February 18, 2008

^{* =} Revised, Added, or Deleted

Copyright © The Boeing Company. See title page for details.

Preface -V1V2 List of Effective Pages DO NOT USE FOR FLIGHT

Page	Date	Page	Date
Bulletins (cont)		Normal Proc	cedures (cont)
0-B.70.1	August 17, 2007	* NP.21.21	February 15, 2010
* 0-B.70.2-4	February 15, 2010	NP.21.22-24	February 14, 2007
* 0-B.72.1-2	February 15, 2010	* NP.21.25	February 15, 2010
* 0-B.73.1-3	February 15, 2010	NP.21.26	February 18, 2008
0-B.73.4	August 19, 2009	NP.21.27-29	February 19, 2009
0-B.74.1	September 5, 2008	NP.21.30-31	August 17, 2007
* 0-B.74.2	February 15, 2010	NP.21.32	August 21, 2008
0-B.75.1-3	August 19, 2009	* NP.21.33-48	February 15, 2010
* 0-B.75.4	February 15, 2010	Supplementary	Procedures (tab)
Limitati	ons (tab)	* SP.TOC.0.1-6	February 15, 2010
L.TOC.0.1-2	February 19, 2009	SP.05.1	February 19, 2009
L.10.1-3	August 21, 2008	SP.05.2	February 14, 2007
L.10.4	February 19, 2009	* SP.1.1-4	February 15, 2010
Normal Prod	cedures (tab)	SP.2.1-2	August 21, 2008
* NP.TOC.0.1-2	February 15, 2010	SP.3.1-2	February 14, 2007
NP.11.1	February 18, 2008	* SP.4.1-8	February 15, 2010
NP.11.2	February 19, 2009	SP.5.1-2	February 14, 2007
NP.11.3	February 18, 2008	SP.6.1-2	February 14, 2007
NP.11.4	August 21, 2008	SP.6.3	August 21, 2008
NP.11.5-7	February 18, 2008	SP.6.4	February 14, 2007
NP.11.8	February 19, 2009	SP.7.1-2	February 14, 2007
NP.21.1-2	February 14, 2007	SP.8.1-2	February 14, 2007
NP.21.3-4	August 19, 2009	SP.10.1-2	February 14, 2007
NP.21.5-10	February 14, 2007	SP.11.1-14	February 14, 2007
NP.21.11	February 18, 2008	SP.12.1-2	February 14, 2007
NP.21.12-14	February 14, 2007	SP.15.1	February 14, 2007
NP.21.15	February 19, 2009	SP.15.2	August 17, 2007
NP.21.16-17	February 14, 2007	SP.16.1	August 19, 2009
NP.21.18-19	August 21, 2008	* SP.16.2	February 15, 2010
NP.21.20	February 19, 2009	SP.16.3-4	February 19, 2009

^{* =} Revised, Added, or Deleted

DO NOT USE FOR FLIGHT V1V2 List of Effective Pages

Page	Date
Supplementary Procedures (cont)	
SP.16.5-16 August 19, 2	
Performance	- Inflight (tab)
PI.TOC.1-2	February 18, 2008
PI.TOC.10.1-4	February 19, 2009
PI.10.1-6	August 21, 2008
PI.10.7-14	February 19, 2009
PI.10.15-16	August 19, 2009
PI.10.17-24	February 19, 2009
PI.11.1-6	August 21, 2008
* PI.12.1-2	February 15, 2010
PI.12.3-10	February 19, 2009
PI.12.11-12	August 21, 2008
PI.13.1-10	August 21, 2008
PI.14.1-4	August 21, 2008
PI.15.1-4	August 21, 2008
PI.16.1-7	August 21, 2008
PI.16.8	August 19, 2009
PI.16.9-12	August 21, 2008
PI.TOC.20.1-4	August 19, 2009
PI.20.1-6	August 21, 2008
PI.20.7-12	August 19, 2009
PI.21.1-6	August 21, 2008
* PI.22.1-2	February 15, 2010
PI.22.3-10	February 19, 2009
PI.22.11-12	August 21, 2008
PI.23.1-8	August 21, 2008
PI.24.1-8	August 21, 2008
PI.25.1-6	August 21, 2008
PI.26.1-6	August 21, 2008
PI.27.1-6	August 21, 2008

Page	Date		
Performance - Inflight (cont)			
PI.27.7	August 19, 2009		
PI.27.8-12	August 21, 2008		
(blank tab)			

^{* =} Revised, Added, or Deleted

Preface -V1V2 List of Effective Pages DO NOT USE FOR FLIGHT

Page	Date	Page	Date
Volume 2		1 Airplane General, Emergency	
1 Airplane Gen	eral, Emergency	Equipment, Doors, Windows (cont)	
Equipment, Doors, Windows (tab)		1.40.10-12	February 14, 2007
* 1.TOC.0.1-4	February 15, 2010	1.40.13	August 17, 2007
* 1.10.1-2	February 15, 2010	1.40.14-15	February 19, 2009
1.10.3-4	August 17, 2007	1.40.16	February 14, 2007
1.20.1	February 14, 2007	1.45.1	August 17, 2007
1.20.2	February 18, 2008	1.45.2-3	August 19, 2009
1.20.3-4	February 14, 2007	1.45.4	February 14, 2007
1.21.1-2	February 14, 2007	1.45.5	August 17, 2007
1.21.3	August 17, 2007	1.45.6	February 14, 2007
1.21.4-6	February 14, 2007	1.50.1	February 14, 2007
* 1.22.1	February 15, 2010	* 1.50.2	February 15, 2010
1.22.2-4	February 14, 2007	1.50.3	August 17, 2007
1.30.1-5	February 14, 2007	1.50.4	February 14, 2007
1.30.6-7	August 17, 2007	2 Air Systems (tab)	
1.30.8-10	February 19, 2009	* 2.TOC.0.1-2	February 15, 2010
1.30.11	February 14, 2007	2.10.1-6	February 14, 2007
1.30.12	August 17, 2007	2.10.7-8	February 18, 2008
1.30.13-14	February 19, 2009	2.10.9-14	February 14, 2007
1.30.15-16	August 17, 2007	2.20.1	August 21, 2008
1.30.17	August 19, 2009	* 2.20.2-3	February 15, 2010
1.30.18-21	August 17, 2007	2.20.4-6	February 14, 2007
1.30.22	February 18, 2008	2.30.1-2	February 14, 2007
1.30.23-25	August 17, 2007	2.40.1	August 19, 2009
1.30.26-28	February 19, 2009	2.40.2	August 21, 2008
1.40.1-2	February 14, 2007	2.40.3-4	February 19, 2009
1.40.3	August 19, 2009	2.50.1	February 14, 2007
1.40.4	February 19, 2009	2.50.2	August 19, 2009
1.40.5-6	August 17, 2007	2.50.3-4	February 14, 2007
1.40.7-9	February 18, 2008		

^{* =} Revised, Added, or Deleted

DO NOT USE FOR FLIGHT V1V2 List of Effective Pages

767 Flight Crew Operations Manual

Page	Date	Page	Date
3 Anti-Ice, Rain (tab)		5 Communications (cont)	
3.TOC.0.1-2	February 19, 2009	5.20.1	February 14, 2007
3.10.1-2	February 14, 2007	5.20.2	August 17, 2007
3.10.3-4	August 17, 2007	5.20.3-4	February 14, 2007
3.20.1-4	February 19, 2009	5.30.1	August 17, 2007
3.30.1-2	February 14, 2007	5.30.2-4	February 14, 2007
4 Automatic	Flight (tab)	5.40.1-3	August 21, 2008
4.TOC.0.1-2	August 19, 2009	5.40.4	February 14, 2007
4.10.1	February 14, 2007	5.50.1-2	February 14, 2007
4.10.2	August 17, 2007	6 Electrical (tab)	
4.10.3-4	February 14, 2007	6.TOC.0.1-2	August 21, 2008
4.10.5-8	August 19, 2009	6.10.1-2	February 14, 2007
4.10.9	August 17, 2007	6.10.3-4	August 17, 2007
4.10.10	August 21, 2008	6.10.5-6	February 14, 2007
4.10.11	August 19, 2009	6.20.1-3	February 14, 2007
4.10.12	February 14, 2007	6.20.4	August 17, 2007
4.10.13-18	August 19, 2009	6.20.5	February 18, 2008
4.20.1	August 21, 2008	6.20.6-8	August 17, 2007
4.20.2	February 14, 2007	6.20.9-12	February 14, 2007
4.20.3	February 19, 2009	6.30.1-2	February 14, 2007
4.20.4	February 14, 2007	7 Engines, APU (tab)	
4.20.5-6	February 19, 2009	7.TOC.0.1-4	August 21, 2008
4.20.7	August 19, 2009	7.11.1-2	February 14, 2007
4.20.8-18	February 19, 2009	7.11.3-5	February 18, 2008
4.30.1	August 17, 2007	7.11.6	February 19, 2009
4.30.2	February 14, 2007	7.11.7-12	February 14, 2007
5 Communi	5 Communications (tab)		August 17, 2007
5.TOC.0.1-2	August 21, 2008	7.11.15-22	February 14, 2007
5.10.1-2	February 14, 2007	7.12.1-2	February 14, 2007
5.10.3	August 17, 2007	7.12.3	February 18, 2008
5.10.4-10	February 14, 2007	7.12.4	August 17, 2007

^{* =} Revised, Added, or Deleted

Copyright © The Boeing Company. See title page for details.

Preface -V1V2 List of Effective Pages DO NOT USE FOR FLIGHT

Page	Date	Page	Date
7 Engines, APU (cont)		8 Fire Protection (tab)	
7.12.5	February 19, 2009	8.TOC.0.1-2	August 21, 2008
7.12.6-10	February 14, 2007	8.10.1-2	August 17, 2007
7.12.11	August 17, 2007	* 8.10.3	February 15, 2010
7.12.12-22	February 14, 2007	8.10.4-6	August 17, 2007
7.15.1-2	February 14, 2007	8.20.1-4	February 14, 2007
7.21.1-8	February 14, 2007	8.20.5	August 17, 2007
7.21.9	February 19, 2009	8.20.6	February 14, 2007
7.21.10	August 17, 2007	8.30.1-2	February 14, 2007
7.21.11	February 14, 2007	9 Flight Controls (tab)	
7.21.12	August 17, 2007	9.TOC.0.1-2	August 21, 2008
7.21.13	February 14, 2007	9.10.1	February 14, 2007
7.21.14	August 17, 2007	9.10.2	August 21, 2008
7.21.15	February 14, 2007	9.10.3	February 14, 2007
7.21.16	August 17, 2007	9.10.4	August 17, 2007
7.21.17-18	February 14, 2007	9.10.5	February 19, 2009
7.22.1-4	February 14, 2007	9.10.6-12	August 17, 2007
7.22.5	August 17, 2007	9.20.1-12	February 14, 2007
7.22.6	February 14, 2007	9.30.1-2	February 14, 2007
7.22.7	August 19, 2009	10 Flight Instruments, Displays (tab)	
7.22.8	February 14, 2007	10.TOC.0.1-4	August 19, 2009
7.22.9	February 19, 2009	* 10.10.1	February 15, 2010
7.22.10	February 14, 2007	10.10.2	August 17, 2007
7.22.11	August 17, 2007	* 10.10.3-7	February 15, 2010
7.22.12-16	February 14, 2007	10.10.8	August 19, 2009
7.22.17	August 17, 2007	* 10.10.9	February 15, 2010
7.22.18	February 14, 2007	10.10.10-31	August 17, 2007
7.30.1-2	February 14, 2007	10.10.32-35	February 19, 2009
7.41.1-4	August 17, 2007	10.10.36	August 17, 2007
7.42.1-3	August 17, 2007	10.10.37-38	August 19, 2009
7.42.4	February 14, 2007	* 10.10.39-43	February 15, 2010

^{* =} Revised, Added, or Deleted

DO NOT USE FOR FLIGHT V1V2 List of Effective Pages

Page	Date	Page	Date
10 Flight Instruments, Displays (cont)		11 Flight Manager	ment, Navigation (cont)
10.10.44	February 18, 2008	11.20.8	August 17, 2007
* 10.10.45-46	February 15, 2010	11.30.1-2	February 14, 2007
10.10.47-48	February 18, 2008	11.31.1-4	February 14, 2007
10.10.49	August 21, 2008	11.31.5	August 19, 2009
10.10.50	February 18, 2008	11.31.6-7	February 14, 2007
10.10.51	August 21, 2008	11.31.8	August 19, 2009
10.10.52-58	February 18, 2008	11.31.9-11	February 14, 2007
10.20.1-2	August 17, 2007	11.31.12	February 18, 2008
10.20.3-6	August 19, 2009	11.31.13-17	February 14, 2007
10.30.1	February 14, 2007	11.31.18	August 19, 2009
10.30.2	August 17, 2007	11.31.19-23	February 14, 2007
10.30.3	August 21, 2008	11.31.24	August 17, 2007
10.30.4-5	August 17, 2007	11.31.25	February 14, 2007
10.30.6	February 14, 2007	11.31.26	August 17, 2007
10.30.7-8	August 17, 2007	11.31.27-32	February 14, 2007
10.30.9-10	February 14, 2007	11.32.1-2	August 19, 2009
10.40.1	February 14, 2007	11.32.3-4	February 14, 2007
10.40.2	August 19, 2009	11.40.1	February 14, 2007
10.40.3-6	February 14, 2007	11.40.2	August 21, 2008
10.50.1-2	February 14, 2007	11.40.3	February 14, 2007
11 Flight Managem	ent, Navigation (tab)	11.40.4	August 17, 2007
11.TOC.0.1-6	August 21, 2008	11.40.5	August 19, 2009
11.10.1	February 14, 2007	11.40.6	February 14, 2007
11.10.2	August 17, 2007	11.40.7-8	February 19, 2009
11.10.3	February 14, 2007	* 11.40.9	February 15, 2010
11.10.4	August 17, 2007	11.40.10-15	February 14, 2007
11.10.5	February 19, 2009	11.40.16	February 19, 2009
11.10.6-9	February 14, 2007	11.40.17-26	February 14, 2007
11.10.10-16	August 17, 2007	11.40.27	February 19, 2009
11.20.1-7	February 14, 2007	11.40.28-29	February 14, 2007

^{* =} Revised, Added, or Deleted

Preface -V1V2 List of Effective Pages DO NOT USE FOR FLIGHT

Page	Date	Page	Date
11 Flight Management, Navigation (cont)		11 Flight Management, Navigation (cont)	
11.40.30	February 19, 2009	11.43.21-22	August 17, 2007
11.40.31-34	February 14, 2007	11.43.23	February 19, 2009
11.41.1	August 19, 2009	11.43.24-28	August 17, 2007
11.41.2-9	February 14, 2007	11.50.1-6	February 14, 2007
11.41.10-11	August 17, 2007	11.60.1-6	February 14, 2007
11.41.12	February 14, 2007	12 Fuel (tab)	
11.42.1	February 14, 2007	12.TOC.0.1-2	August 21, 2008
11.42.2	February 19, 2009	12.10.1-4	February 14, 2007
11.42.3	August 17, 2007	12.20.1-2	February 14, 2007
11.42.4	February 19, 2009	12.20.3	August 17, 2007
11.42.5	August 17, 2007	12.20.4	February 18, 2008
11.42.6	February 19, 2009	12.20.5-8	February 14, 2007
11.42.7-8	August 17, 2007	12.30.1-2	February 14, 2007
11.42.9	August 21, 2008	13 Hydraulics (tab)	
11.42.10	February 19, 2009	13.TOC.0.1-2	August 21, 2008
11.42.11	August 17, 2007	13.10.1-4	August 17, 2007
11.42.12	August 21, 2008	13.20.1	February 14, 2007
11.42.13-28	August 17, 2007	* 13.20.2-3	February 15, 2010
11.42.29	August 21, 2008	13.20.4	February 14, 2007
11.42.30	February 19, 2009	13.20.5-6	August 17, 2007
11.42.31-35	August 17, 2007	13.20.7-8	February 14, 2007
11.42.36	February 18, 2008	13.30.1-2	February 14, 2007
11.42.37-40	August 17, 2007	14 Landing Gear (tab)	
11.42.41	August 19, 2009	14.TOC.0.1-2	August 21, 2008
11.42.42-44	August 17, 2007	14.10.1-3	February 14, 2007
11.43.1-5	February 14, 2007	14.10.4-6	August 17, 2007
11.43.6	August 17, 2007	14.10.7-8	February 14, 2007
11.43.7-10	February 14, 2007	14.20.1-2	February 19, 2009
11.43.11-18	August 17, 2007	14.20.3-6	February 14, 2007
11.43.19-20	February 14, 2007	14.30.1-2	February 14, 2007

^{* =} Revised, Added, or Deleted

DO NOT USE FOR FLIGHT V1V2 List of Effective Pages

Page	Date	
15 Warning Systems (tab)		
15.TOC.0.1-4	August 21, 2008	
15.10.1-8	February 14, 2007	
15.10.9	August 17, 2007	
15.10.10	February 14, 2007	
15.10.11	February 18, 2008	
15.10.12	August 21, 2008	
15.10.13	August 17, 2007	
* 15.10.14	February 15, 2010	
15.10.15-19	August 21, 2008	
15.10.20	August 17, 2007	
* 15.10.21-22	February 15, 2010	
15.10.23-25	August 21, 2008	
15.10.26-27	February 19, 2009	
15.10.28-29	August 21, 2008	
15.10.30	February 18, 2008	
15.20.1-6	February 14, 2007	
15.20.7	August 19, 2009	
15.20.8-12	February 14, 2007	
15.20.13	August 17, 2007	
15.20.14-19	February 18, 2008	
15.20.20-22	August 21, 2008	
15.20.23	February 18, 2008	
* 15.20.24-26	February 15, 2010	
15.20.27-34	February 18, 2008	
* 15.30.1-2	February 15, 2010	
(blank tab)		

^{* =} Revised, Added, or Deleted

Preface -V1V2 List of Effective Pages DO NOT USE FOR FLIGHT

767 Flight Crew Operations Manual

Intentionally Blank

^{* =} Revised, Added, or Deleted

767 Flight Crew Operations Manual

PrefaceChapter 0Bulletin RecordSection 6

General

The Boeing Company issues Flight Crew Operations Manual Bulletins to provide important information to flight crews prior to the next formal revision of the Flight Crew Operations Manual. The transmitted information may be of interest to only specific Operators or may apply to all Operators of this model airplane. Each bulletin will vary.

Bulletins are numbered sequentially for each operator. Each new bulletin is recorded in this record when received and filed as instructed. A bulletin may not apply to all airplane models. In this case, the bulletin specifically identifies the airplane effectivity. When appropriate, the next formal FCOM revision will include an updated bulletin record page.

Bulletin status is defined as follows:

- In Effect (IE) the bulletin contains pertinent information not otherwise covered in the Flight Crew Operations Manual. The bulletin remains active and should be retained in the manual
- Incorporated (INC) the bulletin operating information has been incorporated into the Flight Crew Operations Manual. However, the bulletin remains active and should be retained in the manual
- Cancelled (CANC) the bulletin is no longer active and should be removed from the Flight Crew Operations Manual. All bulletins previously cancelled are no longer listed in the Bulletin Record.

The person filing a new or revised bulletin should amend the Bulletin Record as instructed in the Administrative Information section of the bulletin. When a bulletin includes replacement pages for the Flight Crew Operations Manual or QRH, the included pages should be filed as instructed in the Flight Crew Operations Manual Information section of the bulletin.

Number	Subject	Date	Status
TBC-1	767-300/RB211-524H Takeoff Thrust Shortfall	February 14, 2007	IE
TBC-2	ADF Receiver Lockups	February 14, 2007	IE
TBC-3	ADI Blanking	February 14, 2007	IE

Copyright © The Boeing Company. See title page for details.

ı

Number	Subject	Date	Status
TBC-4	APU Automatic Shutdown At High Altitude	February 14, 2007	INC
TBC-5	Assumed Temperature Reduced Thrust Use	February 14, 2007	IE
TBC-6	Autoland	February 14, 2007	IE
TBC-7	Autoland Status Annunciator (ASA) Annunciation Change During Coupled Approach	February 14, 2007	IE
TBC-8	Automatic Landing Operations	February 14, 2007	IE
TBC-9	B/CRS (Localizer Backcourse) Autopilot/Flight Director Anomaly With -105 Flight Control Computer Installed	February 14, 2007	IE
TBC-10	Uncommanded Flap/Slat Extension	February 14, 2007	IE
TBC-11	Fuel In Engine Oil System CF6-80 C2	February 14, 2007	IE
TBC-12	Packs Off Takeoff	February 14, 2007	INC
TBC-13	FMC VFR Approach Anomaly	February 14, 2007	IE
TBC-14	Uncommanded Autopilot Engagements Or Uncommanded Autoflight Mode Changes	February 14, 2007	IE
TBC-15	VNAV Descent Through MCP Altitude	February 14, 2007	IE
TBC-16	Cabin Pressurization Control System (CPCS) Anomaly	February 14, 2007	IE
TBC-17	Center Tank Fuel Pumps	February 14, 2007	IE
TBC-18	Consecutive Conditional Altitude Waypoints Map Anomaly	February 14, 2007	IE

Number	Subject	Date	Status
TBC-19	Continuous Ignition For Flaps 1 Takeoff	February 14, 2007	IE
TBC-20	Dual FMC Restarts And Data Link Fail CDU Messages	February 14, 2007	IE
TBC-21	Electronic Engine Control (EEC) Software Anomaly	February 14, 2007	IE
TBC-22	Flight Management Computer (FMC) Anomaly of Engine Indicating and Crew Alerting System (EICAS) Alert	February 14, 2007	IE
TBC-23	Flight Management Computer (FMC) Anomaly During Descent Phase of Flight	February 14, 2007	IE
TBC-24	Flight Management Computer (FMC) Lockup Resulting from Internal Timer Anomaly	February 14, 2007	IE
TBC-25	Flight Management Computer (FMC) Lockup Resulting from Flight Plan Route Uplink	February 14, 2007	IE
TBC-26	FMC Holding Pattern Anomaly	February 14, 2007	IE
TBC-27	FMC CDU Scratchpad Message "Enter IRS Position"	February 14, 2007	IE
TBC-28	FMC VNAV Anomaly During Intermediate Level Off	February 14, 2007	IE
TBC-29	FMC Failure During VOR Remote Tuning	February 14, 2007	IE
TBC-30	FMC Assumed Temperature Derate Anomaly	February 14, 2007	IE
TBC-31	Fuel System Imbalance Anomaly	February 14, 2007	IE
TBC-32	FMC Alternate Airport Anomaly	February 14, 2007	IE
TBC-33	FMC Altitude Display Anomaly	February 14, 2007	IE

Number	Subject	Date	Status
TBC-34	FMC Engine Out (E/O) Standard Instrument Departure (SID)	February 14, 2007	IE
TBC-35	Incorrect Display of VREF On The ADI Speed Tape	February 14, 2007	IE
TBC-36	Invalid ILS Indication	February 14, 2007	IE
TBC-37	Pegasus Flight Management Computer (FMC) VNAV Level Off Anomaly	February 14, 2007	IE
TBC-38	Pegasus FMC HSI Map Display Anomaly	February 14, 2007	IE
TBC-39	Performance Adjustments for Thrust Shortfall of PW4000 Series Powered Airplanes with FB2B and FB2T Fans Installed	February 14, 2007	IE
TBC-40	PW4000 Engine Operation In Heavy Rain Or Hail	February 14, 2007	IE
TBC-41	PW4000 Engine Idle Modification	February 14, 2007	IE
TBC-42	Unscheduled In Motion Brake Application	February 14, 2007	IE
TBC-43	Uncommanded Autopilot Engagement, Flight Mode Changes, And IAS/MACH Window Speed Changes	February 14, 2007	IE
TBC-44	Uncommanded CDU Page Changes	February 14, 2007	IE
TBC-45	Use of Manual Trim for Flap 1 Takeoff	February 14, 2007	IE
TBC-46	VNAV Descent to Holding Altitude	February 14, 2007	IE
TBC-47	CDU Page Changes During Engine Inoperative Operation	February 14, 2007	IE
TBC-48	CF6-80C2 FADEC Engine Operation In Heavy Rain Or Hail	February 14, 2007	IE

Number	Subject	Date	Status
TBC-49	Erroneous ILS Receiver Outputs	February 14, 2007	IE
TBC-50	Flight Management Computer (FMC) Resynchronizations	February 14, 2007	IE
TBC-51	Loss Of FMC Operation	February 14, 2007	IE
TBC-52	VNAV PATH Altitude Overshoot	February 14, 2007	IE
TBC-53	Engine Inoperative FMC Data	February 14, 2007	IE
TBC-54	EICAS Indication Of Impending Engine Fuel Filter Bypass	February 14, 2007	IE
TBC-55	FMC Display of ATS Datalink Messages From Previous Flights	February 14, 2007	IE
TBC-56	Loss of Inertial Reference System (IRS) Input to RDMI/RMI During Standby Power Operation	February 14, 2007	INC
TBC-57	Installation of Pratt & Whitney PW4000 Engines with Ring-Case Compressor (RCC)	February 14, 2007	INC
TBC-58	Pegasus Flight Management Computer (FMC) Lock-Up Anomaly Due to Data-Bus Communications Failure	February 14, 2007	IE
TBC-59	Incorrect Turn Direction During a Standard Instrument Departure (SID)	February 14, 2007	IE
TBC-61	Performance Predictions Anomaly in Flight Management Computer (FMC) Product Improvement Package (PIP) and Pegasus Software Versions	February 14, 2007	IE
TBC-62	Center Tank Fuel Pump Automatic Power Removal System	February 14, 2007	INC
TBC-63	Pegasus Flight Management Computer (FMC) Departure Routing Anomaly	February 14, 2007	IE

Number	Subject	Date	Status
TBC-64	Uncommanded Auxiliary Power Unit (APU) Shutdown Prior to Engine Start	February 14, 2007	IE
TBC-65	Pegasus-FMC Control and Display Unit (CDU) Anomaly	February 14, 2007	IE
TBC-66	Auxiliary Power Unit (APU) Bleed Air Supply Fault	May 1, 2007	IE
TBC-67	B/E Aerospace 174660-N3 Crew Oxygen Mask	May 1, 2007	IE
TBC-68	B/E Aerospace 174692-N7 Crew Oxygen Mask	May 1, 2007	IE
TBC-70	Integrated Standby Flight Display (ISFD) Initialization Anomaly	May 1, 2007	IE
TBC-72 R1	Honeywell Flight Management Computer (FMC) Anomaly	February 15, 2010	IE
TBC-73 R1	Missing Advisory-Level Message Logic in EICAS Computer P/N S242N701-1001 Operating Program Software (OPS) Version 6	February 15, 2010	IE
TBC-74	Hand microphone use with flight deck PC power outlets	September 5, 2008	IE
TBC-75	General Electric (GE) CF6-80C2 Engine Flameout Mitigation	February 20, 2009	IE

The Boeing Company Seattle, Washington 98124-2207

Number: TBC-1

IssueDate: February 14, 2007

Airplane Effectivity: All Airplanes

Subject: 767-300/RB211-524H Takeoff Thrust Shortfall

Reason: This bulletin provides information contained in Blue Bulletin BAB-13

R1, dated January 10,1994, which provided flight crews with takeoff

performance weight penalties.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

Background Information

Rolls-Royce has advised operators of possible insufficient fuel flow margins on some RB211-524H engines due to fuel metering unit (FMU) wear which can result in performance restrictions for operations from airport pressure altitudes below minus 200 feet within a defined band of outside air temperatures. Modifications to the FMU are currently being evaluated by the engine manufacturer. Rolls-Royce has issued Non-Mod Service Bulletin RB211-71-9276 Rev.5 which requires an FMU health check. The takeoff weight decrements provided below are to be applied in conjunction with the health check defined in the Rolls-Royce Service Bulletin.

Operations Manual Information

The following table shows takeoff weight decrements to be applied when pressure altitude and outside air temperature are within the values indicated. Note that the pressure altitudes shown are all negative and will only be encountered under high QNH conditions. If an operator does not normally take credit for high pressure conditions, no penalty is required.

PRESSURE ALTITUDE	IF TEMPERATURE	DECREASE TAKEOFF
RANGE (FT)	RANGE IS BETWEEN:	LIMITED WEIGHT BY:
	(°C)	(KG)
ABOVE -200		0
-201 TO -400	26 TO 32	650
-401 TO -600	24 TO 34	1250
-601 TO -800	22 TO 34	1900
-801 TO -1000	20 TO 35	2550
-1001 TO -1200	18 TO 36	3200
-1201 TO -1400	17 TO 37	3800
-1401 TO -1600	15 TO 38	4450
-1601 TO -1800	14 TO 38	5100
-1801 TO -2000	12 TO 39	5700

Administrative Information

Insert this bulletin behind the Operations Manual Bulletin Record page in Volume 1 of your Operations Manual. Amend the Operations Manual Bulletin Record to show bulletin TBC-1 "In Effect" (IE).

This Operations Manual Bulletin will be canceled after Boeing is notified that all affected airplanes in the operators fleet have been modified by Rolls-Royce Service Bulletins RR SB 73-9666 and RR SB 73-9694.

Please send all correspondence regarding Operations Manual Bulletins status to one of the following addresses:

Boeing Commercial Airplanes

Commercial Aviation Services

Attn: 767 Manager, Flight Technical Data

P.O. Box 3707, M/C 20-89

Seattle, Washington, 98124-2207 USA

Telephone: (206) 662-4000

The Boeing Company Seattle, Washington 98124-2207

Number: TBC-2

IssueDate: February 14, 2007

Airplane Effectivity: All Airplanes Subject: ADF Receiver Lockups

Reason: This bulletin provides information informing flight crews of the

potential for ADF receiver lockups.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

Background Information

Random occurrences of ADF receiver lockups have been reported during short term electrical power interruptions such as during power source transfers. This lockup renders the ADF inoperative and is indicated by the bearing pointer failure flag in view when ADF is selected on the RDMI. If the flight requires the use of the ADF, it is recommended that operation of the ADF be verified after electrical power transfer and before departure. Ensure selection of an in-range station for verification, since selection of an out of range station will produce the same failure flag on the RDMI.

Operation of the ADF may be fully restored by cycling the ADF circuit breaker. During preflight the ADF circuit breaker may be cycled to restore the system.

Production revisions to correct these receiver lockups are incorporated on currently delivered airplanes. Boeing Service Bulletin 767-34-0016 corrects this anomaly.

Administrative Information

Insert this bulletin behind the Operations Manual Bulletin Record page in Volume 1 of your Operations Manual. Amend the Operations Manual Bulletin Record to show bulletin TBC-2 "In Effect" (IE).

This Operations Manual Bulletin will be canceled after Boeing is notified that all affected airplanes in the operators fleet have been modified by Boeing Service Bulletin 767-34-0016.

Please send all correspondence regarding Operations Manual Bulletins status to one of the following addresses:

Boeing Commercial Airplanes

Commercial Aviation Services

Attn: 767 Manager, Flight Technical Data

P.O. Box 3707, M/C 20-89

Seattle, Washington, 98124-2207 USA

Telephone: (206) 662-4000

The Boeing Company Seattle, Washington 98124-2207

Number: TBC-3

IssueDate: February 14, 2007

Airplane Effectivity: All Airplanes

Subject: ADI Blanking

Reason: This bulletin provides information informing flight crews of the

potential for ADI blanking.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

Background Information

There have been reported instances where the ADI has blanked when the HSI is displaying a large amount of data. In each of these instances, the HSI WPT switch was being used to display waypoints on the HSI.

Boeing Service Bulletin 767-34-0008 corrects this problem. Until the modification is incorporated, the HSI WPT switch must be left in the OFF position for all flight operations. Should flight crews wish to display waypoints in addition to those included in the route of flight, the waypoints need simply be inserted as fixes on the fix page(s).

If such blanking does occur as the result of inadvertent actuation of the HSI WPT switch, first reduce the amount of data selected for display by placing the mapswitches to OFF, then select the affected EFI instrument source select switch to ALTN. The EFI instrument source select switch may then be returned to normal if desired.

Administrative Information

Insert this bulletin behind the Operations Manual Bulletin Record page in Volume 1 of your Operations Manual. Amend the Operations Manual Bulletin Record to show bulletin TBC-3 "In Effect" (IE).

This Operations Manual Bulletin will be canceled after Boeing is notified that all affected airplanes in the operators fleet have been modified by Boeing Service Bulletin 767-34-0008.

Please send all correspondence regarding Operations Manual Bulletins status to one of the following addresses:

Boeing Commercial Airplanes

Commercial Aviation Services

Attn: 767 Manager, Flight Technical Data

P.O. Box 3707, M/C 20-89

Seattle, Washington, 98124-2207 USA

Telephone: (206) 662-4000

The Boeing Company Seattle, Washington 98124-2207

Number: TBC-4

IssueDate: February 14, 2007

Airplane Effectivity: All Airplanes

Subject: APU Automatic Shutdown At High Altitude

Reason: This bulletin provides flight crews with a modified APU Fault

procedure for restarting the APU after an automatic shutdown at high

altitude.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

Background Information

A recent modification to the APU has been found to cause a possible automatic shutdown of the APU. Automatic shutdown of the APU is indicated by the APU FAULT advisory message on EICAS and illumination of the APU FAULT Light.

Investigations by both Boeing and AlliedSignal have revealed that a new APU Gearbox Shutoff Valve, PN 3616848-1, can cause the automatic shutdown. The PN 3616848-1 valve has been installed on ND199 during production at Boeing and is installed on other airplanes if Allied Signal Service Bulletin GTCP331-49-7147 has been incorporated.

It has been found that the APU, on airplanes with the PN 3616848-1 valve, can be restarted and will operate normally at or below 35,000 feet.

Older airplanes with a previously installed valve, PN3289514-1, are not experiencing automatic APU shutdowns.

Testing has confirmed that a PN 3616848-2 configuration of the valve corrects the shutdown problem. Allied Signal Service Bulletin GTCP331-49-7263 provides instructions for replacing the PN 3616848-1 valve with the -2 valve.

Operating Instructions

If an automatic shutdown of the APU occurs, accomplish the APU Fault procedure.

The APU Fault procedure has been modified to instruct descending to 35,000 feet or below if APU operation is required.

Administrative Information

Insert this bulletin behind the Operations Manual Bulletin Record page in Volume 1 of your Operations Manual. Amend the Operations Manual Bulletin Record to show bulletin TBC-4 "Incorporated" (INC).

This Operations Manual Bulletin will be canceled after Boeing is notified that all affected airplanes in the operators fleet have been modified by Allied Signal Service Bulletin GTCP331-49-7263.

Please send all correspondence regarding Operations Manual Bulletins status to one of the following addresses:

Boeing Commercial Airplanes

Commercial Aviation Services

Attn: 767 Manager, Flight Technical Data

P.O. Box 3707, M/C 20-89

Seattle, Washington, 98124-2207 USA

Telephone: (206) 662-4000

The Boeing Company Seattle, Washington 98124-2207

Number: TBC-5

IssueDate: February 14, 2007

Airplane Effectivity: All Airplanes

Subject: Assumed Temperature Reduced Thrust Use

Reason: This bulletin provides information advising flight crews of thrust

shortfall that may occur when the assumed temperature method of reduced takeoff thrust is used in combination with takeoff derates on

767-200 airplanes.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

Background Information

On 767-200 airplanes with takeoff thrust derate capability, after selecting Takeoff Derate 1 or 2, additional takeoff thrust reductions can be obtained using the assumed temperature method. The Thrust Management Computer (TMC) calculates derated takeoff thrust %N1 (derate 1 or 2) including any assumed temperature selected on the Thrust Mode Select Panel (TMSP).

It was determined that the originally published %N1 data for assumed temperature reduced thrust with Takeoff Derate 1 or 2 are incorrect. These data are also incorporated into the -304 TMC. The incorrect data may result in a thrust shortfall if assumed temperature reduced thrust is used in combination with Takeoff Derate 1 or 2. Assumed temperature reduction applied to full rated takeoff thrust does not result in such an adverse affect. The Takeoff Derate 1 and 2 assumed temperature reduced thrust setting data have been revised. The revised data has been incorporated in the -305 TMC. Boeing Service Bulletin 767-22-0022 is available for converting a -304 TMC to a -305 TMC.

Operating Instructions

Until Boeing Service Bulletin 767-22-0022 is incorporated, do not use assumed temperature reduced thrust with Takeoff Derate 1 or 2 selected.

Assumed temperature reduced thrust may be used with Full rated takeoff thrust.

Administrative Information

Insert this bulletin behind the Operations Manual Bulletin Record page in Volume 1 of your Operations Manual. Amend the Operations Manual Bulletin Record to show bulletin TBC-5 "In Effect" (IE).

This Operations Manual Bulletin will be canceled after Boeing is notified that all affected airplanes in the operators fleet have been modified by Boeing Service Bulletin 767-22-0022.

Please send all correspondence regarding Operations Manual Bulletins status to one of the following addresses:

Boeing Commercial Airplanes

Commercial Aviation Services

Attn: 767 Manager, Flight Technical Data

P.O. Box 3707, M/C 20-89

Seattle, Washington, 98124-2207 USA

Telephone: (206) 662-4000

The Boeing Company Seattle, Washington 98124-2207

Number: TBC-6

IssueDate: February 14, 2007

Airplane Effectivity: All Airplanes

Subject: Autoland

Reason: This bulletin provides information informing flight crews of conditions

that preclude the use of autoland.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

Background Information

During the 767-300 autoland certification, unusually high sink rates at touchdown were encountered in high density altitude conditions with tailwinds, and groundspeeds in excess of 165 knots. An improved autoland system was developed to reduce sink rates at these conditions. Subsequent evaluation of the 767-200 under similar conditions has shown that high sink rates could also develop at touchdown from an autoland for all 767-200s with the -103, -105, and -106 FCC without the improved autoland system activated. The improved autoland system is standard for all 767-300 airplanes and available for retrofit on the 767-200 airplanes by installing the -106 or later FCC and activating the wiring change of Boeing Service Bulletin 767-22-0026 or production introduction of equivalent configuration by PRR B11723 (Part A and B).

Operating Instructions

Pending operator fleetwide FCC and wiring update the following applies:

If groundspeed on short final approach (approximately 200 feet AGL) exceeds 165 knots, accomplish a manual landing.

Administrative Information

Insert this bulletin behind the Operations Manual Bulletin Record page in Volume 1 of your Operations Manual. Amend the Operations Manual Bulletin Record to show bulletin TBC-6 "In Effect" (IE).

This Operations Manual Bulletin will be canceled after Boeing is notified that all affected airplanes in the operators fleet have been modified by Boeing Service Bulletin 767-22-0026.

Please send all correspondence regarding Operations Manual Bulletins status to one of the following addresses:

Boeing Commercial Airplanes

Commercial Aviation Services

Attn: 767 Manager, Flight Technical Data

P.O. Box 3707, M/C 20-89

Seattle, Washington, 98124-2207 USA

Telephone: (206) 662-4000

The Boeing Company Seattle, Washington 98124-2207

Number: TBC-7

IssueDate: February 14, 2007

Airplane Effectivity: All Airplanes

Subject: Autoland Status Annunciator (ASA) Annunciation Change During

Coupled Approach

Reason: This bulletin provides information informing flight crews of temporary

recommended procedures for coupled approach anomalies.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

Background Information

During a test flight at Boeing, all three autopilot channels disconnected during a coupled approach. Analysis revealed that this condition is caused by an error introduced between the Flight Control Computers (FCC) during a power transfer. The error occurs if one source of electrical power fails after the LAND 3 annunciation appears during approach. During the power transfer, air data from the Air Data computers is interrupted. The time required for the electrical system to revert to normal, then re-isolate may exceed the limit allowed for interruption of air data, and result in loss of air data to one FCC for the duration of the approach. As a result, an autopilot disconnect may occur during flare or during go-around. Service Bulletin 767-22-0038 corrects this anomaly.

Disconnecting the autopilots causes the electrical system to revert to normal operations (non-isolated), and resets the autoland system and ASA to allow normal LAND 2 or LAND 3 operation on subsequent approaches.

Operating Instructions

If, during an autopilot (coupled) approach, following the LAND 3 annunciation, the Autoland Status Annunciator (ASA) is observed to change to LAND 2, execute a manual landing on that approach (weather permitting), or execute a manual go-around.

If the approach is continued, the autopilot must be disconnected prior to landing.

If a go-around is accomplished, the autopilot must be disconnected prior to executing the go-around.

A subsequent autopilot (coupled) approach and landing may be conducted provided LAND 2 or LAND 3 remains annunciated on that approach.

Administrative Information

Insert this bulletin behind the Operations Manual Bulletin Record page in Volume 1 of your Operations Manual. Amend the Operations Manual Bulletin Record to show bulletin TBC-7 "In Effect" (IE).

This Operations Manual Bulletin will be canceled after Boeing is notified that all affected airplanes in the operators fleet have been modified by Boeing Service Bulletin 767-22-0038.

Please send all correspondence regarding Operations Manual Bulletins status to one of the following addresses:

Boeing Commercial Airplanes

Commercial Aviation Services

Attn: 767 Manager, Flight Technical Data

P.O. Box 3707, M/C 20-89

Seattle, Washington, 98124-2207 USA

Telephone: (206) 662-4000

The Boeing Company Seattle, Washington 98124-2207

Number: **TBC-8**

IssueDate: February 14, 2007

Airplane Effectivity: All Airplanes

Subject: Automatic Landing Operations

Reason: This bulletin provides information informing flight crews of the

potential for autopilot disconnect.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

Background Information

An anomaly has been identified which has an adverse affect on the integrity of the automatic landing system and can result in increased potential for autopilot disconnect at low altitude.

An operator has reported three cases of multiple autopilot disconnect, These disconnects are the result of distortion of the glideslope signal resulting from the proximity of the radome lower hinge arm to the glideslope antenna. Individual system installation tolerances (airplane and airport) may affect the probability of such autopilot disconnects.

Boeing Service Bulletin 767-53-0022 dated December 20, 1985 has been released to provide instructions to correct the situation. This Service Bulletin provides for interim corrective action involving removal of the lower hinge arm.

Administrative Information

Insert this bulletin behind the Operations Manual Bulletin Record page in Volume 1 of your Operations Manual. Amend the Operations Manual Bulletin Record to show bulletin TBC-8 "In Effect" (IE).

Flight Crew Operations Manual Bulletin No. TBC-8, Dated February 14, 2007 (continued)

This Operations Manual Bulletin will be canceled after Boeing is notified that all affected airplanes in the operators fleet have been modified by Boeing Service Bulletin 767-53-0022.

Please send all correspondence regarding Operations Manual Bulletins status to one of the following addresses:

Boeing Commercial Airplanes

Commercial Aviation Services

Attn: 767 Manager, Flight Technical Data

P.O. Box 3707, M/C 20-89

Seattle, Washington, 98124-2207 USA

Telephone: (206) 662-4000

The Boeing Company Seattle, Washington 98124-2207

Number: TBC-9

IssueDate: February 14, 2007

Airplane Effectivity: All Airplanes

Subject: B/CRS (Localizer Backcourse) Autopilot/Flight Director Anomaly

With -105 Flight Control Computer Installed

Reason: This bulletin provides information advising flight crews to avoid

engaging an autopilot after capturing the localizer B/CRS mode provided recommendations in the event the autopilot were inadvertently

engaged after B/CRS capture.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

Background Information

The -105 Flight Control Computer (FCC) has an anomaly when flying a backcourse approach using the flight director and subsequently engaging an autopilot. If an autopilot is engaged after flight director localizer B/CRS capture, B/CRS may disengage and, depending upon course error, one of the following would occur: for course errors less than 60 degrees, the FCCs revert to HDG HOLD and LOC mode arms; for course errors 60 degrees or greater, the FCCs revert to LOC mode and command a 30 degree bank turn to capture the localizer front course resulting in turning away from the backcourse localizer centerline.

The -106 FCC installed by Boeing Service Bulletin 767-22-0026 or production equivalent configuration (PRR B11723) corrects this anomaly.

Operating Instructions

If the autopilot is to be used for a localizer backcourse, engage the autopilot prior to localizer B/CRS capture. In the event the autopilot is not engaged prior to B/CRS capture, the autopilot and both Flight Directors must be switched off. The autopilot may then be re-engaged if desired, prior to reselecting B/CRS. Operation of the flight director for backcourse localizer is not affected if the autopilot is not engaged.

Administrative Information

Insert this bulletin behind the Operations Manual Bulletin Record page in Volume 1 of your Operations Manual. Amend the Operations Manual Bulletin Record to show bulletin TBC-9 "In Effect" (IE).

This Operations Manual Bulletin will be canceled after Boeing is notified that all affected airplanes in the operators fleet have been modified by Boeing Service Bulletin 767-22-0026.

Please send all correspondence regarding Operations Manual Bulletins status to one of the following addresses:

Boeing Commercial Airplanes

Commercial Aviation Services

Attn: 767 Manager, Flight Technical Data

P.O. Box 3707, M/C 20-89

Seattle, Washington, 98124-2207 USA

Telephone: (206) 662-4000

Ø BOEING

Flight Crew Operations Manual Bulletin for The Boeing Company

The Boeing Company Seattle, Washington 98124-2207

Number: TBC-10

IssueDate: February 14, 2007

Airplane Effectivity: All Airplanes

Subject: Uncommanded Flap/Slat Extension

Reason: This bulletin provides flight crews with interim operating instructions in

the event the flap indicator is oscillating.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

Background Information

Several operators have reported erratic trailing edge flap indications during electrical power transfers. The flap indicator needles oscillate erratically between "UP" and "1" and the built in test equipment LEDs for section three on the Flap/Slat Electronic Unit (FSEU) have been noted to be flashing. These symptoms could continue unless the FSEU section three circuit breakers are pulled for approximately 15 seconds and then reset.

An operator reported an inflight occurrence of oscillating flap indicator needles when selecting Flaps 1 accompanied by a TE FLAP DISAGREE message and intermittent illumination of the LEADING EDGE Light. The LE SLAT ASYMMETRY, LE SLAT DISAGREE and TE FLAP DISAGREE checklists were accomplished resulting in arming of the alternate flap system. At 5000 feet, 208 knots, a sudden loss of airspeed to 180 knots with buffet and altitude ballooning to 5500 feet were experienced. The flap handle was up and the alternate flap selector was in normal, but visual inspection from the cabin showed the flaps to be at position 30. A normal landing was made and the airplane arrived at the gate with the flaps and slats down, the flap handle up, and the flap indicator oscillating. The alternate system would not move the flaps or slats.

All conditions returned to normal after power was removed from the airplane and restored.

The flap needle fluctuations described above are caused by electrical power transfers. Boeing Service Bulletin 767-27-0058 corrects this problem.

Operating Instructions

Until all FSEUs are modified, the following interim operating instructions are recommended:

To prevent possible uncommanded flap/slat extension or retraction, do not arm the alternate flap system during cruise or when above the Flap "1" Placard speed, or when the flap indicator needles are oscillating. If flap indicator needles are oscillating, use normal system to extend/retract flaps.

Administrative Information

Insert this bulletin behind the Operations Manual Bulletin Record page in Volume 1 of your Operations Manual. Amend the Operations Manual Bulletin Record to show bulletin TBC-10 "In Effect" (IE).

This Operations Manual Bulletin will be canceled after Boeing is notified that all affected airplanes in the operators fleet have been modified by Boeing Service Bulletin 767-27-0058

Please send all correspondence regarding Operations Manual Bulletins status to one of the following addresses:

Boeing Commercial Airplanes

Commercial Aviation Services

Attn: 767 Manager, Flight Technical Data

P.O. Box 3707, M/C 20-89

Seattle, Washington, 98124-2207 USA

Telephone: (206) 662-4000

The Boeing Company Seattle, Washington 98124-2207

Number: TBC-11

IssueDate: February 14, 2007

Airplane Effectivity: All Airplanes

Subject: Fuel In Engine Oil System CF6-80 C2

Reason: This bulletin provides information informing flight crews of the

possibility of fuel entering the engine oil system.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

Background Information

There have been numerous reported events on CF6-80C2 powered airplanes where engine oil has been contaminated with fuel. Several of these events resulted in uncontained engine failures in flight when a fire has occurred in the oil vent system shortly after takeoff.

There are four points where fuel can leak into and contaminate the oil:

- 1. Fuel/oil Heat Exchanger leakage.
- 2. N1 Hydro Mechanical Sensor.
- 3. Seal in the Fuel Control Unit.
- 4. Fuel lines on the Fuel Control Unit being switched.

GE Service Bulletin 72-648 has been issued to prevent uncontained engine failures in the event a fire occurs in the oil vent system.

Boeing previously advised that internal leakage of fuel into the oil system should be suspected if the oil quantity indication was at or approaching 20 or more units after engine start. However, since issue of the original bulletin, several operators have reported oil quantity indications of approximately 21 units after engine start which, when investigated, were not due to fuel/oil contamination. The increase in oil quantity was due to a slight over servicing, expansion of oil due to temperature increase or an increase in scavenge efficiency with the engine at idle. For these reasons, the oil quantity check after engine start has been increased to 22 units.

Information on these events has shown inconsistent indications for fuel in the oil system which cannot provide a sound basis for flight crew procedures inflight. Since flight crews do not continuously monitor the oil system indications, changes in the oil system parameters may not be noticed. However, if the oil quantity is observed to be increasing during steady state operation, or if at any time during engine operation the oil quantity indication is at or approaching 22 or more units, then internal leakage of fuel into the oil system should be suspected. This condition should be entered in the Flight Log for maintenance action prior to the next flight.

The first cockpit indication of a fuel contaminated oil system may be an increasing or overfilled oil tank quantity. The rate of oil quantity increase depends on the severity of the fuel leak. Leaks are normally detected by maintenance personnel during required checks, or while investigating flight crew complaints of increasing oil quantity. An extreme overfull condition may be accompanied by increasing oil temperature, fluctuating or decreasing oil pressure, or fuel/oil fumes in the cabin.

Additional maintenance checks have been implemented following servicing of the oil tanks, or after maintenance on the engine oil or fuel system, to detect fuel contamination of the oil. This results in more frequent checks of the oil system.

Operating Instructions

Since the data on at least one uncontained failure indicates the oil tank was over filled at engine start, accomplish the following check until GE Service Bulletin 72-648 is incorporated.

At least 30 seconds after the engine reaches stabilized idle and prior to taxi:

OIL QUANTITY ----- CHECK

If the oil quantity indicates 22 or more units, maintenance investigation is required prior to takeoff.

Administrative Information

Insert this bulletin behind the Operations Manual Bulletin Record page in Volume 1 of your Operations Manual. Amend the Operations Manual Bulletin Record to show bulletin TBC-11 "In Effect" (IE).

This Operations Manual Bulletin will be canceled after Boeing is notified that all affected airplanes in the operators fleet have been modified by GE Service Bulletin 72-648.

Please send all correspondence regarding Operations Manual Bulletins status to one of the following addresses:

Boeing Commercial Airplanes Commercial Aviation Services

Attn: 767 Manager, Flight Technical Data

P.O. Box 3707, M/C 20-89

Seattle, Washington, 98124-2207 USA

Telephone: (206) 662-4000

Flight Crew Operations Manual Bulletin No. TBC-11, Dated February 14, 2007 (continued)

Intentionally Blank

The Boeing Company Seattle, Washington 98124-2207

Number: TBC-12

IssueDate: February 14, 2007

Airplane Effectivity: All Airplanes

Subject: Packs Off Takeoff

Reason: This bulletin provides information informing flight crews of an interim

procedure to prevent possible jamming of the outflow valve during a packs off takeoff. The Packs Off Takeoff supplementary normal

procedure now incorporates this bulletin.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

Background Information

There have been a few reports of uncontrollable cabin pressurization when the packs were turned on following a packs off takeoff, with subsequent inability to depressurize the airplane normally after landing. This has sometimes resulted in inability to open the cabin doors for several minutes. Boeing has verified that it is possible for the outflow valve to jam in the closed position when the airplane is configured for a packs off takeoff. This can be prevented by using the manual system to position the outflow valve approximately three-quarters open prior to takeoff

Operating Instructions

If a packs off takeoff is desired, accomplish the "Packs Off Takeoff" supplementary normal procedure. This procedure incorporates the interim steps necessary until the system is modified.

Administrative Information

Insert this bulletin behind the Operations Manual Bulletin Record page in Volume 1 of your Operations Manual. Amend the Operations Manual Bulletin Record to show bulletin TBC-12 "Incorporated" (INC).

This Operations Manual Bulletin will be canceled after Boeing is notified that all affected airplanes in the operators fleet have been modified by Boeing Service Letter SL 767-21-047C and Allied Signal Service Bulletins 2117388-21-2655 and 606832-21-2661.

Please send all correspondence regarding Operations Manual Bulletins status to one of the following addresses:

Boeing Commercial Airplanes

Commercial Aviation Services

Attn: 767 Manager, Flight Technical Data

P.O. Box 3707, M/C 20-89

Seattle, Washington, 98124-2207 USA

Telephone: (206) 662-4000

The Boeing Company Seattle, Washington 98124-2207

Number: TBC-13

IssueDate: February 14, 2007

Airplane Effectivity: All Airplanes
Subject: FMC VFR Approach Anomaly

Reason: This bulletin provides information informing flight crews of temporary

recommended procedures for FMC generated VFR approaches.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

Background Information

On a recent customer revenue flight, an anomaly was discovered when a VFR approach was selected. Further evaluation concluded that the anomaly affects airplanes with software version PS4052970-952. The anomaly does not pertain to other FMC software versions.

When operating an FMC with software version PS4052970-952 and an FMC generated VFR approach is selected on the Arrivals page by line selecting the "VFR APPR" prompt, the resulting course from the VFR final approach fix to the runway threshold may be computed in error. The erroneous course is displayed on the legs page and the HSI. The T/D may also be displaced. If engaged, LNAV will fly the displayed erroneous course.

Operating Instructions

Do not perform FMC generated VFR approaches using the VFR APPR line select key when using this software number. A valid VFR approach with accurate course information can be created by manually inserting the desired runway extension on the RWY EXT line.

When operating FMCs with other software numbers, VFR approaches may still be selected, if available.

Administrative Information

Insert this bulletin behind the Operations Manual Bulletin Record page in Volume 1 of your Operations Manual. Amend the Operations Manual Bulletin Record to show bulletin TBC-13 "In Effect" (IE).

The FMC anomaly will be corrected by Boeing Service Bulletin 767-34-0182. Other FMC's are corrected by Boeing Service Bulletin 767-34-0186 or 767-34-0188 or 767-34-0199 or 767-34-0205. Refer to individual Service Bulletin for applicability.

This Operations Manual Bulletin will be canceled after Boeing is notified that the affected FMC operating program is no longer installed on any of the airplanes in the operators fleet.

Please send all correspondence regarding Operations Manual Bulletins status to one of the following addresses:

Boeing Commercial Airplanes

Commercial Aviation Services

Attn: 767 Manager, Flight Technical Data

P.O. Box 3707, M/C 20-89

Seattle, Washington, 98124-2207 USA

Telephone: (206) 662-4000

Flight Crew Operations Manual Bulletin for The Boeing Company

The Boeing Company Seattle, Washington 98124-2207

Number: **TBC-14**

IssueDate: February 14, 2007

Airplane Effectivity: All Airplanes

Subject: Uncommanded Autopilot Engagements Or Uncommanded Autoflight

Mode Changes

Reason: This bulletin provides information informing flight crews of temporary

recommended procedures in the event of uncommanded autopilot

engagement or autoflight mode changes.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

Background Information

Boeing flight tests have encountered a condition that can cause uncommanded autopilot engagement or mode changes of the autopilot or flight director. This condition may occur at any time or altitude except when multiple autopilots are engaged for approach.

This condition is caused by faulty Mode Control Panel pushbutton switches installed during production or repair. The condition affects the left and center Flight Control Computers. These Flight Control Computers normally provide commands for the left and center autopilots and flight directors.

The normal means for disconnecting the autopilot (autopilot disengage switch, autopilot disengage bar, and control wheel stabilizer trim switches) are not affected by this problem.

Boeing and Collins are working aggressively to facilitate the modification of affected units by mid summer, 1993. To date, no in service events have been reported to Boeing.

Operating Instructions

Flight crews should be prepared to disengage the autopilot during critical phases of flight including takeoff. Flight Mode Displays must be closely monitored. An uncommanded mode change or autopilot engagement can be corrected by selecting the desired mode or disconnecting the autopilot.

Administrative Information

Insert this bulletin behind the Operations Manual Bulletin Record page in Volume 1 of your Operations Manual. Amend the Operations Manual Bulletin Record to show bulletin TBC-14 "In Effect" (IE).

This Operations Manual Bulletin will be canceled after Boeing is notified that all affected airplanes in the operators fleet have been modified by Collins Component Service Bulletin MCP-701-22-19, dated April 23, 1993 or Collins Component Service Bulletin MCP-704-22-10, dated April 23, 1993. Additional details and specific applicability of the Service Bulletins are contained in Boeing All-operator telex M-7272-93-2738, dated May 10, 1993.

Please send all correspondence regarding Operations Manual Bulletins status to one of the following addresses:

Boeing Commercial Airplanes

Commercial Aviation Services

Attn: 767 Manager, Flight Technical Data

P.O. Box 3707, M/C 20-89

Seattle, Washington, 98124-2207 USA

Telephone: (206) 662-4000

Fax: (206) 662-4743

Flight Crew Operations Manual Bulletin for The Boeing Company

The Boeing Company Seattle, Washington 98124-2207

Number: TBC-15

IssueDate: February 14, 2007

Airplane Effectivity: All Airplanes

Subject: VNAV Descent Through MCP Altitude

Reason: This bulletin provides information informing flight crews that VNAV

may command the airplane to descend through the MCP altitude when a B (at or below) altitude constraint is entered on the FMC RTE LEGS

page for a holding pattern.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

Background Information

Operators have reported a condition in which the airplane may descend below the MCP Altitude Window value during VNAV descent.

Boeing has determined this anomaly can occur on all 767 airplanes except for airplanes that both:

- Have "VERSION 2.0" displayed on the FMC CDU IDENT page after the operating program number, and
- Incorporate the VNAV ALT mode.

VNAV descents may continue below MCP Altitude Window settings when both of the following conditions have been met.

- The HOLD AT line on the RTE LEGS page contains a B (at or below) altitude constraint, and
- The MCP Altitude Window is set for the same value as the B altitude constraint.

This anomaly will not occur when a B altitude constraint is entered on the waypoint line above the HOLD AT waypoint line.

The cause of the anomaly has been identified and will be addressed in the next revisions of the FMC software scheduled for update on 767 airplanes.

Operating Instructions

For VNAV descent, flight crews should not use B (at or below) altitude constraints on the HOLD AT line of the RTE LEGS page for holding patterns in the descent profile.

Administrative Information

Insert this bulletin behind the Operations Manual Bulletin Record page in Volume 1 of your Operations Manual. Amend the Operations Manual Bulletin Record to show bulletin TBC-15 "In Effect" (IE).

This Operations Manual Bulletin will be canceled after Boeing is notified that all affected airplanes in the operators fleet have been modified by either Boeing Service Bulletin 767-34-0205 or Boeing Service Bulletin 767-34-0211 or Boeing Service Bulletin 767-34-0212.

Please send all correspondence regarding Operations Manual Bulletins status to one of the following addresses:

Boeing Commercial Airplanes

Commercial Aviation Services

Attn: 767 Manager, Flight Technical Data

P.O. Box 3707, M/C 20-89

Seattle, Washington, 98124-2207 USA

Telephone: (206) 662-4000

Fax: (206) 662-4743

Flight Crew Operations Manual Bulletin for The Boeing Company

The Boeing Company Seattle, Washington 98124-2207

Number: **TBC-16**

IssueDate: February 14, 2007

Airplane Effectivity: All Airplanes

Subject: Cabin Pressurization Control System (CPCS) Anomaly

Reason: To inform flight crews of a Cabin Pressurization Control System

anomaly.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

Background Information

An anomaly has been discovered with the Cabin Pressurization Control System (CPCS). A recent software change in the CPCS may result in the outflow valve closing and the airplane pressurizing on the ground. In some cases, this has resulted in the inability to open the passenger entry doors.

Boeing has discovered this anomaly was introduced in a recent software change in the Cabin Pressurization Controllers (CPC). Specifically, airplane pressurization can occur after an electrical power transfer is accomplished. This includes, but is not limited to, electrical power transfers as a result of normal engine start and shutdown operations.

The affected Honeywell CPC software is:

2117388-11

2117388-12 and,

2117388-13.

Operating Instructions

The following highlighted procedural steps should be executed as shown below immediately after the "Fuel Control switches" step as published in the Normal Procedures section of The Boeing Company Operations Manual, Volume I:

FUEL CONTROL switches ------ CUT OFF C Verify ENG VALVE and SPAR VALVE lights extinguished.

CABIN ALTITUDE MODE SELECTOR ----- MAN F/O

If outflow valve not fully open:

CABIN ALTITUDE MANUAL CONTROL ----- CLIMB F/O Position outflow valve fully open.

The above highlighted procedural steps should be accomplished during all shutdown operations. This will preclude the CPC anomaly from inadvertently pressurizing the cabin. Proper execution of the "Preflight Procedure – First Officer" during the subsequent flight will ensure the pressurization system is properly configured for flight.

Administrative Information

Insert this bulletin behind the Operations Manual Bulletin Record page in Volume 1 of your Operations Manual. Amend the Operations Manual Bulletin Record to show bulletin TBC-16 "In Effect" (IE).

This anomaly is corrected by Boeing Service Bulletin 767-21-0166 or 767-21-0168. This Operations Manual Bulletin will be canceled after Boeing is notified that all affected airplanes in the operator's fleet have been modified.

Boeing Maintenance Tip 21-017 is related to this Operations Manual Bulletin.

Please send all correspondence regarding Operations Manual Bulletins status to one of the following addresses:

Boeing Commercial Airplanes

Commercial Aviation Services

Attn: 767 Manager, Flight Technical Data

P.O. Box 3707, M/C 20-89

Seattle, Washington, 98124-2207 USA

Telephone: (206) 662-4000

Fax: (206) 662-4743

Flight Crew Operations Manual Bulletin for The Boeing Company

The Boeing Company Seattle, Washington 98124-2207

Number: TBC-17

IssueDate: February 14, 2007

Airplane Effectivity: All Airplanes
Subject: Center Tank Fuel Pumps

Reason: This bulletin informs flight crews of the potential for fuel pump damage

that could create a potential ignition source and provides additional information and alternate operating instructions for flight crews. This bulletin provides Federal Aviation Administration (FAA)-approved alternate flight crew operations procedures granted under the provisions

of FAA Letter 140S-04-03: "Alternative Method of Compliance

(AMOC) to Airworthiness Directive 2001-15-08," dated March 1, 2004.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

Background Information

Airworthiness Directive (AD) 2001-15-08

An operator removed a center tank fuel pump and found a damaged inlet diffuser assembly. Diffuser assembly damage may cause metal-to-metal contact, creating a potential ignition source. Ignition of fuel vapors may occur if the damaged pump is not fully immersed in fuel. Approximately 500 kilograms (1000 pounds) of fuel is required to ensure the center tank pumps remain completely immersed in fuel.

Pump damage may be accompanied by tripping of the fuel pump circuit breakers.

Center tank pump inlet diffuser damage has been the subject of FAA Airworthiness Directives. The AD's required inspection and replacement of affected fuel pumps, and incorporation of pump improvements per Boeing Service Bulletin SB 767-28-0046. The damaged pump in a reported event had the equivalent of this Service Bulletin incorporated.

Selecting the center tank fuel pumps off before the center tank fuel quantity falls below 500 kilograms (1000 pounds) or at the first indication of low pump pressure, whichever occurs first, ensures that fuel vapors will not come in contact with a potentially damaged fuel pump. The first indication of fuel pump low pressure is the brief, intermittent illumination of the pump PRESS light before the tank quantity indicates zero. EICAS delays the CTR L or R FUEL PUMP messages until the PRESS lights illuminate continuously.

The FUEL CONFIG Light illuminates and the FUEL CONFIG advisory message appears when the center tank fuel pump switches are OFF with greater than 500 kilograms (1200 pounds) in the center tank. Flight crews may experience the FUEL CONFIG light and EICAS message appearing after the center tank fuel pump switches are selected OFF.

A scavenge system (as installed), operating with fuel pressure from the main (wing) tank pumps, will operate automatically to transfer any remaining fuel in the center tank to the main tanks. Fuel transfer begins when the main tanks are approximately half empty.

If the center tank fuel pumps are on during takeoff, a minimum of 2,300 kilograms (5000 pounds) must be in the center tank when the entry doors are closed with the airplane readied for initial taxi. This quantity should reduce the need for flight crews to select center tank pump switches off below 10,000 feet.

If one center tank fuel pump fails with ample fuel in the center tank, the failed pump should be selected OFF. The crossfeed valve(s) should be opened to prevent a fuel unbalance. The remaining center tank pump can remain ON until the center tank fuel quantity approaches 500 kilograms (1000 pounds).

There are no changes to the Fuel Jettison (as installed) or the Low Fuel Nonnormal Procedures.

The following Boeing All Operators telegraphic messages were issued on this subject:

- M-7240-97-1126, dated July 22, 1997
- M-7240-97-1259, dated August 14, 1997
- M-7240-97-1486, dated September 18, 1997.

Alternative Method of Compliance (AMOC) to AD 2001-15-08

Boeing submitted request for AMOC to the Seattle Aircraft Certification Office (SACO) and Aircraft Evaluation Group (AEG) of the FAA Northwest Region Branch. The FAA has approved all provisions of the Boeing requested AMOC, per FAA Letter 140S-04-3, "Alternative Method of Compliance to Airworthiness Directive 2001-15-08," dated March 1, 2004. The Operating Instructions section of this Operations Manual Bulletin delineates the alternate flight crew operating procedures to those contained in AD 2001-15-08.

IMPORTANT: Operator adoption of the alternate flight crew operations procedures granted under the AMOC is contingent upon operator notification of the AMOC requirements and operational approval from the Principal Operations Inspector (POI). Since most airplanes affected by this Operations Manual Bulletin are not operated under United States registry, the FAA-approved AMOC has no authority. Final approval for all airplanes operated under foreign government registry must be granted by the appropriate government regulatory authority.

Operating Instructions

Airworthiness Directive (AD) 2001-15-08

If the center tank fuel pumps are on during takeoff, a minimum of 2,300 kilograms (5000 pounds) must be in the center tank when the entry doors are closed with the airplane readied for initial taxi.

As the center tank approaches empty during normal use, select both center tank fuel pump switches OFF with the first occurrence of any of the following:

- at or before center tank fuel quantity reaches 500 kilograms (1000 pounds), or
- either center tank fuel pump PRESS lights illuminate, or
- either the CTR L or R FUEL PUMP EICAS advisory messages are displayed.

If the Fuel Jettison Non-normal Procedure is being used to empty the center tank, complete the jettison procedure and select the center tank fuel pump switches to OFF when the CTR L or R FUEL PUMP EICAS messages are observed or as soon as either of the center tank fuel pump PRESS lights illuminate.

If a center tank fuel pump fails with ample fuel in the center tank, accomplish the FUEL PUMP Non-normal Procedure.

Alternative Method of Compliance (AMOC) to AD 2001-15-08

The intent of the following alternate operating procedures is to provide identical 767 center tank fuel pump operating procedures to those recently mandated by FAA AD on the 757 airplane. The following are 767 alternate flight crew operating procedures approved by FAA AMOC:

1. <u>Center tank fuel operation</u>. The center tank fuel pump switches must be selected ON if center tank fuel quantity is 5,000 pounds (2,300 kilograms) or greater with the airplane readied for initial taxi.

Both center tank fuel pump switches must be OFF for takeoff and initial climb if center tank fuel is less than 5,000 pounds (2,300 kilograms) with the airplane readied for initial taxi. Both center tank fuel pumps should be selected ON above 10,000 feet MSL or after the pitch attitude has been reduced to begin acceleration to climb speed, if more than 1,000 pounds (500 kilograms) of fuel remains in the center tank.

Both center tank fuel pump switches must be selected OFF when center tank fuel quantity reaches approximately 1,000 pounds (500 kilograms). For airplanes not equipped with a center tank scavenge system, this 1,000 pounds (500 kilograms) of fuel may only be used in a low fuel situation.

Note: In cruise flight, center tank fuel may be reduced to approximately 800 pounds (400 kilograms) as necessary to extinguish the amber FUEL CONFIG light and "FUEL CONFIG" alert message on EICAS. This will allow the fuel configuration alert to activate for a fuel imbalance condition

2. Non-normal checklist considerations. The amber FUEL CONFIG light will illuminate and the "FUEL CONFIG" alert message will display on EICAS with approximately 1,200 pounds (600 kilograms) of fuel quantity in the center tank and the center tank fuel pump switches are selected OFF. Do not accomplish the FUEL CONFIGURATION non-normal checklist prior to or during takeoff with less than 5,000 pounds (2,300 kilograms) of fuel in the center tank, unless an imbalance is noticed between the main tanks.

If the amber FUEL CONFIG light illuminates and the "LOW FUEL" alert message displays on EICAS, accomplish the LOW FUEL non-normal checklist, as published. All center tank fuel may be used regardless of the amount of fuel remaining in the center tank.

If a center fuel tank pump amber PRESS light illuminates and the "CTR L,R FUEL PUMP" alert message displays on EICAS with fuel in the center tank, accomplish the FUEL PUMP non-normal checklist, as published. A fuel pump failure should be assumed in this situation.

If fuel jettison operation is required, accomplish the FUEL JETTISON non-normal checklist, as published. All center tank fuel is available for jettison operations, as allowed under AD 2001-15-08.

3. Increase in certified Maximum Zero Fuel Weight (MZFW). Provided the affects of airplane center-of-gravity (CG) are verified to be within allowable limits, the zero fuel weight of the airplane plus the weight of fuel in the center tank may exceed the certified MZFW up to a value of 5,000 pounds (2,300 kilograms). This MZFW increase is to allow for center tank fuel, which cannot be used during takeoff and initial climb. The magnitude of the increase in zero fuel weight is not to exceed the weight of loaded fuel in the center tank and is only permitted when operating under the Airplane Flight Manual (AFM) revisions mandated by AD 2001-15-08.

Administrative Information

Insert this bulletin behind the Operations Manual Bulletin Record page in Volume 1 of your Operations Manual. Amend the Operations Manual Bulletin Record to show bulletin TBC-17 "In Effect" (IE).

This condition is corrected by Boeing Service Bulletin 767-28-0062. This bulletin will be cancelled after Boeing is notified that all affected airplanes in your fleet have been modified.

Please send all correspondence regarding Operations Manual Bulletins status to one of the following addresses:

Boeing Commercial Airplanes Commercial Aviation Services

Attn: 767 Manager, Flight Technical Data

P.O. Box 3707, M/C 20-89

Seattle, Washington, 98124-2207 USA

Telephone: (206) 662-4000

Fax: (206) 662-4743

Flight Crew Operations Manual Bulletin No. TBC-17, Dated February 14, 2007 (continued)

Intentionally Blank

Flight Crew Operations Manual Bulletin for The Boeing Company

The Boeing Company Seattle, Washington 98124-2207

Number: TBC-18

IssueDate: February 14, 2007

Airplane Effectivity: All Airplanes

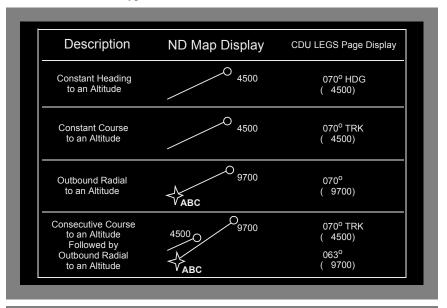
Subject: Consecutive Conditional Altitude Waypoints Map Anomaly

Reason: To inform flight crews of an HSI Map display anomaly associated with

routes containing two consecutive conditional altitude waypoints.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT


Background Information

During flight test, a Boeing flight crew experienced an HSI Map display anomaly. Simulator and lab tests show that when two consecutive conditional altitude waypoints exist in a procedure, the Map display of the magenta line does not reflect the intended path on the active leg for the conditional altitude waypoint. The displayed magenta line may erroneously indicate a turn prior to the airplane satisfying the required altitude for the turn. Conditional altitude waypoints are depicted as a small circle along with the altitude on the HSI Map display and their location depends on the airplane satisfying the altitude associated with the leg.

Consecutive conditional altitude waypoints may appear in Standard Instrument Departures (SID) and Missed Approach procedures and are automatically entered into the route when a procedure is selected from the FMC DEPARTURES or ARRIVALS page. Procedures which use this combination of two consecutive altitude waypoints usually require a climb to a specified altitude followed by a small turn to intercept a VOR radial while climbing to a higher altitude. Approximately 400 procedures worldwide are affected by this anomaly.

Honeywell and Boeing are investigating this anomaly.

The typical HSI Map display and corresponding RTE LEGS page display for conditional altitude waypoints are shown below:

Operating Instructions

When flying a SID or missed approach procedure containing consecutive conditional altitude waypoints, the active route shown on the HSI Map is incorrect; however, LNAV guidance is reliable and may be flown using either the flight director or autopilot. Monitor LNAV progress and insure all altitudes and turn points are consistent with the procedure and available raw data.

Three different vendors (Jeppesen, Swissair and Racal) supply navigation data bases for the FMC. Currently affected procedures for each vendor's navigation data base are contained in the original bulletin and are not reissued with this bulletin. To determine which vendor supplies your data base, check the Navigation Data Line on the FMC IDENT page. The navigation data base identifier begins with a three letter code. Use the Navigation Data Base vs. Vendor Reference Table (A) to determine the vendor associated with the three letter navigation data base identifier. Then locate the vendor tables (B1, B2 and B3) to determine the affected procedures.

Administrative Information

Insert this bulletin behind the Operations Manual Bulletin Record page in Volume 1 of your Operations Manual. Amend the Operations Manual Bulletin Record to show bulletin TBC-18 "In Effect" (IE).

This anomaly is corrected by Boeing Service Bulletin 767-34-0291 or 767-34-0301 or 767-34-0302 or 767-34-0303 or 767-34-0304. Refer to individual Service Bulletin for applicability.

Please send all correspondence regarding Operations Manual Bulletins status to one of the following addresses:

Boeing Commercial Airplanes Commercial Aviation Services

Attn: 767 Manager, Flight Technical Data

P.O. Box 3707, M/C 20-89

Seattle, Washington, 98124-2207 USA

Telephone: (206) 662-4000

Fax: (206) 662-4743

Table A Navigation Data Base vs. Vendor Reference Table							
Nav. ID		Nav. ID		-			Vendor*
AA7	J	BA1	J	CI4	J	ET2	J
AC1	J	BB2	S	CI5	J	ET3	J
AC3	J	BE0	J	CJ1	J	ET4	J
AC4	J	BE3	J	CM2	J	ET6	J
AE1	S	BE4	J	CM3	J	EZ1	S
AE2	S	BE6	J	CO1	J	EZ2	S
AE3	S	BE7	J	CP1	J	FA1	J
AF4	S	BE8	J	CP4	J	FA2	J
AH3	J	BE9	J	CP9	J	FI1	J
AH6	J	BI1	J	CV1	S	FS1	J
AI4	J	BI6	J	CX4	J	FX1	J
AJ1	J	BI7	J	CZ5	J	GA5	S
AM1	J	BK1	J	CZ6	J	GB1	J
AM6	J	BK1	J	DL1	J	GB2	J
AN6	A	BO1	J	DL2	J	GD1	J
AR1	J	BO4	J	DL3	J	GF1	J
AR5	J	BR1	J	DL3	J	GF2	J
AT1	J	BR2	J	DL4	J	GF5	J
AT2	J	BY1	R	DL5	J	GG1	J
AT4	J	BY2	R	DP1	J	GS1	J
AV1	J	BY3	R	DP5	J	HE4	J
AW1	J	BY4	R	DP8	J	HP5	J
AW2	J	BY6	R	EE1	J	HV2	S
AY1	J	CA2	J	EK2	S	HV5	S
AY8	J	CA4	J	ER1	J	HV6	S
AZ8	S	CB2	J	ET1	J	HY6	S
AZ8	S	CB2	J	ET1	J	HY6	S
*J = J	Jeppesen (Table B1)	S = Swis	sair (Table	B2) R =	Racal (Tab	ole B3)

Table A Navigation Data Base vs. Vendor Reference Table							
Nav. ID	`	Nav. ID				i	Vendor*
IB1	S	LA2	J	MS5	J	PT4	R
IB3	S	LA6	J	MS6	J	PT5	R
IL5	J	LH4	S	MT1	J	PT6	R
IL6	J	LH5	S	MU1	J	QF1	J
JD7	J	LO1	J	MX1	J	QF4	J
JD9	J	LO6	J	MX4	J	QN2	J
JG4	J	LU1	S	NG6	J	QN3	J
JK1	S	LU3	S	NH1	J	QQ2	J
JK3	S	LU4	S	NH2	J	RA1	J
JL1	J	LU5	S	NH4	J	RG1	J
JL2	J	LU6	S	NH6	J	RG2	J
JL4	J	LU7	S	NS1	J	RS6	J
JL6	J	LY2	J	NS2	J	SA4	J
KE2	J	LY3	J	NS3	J	SA6	J
KE4	J	LY7	J	NU1	J	SE1	J
KF1	J	MA6	J	NW1	J	SI1	J
KF2	J	MD0	J	NW4	J	SK4	S
KF3	J	MD1	J	OZ1	J	SK5	S
KF4	J	MD2	J	OZ2	J	SK6	S
KL4	S	MD3	J	OZ4	J	SN7	S
KL5	S	MH1	S	PA1	S	SQ4	J
KL7	S	MH4	J	PL1	J	SR4	S
KT1	J	MJ1	J	PL2	J	SR5	S
KT2	J	MK1	J	PR4	J	ST1	J
KT6	J	MP2	S	PT1	J	SU6	J
KU6	S	MP5	S	PT2	J	SV5	J
LA1	J	MS1	J	PT3	J	TA1	J
*J = J	leppesen (Table B1)	S = Swis	sair (Table	B2) R =	Racal (Tab	ole B3)

Table A Navigation Data Base vs. Vendor Reference Table							
Nav. ID						i	Vendor*
TA5	J	UK3	R	WE1	J		
TE4	J	UK6	S	WO2	J		
TE6	J	UN1	S	XG1	J		
TE7	J	UN2	S	XO2	S		
TG5	S	UN5	S	XO5	J		
TK2	J	UP1	J	XY1	S		
TQ2	S	UP3	J	YK1	J		
TQ3	S	UP5	J	YN1	J		
TR1	J	UP6	J	YX1	J		
TR2	J	US5	J	ZB1	R		
TR3	J	US6	J	ZB2	R		
TS1	J	UX1	J	ZB3	R		
TS2	J	UX2	J	ZB4	R		
TW1	J	UX3	J	ZO1	J		
TW2	J	VE1	J				
TW3	J	VE2	S				
TW4	J	VO1	S				
TZ1	J	VO3	S				
TZ2	J	VP1	S				
TZ3	J	VR1	J				
TZ4	J	VS4	S				
UA1	J	VZ1	J				
UA2	J	VZ2	J				
UA4	J	VZ4	J				
UC1	J	VZ5	J				
UD1	J	VZ6	J				
*J = J	Jeppesen ((Table B1)	S = Swis	sair (Table	B2) R =	Racal (Tal	ole B3)

Table B1 Jeppesen Navigation Data Base - Standard Instrument Departures			
ICAO ID	Airport	Departure	Runway
EDFH	Hahn, Germany	RUWE1E	RW03
EHAM	Amsterdam, Schipol, Netherlands	EO01L	RW01L
EHAM	Amsterdam, Schipol, Netherlands	EO09L	RW09L
EHAM	Amsterdam, Schipol, Netherlands	EO27L	RW27L
ENBO	Bodo, Norway	GLOM2B	RW26
ENBO	Bodo, Norway	STOB1B	RW26
ENDU	Bardufoss, Norway	BDF2	RW11
ENDU	Bardufoss, Norway	LAVN2A	RW11
ENDU	Bardufoss, Norway	TULD2A	RW11
ENZV	Stavanger/Sola, Norway	BANK1D	RW29
ENZV	Stavanger/Sola, Norway	DOGI1D	RW11
ENZV	Stavanger/Sola, Norway	DOLF1D	RW29
ENZV	Stavanger/Sola, Norway	FUND1D	RW29
ENZV	Stavanger/Sola, Norway	GRAM1D	RW11
ENZV	Stavanger/Sola, Norway	LUCK1D	RW29
ENZV	Stavanger/Sola, Norway	MADY1D	RW11
ENZV	Stavanger/Sola, Norway	OKLA1D	RW11
ENZV	Stavanger/Sola, Norway	SIRD1D	RW11
ENZV	Stavanger/Sola, Norway	STON1D	RW29
ESNN	Sundsvall-Harnosand, Sweden	LUE1C	RW34
ESNN	Sundsvall-Harnosand, Sweden	STEW2C	RW34
FACT	Cape Town, South Africa	OKTE2B	RW19
FACT	Cape Town, South Africa	PARI2B	RW19
GCFV	Fuerteventura, Canary Is	KORA1R	RW19
GCFV	Fuerteventura, Canary Is	LPC2R	RW19
GCFV	Fuerteventura, Canary Is	LT1R	RW19
GCFV	Fuerteventura, Canary Is	SAMA1R	RW19
GCFV	Fuerteventura, Canary Is	TFN1R	RW19

Table B1 Jeppesen Navigation Data Base - Standard Instrument Departures				
ICAO ID	Airport	Departure	Runway	
GCFV	Fuerteventura, Canary Is	TFS2R	RW19	
GCFV	Fuerteventura, Canary Is	VAST1R	RW19	
KBZN	Boseman/Gallatin, MT	BZN365	RW30	
KBZN	Boseman/Gallatin, MT	BZN86S	RW30	
KBZN	Boseman/Gallatin, MT	BZN86W	RW30	
KCGZ	Casa-Grande, AZ	UCZKJ1	RW05	
KHLN	Helena, MT	HLN2	RW05	
KHLN	Helena, MT	HLN2	RW09	
KINW	Winslow, AZ	HLN1	RW29	
KLAX	Los Angeles, CA	BEVAN1	ALL	
KMSO	Missoula, MT	MSOEAS	RW29	
KPHX	Phoenix/Sky Harbor, AZ	MISSY2	RW26B	
KSJC	San Jose, CA	SUNOL5	RW12	
KSTS	Santa Rosa/Sonoma Co, CA	STS5	RW01	
KSTS	Santa Rosa/Sonoma Co, CA	STS5	RW14	
KSTS	Santa Rosa/Sonoma Co, CA	STS5	RW19	
KSTS	Santa Rosa/Sonoma Co, CA	STS5	RW32	
LEAS	Asturias, Spain	ARPO1B	RW11	
LEAS	Asturias, Spain	LURI1B	RW11	
LEAS	Asturias, Spain	MUSI1B	RW11	
LEAS	Asturias, Spain	RATP1B	RW11	
LEIB	Ibza, Spain	MHN1E	RW24	
LEIB	Ibza, Spain	MJV1E	RW24	
LEPA	Palma de Mallorca, Spain	MEBU1A	RW24	
LEPA	Palma de Mallorca, Spain	MHN1A	RW24	
LEPA	Palma de Mallorca, Spain	MJV1B	RW06	
LEPA	Palma de Mallorca, Spain	OSGA1A	RW24	
LFMI	Istres/Le Tube, France	LUC6D	RW15	

Table B1 Jeppesen Navigation Data Base - Standard Instrument Departures				
ICAO ID	Airport	Departure	Runway	
LGAT	Athens, Greece	FALC1F	RW15	
LGAT	Athens, Greece	KOR1F	RW15	
LGAT	Athens, Greece	KRS1F	RW15	
LGAT	Athens, Greece	TNG1F	RW15	
LGAT	Athens, Greece	VILI1F	RW15	
LGKL	Kalamata, Greece	KLM1V	RW17	
LGKL	Kalamata, Greece	KLM1Y	RW17	
LGKP	Karpathos, Greece	KRC1A	RW30	
LGKP	Karpathos, Greece	KRC1B	RW12	
LGKV	Kavala/Megas Alexandros, Greece	ALX3A	RW05	
LGKV	Kavala/Megas Alexandros, Greece	ALX3B	RW23	
LGKV	Kavala/Megas Alexandros, Greece	LMO3A	RW05	
LGKV	Kavala/Megas Alexandros, Greece	LMO3B	RW23	
LGKV	Kavala/Megas Alexandros, Greece	PERE3A	RW05	
LGKV	Kavala/Megas Alexandros, Greece	RODO1A	RW05	
LGKV	Kavala/Megas Alexandros, Greece	RODO1B	RW23	
LGMK	Mikonos, Greece	RIPL1A	RW34	
LGMK	Mikonos, Greece	RIPL1B	RW16	
LGMT	Mitilini, Greece	LSV1A	RW33	
LGRX	Araxos, Greece	ALAK1M	RW36	
LGRX	Araxos, Greece	ARGU1M	RW36	
LGRX	Araxos, Greece	IXON1M	RW36	
LGRX	Araxos, Greece	KESA1M	RW36	
LGRX	Araxos, Greece	KOR1M	RW36	
LGRX	Araxos, Greece	KRK1M	RW36	
LGRX	Araxos, Greece	TRL1M	RW36	
LGSR	Santorini, Greece	ASTI1E	RW16	
LGSR	Santorini, Greece	ATLA1B	RW34	

Table B1 Jeppesen Navigation Data Base - Standard Instrument Departures				
ICAO ID	Airport	Departure	Runway	
LGSR	Santorini, Greece	ATLA1C	RW16	
LGSR	Santorini, Greece	MIL1E	RW34	
LGSR	Santorini, Greece	MIL1F	RW34	
LGSR	Santorini, Greece	MIL1G	RW16	
LGSR	Santorini, Greece	MIL1H	RW16	
LGTG	Tanagra, Greece	AGH1C	RW28	
LGTG	Tanagra, Greece	AGH1D	RW10	
LGTG	Tanagra, Greece	ATH1C	RW28	
LGTG	Tanagra, Greece	ATH1D	RW10	
LGTG	Tanagra, Greece	IXON1C	RW28	
LGTG	Tanagra, Greece	IXON1D	RW10	
LGTG	Tanagra, Greece	OLID1C	RW28	
LGTG	Tanagra, Greece	OLID1D	RW10	
LGTG	Tanagra, Greece	SKL1F	RW28	
LGTG	Tanagra, Greece	SKL1G	RW10	
LGTS	Thessaloniki/Makedonia, Greece	ARNA1E	RW28	
LGTS	Thessaloniki/Makedonia, Greece	FSK1E	RW28	
LGTS	Thessaloniki/Makedonia, Greece	LAMB1E	RW28	
LGTS	Thessaloniki/Makedonia, Greece	LOPO1E	RW28	
LGTS	Thessaloniki/Makedonia, Greece	SKL1E	RW28	
LGTS	Thessaloniki/Makedonia, Greece	TSL1F	RW28	
LIBC	Crotone, Italy	CDC5A	RW35	
LIBC	Crotone, Italy	CDC5B	RW17	
LIMP	Parma, Italy	PAR5V	RW02	
LIPZ	Venezia/Tessera, Italy	СНІ5Н	RW22	
LIPZ	Venezia/Tessera, Italy	RON5H	RW22	
LIPZ	Venezia/Tessera, Italy	ROTA5H	RW22	
LIRQ	Florence, Italy	PIS5A	RW23	

	Table B1				
Jeppese	en Navigation Data Base - Standard Ins	strument Depa	artures		
ICAO ID	Airport	Departure	Runway		
LSGC	Les Eplatures, Switzerland	FRI1B	RW24		
LSGC	Les Eplatures, Switzerland	HOC1A	RW24		
LSGC	Les Eplatures, Switzerland	HOC1B	RW24		
LSGC	Les Eplatures, Switzerland	SPR1B	RW24		
LSZG	Grenchen, Switzerland	SHU2T	RW25		
LSZG	Grenchen, Switzerland	WIL2T	RW25		
MGGT	Guatemala/La Aurora, Guatemala	SJOB	RW01		
MGGT	Guatemala/La Aurora, Guatemala	PALEN	RW01		
MKJP	Kingston/Norman Manley, Jamaica	MLY1	RW12		
MUCU	Santiago de Cuba/Antonio Maceo, Cuba	CAOBA2	RW09		
NFNA	Nausori, Fiji	ALFA	RW10		
NFNA	Nausori, Fiji	BRAVO	RW10		
NFNA	Nausori, Fiji	BRAVO	RW28		
NFNA	Nausori, Fiji	CHARLI	RW10		
NSFA	Apia/Faleolo, Samoa	ALFA	RW26		
NTAA	Tahiti, Tahiti	EMIR1A	RW04		
NTAA	Tahiti, Tahiti	KAIN1A	RW04		
NTAA	Tahiti, Tahiti	METU1A	RW04		
OIAW	Ahwaz, Iran	GABK1B	RW30		
OIAW	Ahwaz, Iran	GABK1H	RW12		
OIAW	Ahwaz, Iran	MIS1B	RW30		
OIAW	Ahwaz, Iran	MIS1H	RW12		
OIBB	Bushehr, Iran	KUGV1A	RW31		
OIBB	Bushehr, Iran	KUGV1B	RW13		
OIBB	Bushehr, Iran	KUGV1C	RW31		
OICC	Kermanshah, iran	RULI1D	RW11		
OIGG	Rasht, Iran	RALG1A	RW27		
OIGG	Rasht, Iran	RALG1B	RW09		
	·				

Table B1 Jeppesen Navigation Data Base - Standard Instrument Departures			
ICAO ID	Airport	Departure	Runway
OIGG	Rasht, Iran	RART1A	RW27
OIGG	Rasht, Iran	RART1B	RW09
OIKB	Bandar Abbass, Iran	TAVN2A	RW03
OIKK	Kerman, Iran	ALGU2B	RW34
OIKK	Kerman, Iran	ALGU2D	RW34
OIKK	Kerman, Iran	ALGU2E	RW34
OIKK	Kerman, Iran	ALGU3A	RW34
OIKK	Kerman, Iran	ALGU3C	RW16
OIKK	Kerman, Iran	ALKE2C	RW34
OIKK	Kerman, Iran	ALKE3A	RW34
OIKK	Kerman, Iran	ALKE3B	RW16
OIKK	Kerman, Iran	ALKU2D	RW34
OIKK	Kerman, Iran	ALKU2E	RW16
OIKK	Kerman, Iran	ALKU3A	RW34
OIKK	Kerman, Iran	ALKU3B	RW16
OIKK	Kerman, Iran	ALKU3C	RW16
OIKK	Kerman, Iran	ALME2D	RW34
OIKK	Kerman, Iran	ALME3A	RW34
OIKK	Kerman, Iran	ALME3C	RW16
OIKK	Kerman, Iran	ALMI2A	RW34
OIKK	Kerman, Iran	ALMI2B	RW16
OIKK	Kerman, Iran	ALMI2C	RW16
OIKK	Kerman, Iran	ALMI2D	RW34
OIKK	Kerman, Iran	ALMO1A	RW34
OIKK	Kerman, Iran	ALMO2B	RW34
OIKK	Kerman, Iran	ALMO2C	RW16
OIKK	Kerman, Iran	ALMO2D	RW34
OIKK	Kerman, Iran	ALMO2E	RW34

Table B1 Jeppesen Navigation Data Base - Standard Instrument Departures			
ICAO ID	Airport	Departure	Runway
OIMM	Mashhad, Iran	METK2A	RW13
OIMM	Mashhad, Iran	METK2B	RW31
OIMM	Mashhad, Iran	METK2C	RW31
OIMM	Mashhad, Iran	MIDM1A	RW13
OIMM	Mashhad, Iran	MIDM1B	RW31
OIMM	Mashhad, Iran	NOTS2A	RW13
OIMM	Mashhad, Iran	NOTS2B	RW13
OIMM	Mashhad, Iran	NOTS2C	RW31
OIMM	Mashhad, Iran	RAMI2A	RW13
OIMM	Mashhad, Iran	RAMI2B	RW31
OISS	Shiraz, Iran	KISE1B	RW11
OITR	Uromiyeh, Iran	BONA1B	RW21
OITR	Uromiyeh, Iran	ZAJ1B	RW21
OITT	Tabriz, Iran	RUDA1B	RW12
OITT	Tabriz, Iran	RUDA1D	RW12
OIZH	Zaheadan, Iran	DANO2B	RW17
OLBA	Beirut, Lebanon	KAD1C	RW18
OLBA	Beirut, Lebanon	KAD1C	RW21
RJCH	Hakodate, Japan	HWE2R	RW12
RJCN	Nakashibetsu, Japan	NSE2R	RW26
RJFE	Fukue, Japan	FUER1	RW21
RJFE	Fukue, Japan	JB2	RW03
RJFE	Fukue, Japan	OLE2	RW03
RJFY	Kanoya, Japan	EASTRE	RW08
RJFY	Kanoya, Japan	WESTRE	RW26
RJKA	Amami, Japan	AME1R	RW03
RJKA	Amami, Japan	AME1R	RW21
RJOB	Okayama, Japan	OKC2	RW07

Table B1 Jeppesen Navigation Data Base - Standard Instrument Departures			
ICAO ID	Airport	Departure	Runway
RJOB	Okayama, Japan	OYE2R	RW07
RJOB	Okayama, Japan	WASYU1	RW07
RJOC	Izumo, Japan	OIE2	RW07
RJOC	Izumo, Japan	TRE4	RW07
RJOC	Izumo, Japan	XZE1R	RW07
RJOC	Izumo, Japan	XZE3E	RW07
RJOW	Iwami, Japan	IME1R	RW29
RJSA	Aomori, Japan	MRE1R	RW06
RJSA	Aomori, Japan	MRE1R	RW24
RJSF	Fukushima, Japan	GTC1	RW19
RJSF	Fukushima, Japan	SDE1	RW19
RJSF	Fukushima, Japan	YTE1	RW19
RJSY	Shonai, Japan	YSE1R	RW27
RJTH	Hachliojima, Japan	HCE1R	RW25
RJTH	Hachliojima, Japan	HCE2W	RW25
RJTO	Oshma, Japan	MJ1	RW21
RJTO	Oshma, Japan	SPENS2	RW03
RKJY	Yeosu, Korea	GOSB1A	RW17
RKJY	Yeosu, Korea	NIKE1A	RW17
ROAH	Naha, Japan	NHC2SR	RW18
RPMD	Davao/Francisco Bangoy, Phillipines	SID1B	RW23
RPMD	Davao/Francisco Bangoy, Phillipines	SID2	RW23
RPMD	Davao/Francisco Bangoy, Phillipines	SID3	RW23
RPMD	Davao/Francisco Bangoy, Phillipines	SID4	RW23
RPMZ	Zamboanga, Phillipines	SID1	RW09
RPMZ	Zamboanga, Phillipines	SID1	RW27
RPMZ	Zamboanga, Phillipines	SID2	RW09
RPMZ	Zamboanga, Phillipines	SID2	RW27

Table B1 Jeppesen Navigation Data Base - Standard Instrument Departures				
ICAO ID	Airport	Departure	Runway	
RPMZ	Zamboanga, Phillipines	SID7	RW09	
RPMZ	Zamboanga, Phillipines	SID7	RW27	
RPVM	Lapu-Lapu/Mactan, Phillipines	SID15	RW04	
RPVM	Lapu-Lapu/Mactan, Phillipines	SID15A	RW04	
RPVM	Lapu-Lapu/Mactan, Phillipines	SID16	RW04	
SCFA	Antofagasta, Chile	ANCLA2	RW18	
SCFA	Antofagasta, Chile	ANCLA3	RW19	
SCFA	Antofagasta, Chile	COLOSB	RW18	
SCFA	Antofagasta, Chile	COLOSC	RW19	
SCFA	Antofagasta, Chile	MOREK1	RW18	
SCFA	Antofagasta, Chile	MOREK2	RW19	
SCIE	Concepcion/Carriel, Chile	CORNL4	RW20	
SCSE	La Serena/La Florida, Chile	LILEN1	RW29	
SVCS	Charallave/Oscar Machado Zuoloaga, Venezuela	3NOL10	RW10	
ZYTL	Dalian, China	D15T	RW28	

Table B1 Jeppesen Navigation Data Base - Approaches/Missed Approaches				
	ICAO ID Airport Approaches			
CYDN	Dauphin, Manitoba, Canada	VOR14		
CYXE	Saskatoon, Sask., Canada	VOR33		
CYYB	North Bay, Ontario, Canada	VOR18		
ENAT	Alta, Norway	ILS12		
ENBO	Bodo, Norway	ILS08		
ENKB	Kristiansund/Kvernberget, Norway	VOR25		
FADN	Durban/Louis Botha, South Africa	VOR23		
FYWH	Windhoek/Lughawe, Nambia	VOR26		
GCRR	Arrecife/Lanzarote, Canary Is.	ILS04		
KAHN	Athens/Ben Epps, GA	VOR02		
KALW	Walla Walla, WA	VOR02		
KBKE	Baker, OR	VOR12		
KBLH	Blythe, CA	VOR26		
KBOI	Boise, ID	VOR10R		
KBOI	Boise, ID	ILS10R		
KBPI	Big Piney/Marbleton, WY	VOR31		
KCEC	Crescent City, CA	VOR11		
KCEC	Crescent City, CA	ILS11		
KCEC	Crescent City, CA	VOR11		
KCMA	Camarillo, CA	VOR26		
KCOE	Coeur D'alene, ID	VOR01		
KCOE	Coeur D'alene, ID	ILS05		
KDLF	Del Rio, TX	VOR13C		
KDLF	Del Rio, TX	VOR31C		
KDRO	Durango/La Plata Co., CO	VOR02		
KDRO	Durango/La Plata Co., CO	ILS02		
KEEO	Meeker, CO	RNV03		
KFLG	Flagstaff, Puliam, AZ	VOR21		

Table B1 Jeppesen Navigation Data Base - Approaches/Missed Approaches			
ICAO ID	Airport	Approach	
KGFK	Grand Forks, ND	VOR17R	
KGFK	Grand Forks, ND	VOR35L	
KHVR	Havre City-Co, MT	VOR07	
KHYS	Hays, KS	VOR16	
KHYS	Hays, KS	VOR34	
KHYS	Hays, KS	VOR16	
KHYS	Hays, KS	VOR34	
KIGM	Kingman, AZ	VOR21	
KJAC	Jackson Hole, WY	ILS18	
KLMT	Klamath Falls, OR	VOR32	
KLMT	Klamath Falls, OR	ILS32	
KNGP	Corpus Christi, TX	VOR13R	
KNQX	Key West, FL	VOR07	
KONA	Winona Muni/Max Conrad, MN	VOR29	
KOTH	North Bend Muni, OR	VOR04	
KPMD	Palmdale, CA	VOR25	
KPMD	Palmdale, CA	ILS25	
KPNE	North Philadelphia, PA	VOR24	
KPUC	Price/Carbon Co, UT	VOR36	
KRWL	Rawlins Muni, WY	VOR22	
KSBM	Sheboygan Co, WI	VOR03	
KSBY	Salisbury/Wicomico Co., MD	ILS32	
KSBY	Salisbury/Wicomico Co., MD	VOR14	
KSBY	Salisbury/Wicomico Co., MD	VOR32	
KSVC	Silver City/Grant Co, NM	LOC26	
KSVN	Savannah/Hunter, GA	VOR28	
KTMA	Tifton, GA	VOR27	
KTMA	Tifton, GA	VOR33	

Table B1 Jeppesen Navigation Data Base - Approaches/Missed Approaches			
ICAO ID	Airport	Approach	
KTRM	Palm Springs Thermal, CA	VOR30	
KTVF	Thief River Falls, MN	VOR31	
KTWF	Twin Falls/Sun Valley, ID	VOR07	
LEBL	Barcelona, Spain	VOR02	
LEBL	Barcelona, Spain	ILS07	
LGKO	Marathon/Kotroni, Greece	VOR15	
LGKO	Marathon/Kotroni, Greece	VOR33	
LIPE	Bologna/Borgo Panigale, Italy	VOR12	
LIPE	Bologna/Borgo Panigale, Italy	ILS12	
LTAQ	Samsun, Turkey	VOR21	
MDBH	Barahona, Dominican Republic	VOR12	
MDBH	Barahona, Dominican Republic	VOR30	
MDPP	Puerto Plata, Dominican Republic	VOR26	
MDSD	Santo Domingo/De Las Americas, Dominican Republic	VOR17	
MDSD	Santo Domingo/De Las Americas, Dominican Republic	VOR35	
MHTG	Tegucigalpa/Toncontin, Honduras	VOR01	
MPDA	David/Enrique Malek, Panama	VOR04	
MPTO	Panama/Tocumen, Panama	VOR03L	
MUCU	Santiago de Cuba/Antonio Maceo, Cuba	ILS09	
MUCU	Santiago de Cuba/Antonio Maceo, Cuba	LOC09	
NCRG	Avarua/Rarotonga, Cook Is.	ILS08	
NCRG	Avarua/Rarotonga, Cook Is.	ILS26	
NSFA	Faleolo, Samoa	ILS08	
NZNR	Napier, New Zealand	VOR16	
OEBH	Bisha, Saudi Arabia	ILS18	
OEDR	Dhahran, Saudi Arabia	VOR34L	
OEDR	Dhahran, Saudi Arabia	ILS34L	

Table B1 Jeppesen Navigation Data Base - Approaches/Missed Approaches			
ICAO ID	Airport	Approach	
OIBJ	Jam Tohid, Iran	VOR11	
OIBJ	Jam Tohid, Iran	ILS11	
OIFM	Esfahan, Iran	VOR26L	
OIFM	Esfahan, Iran	VOR26R	
PABI	Delta Junction, AK	VOR18	
PAMC	McGrath, AK	VOR16	
PAYA	Yakutat, AK	VOR11	
PAYA	Yakutat, AK	VOR29	
PHTO	Hilo, Hawaii	ILS26	
RJBD	Nanki-Shirahama, Japan	VOR15	
RJBD	Nanki-Shirahama, Japan	LOC15	
RJCB	Obhiro, Japan	ILS35	
RJCH	Hakodate, Japan	VOR12	
RJCH	Hakodate, Japan	ILS12	
RJCH	Hakodate, Japan	LOC12	
RJCM	Memanbetsu, Japan	ILS18	
RJDC	Yamaguchi-Ubi/Honshu Is., Japan	VOR07	
RJDT	Tsushima, Japan	LOC32	
RJDT	Tsushima, Japan	VOR32	
RJFK	Kagoshima, Japan	VOR34	
RJFK	Kagoshima, Japan	ILS34	
RJKB	Okierabu, Japan	VOR22	
RJKN	Tokunoshima Is., Japan	VOR01	
RJNT	Toyama, Japan	LOC20	
RJOB	Okayama, Japan	ILS07	
RJOM	Matsuyama, Japan	ILS14	
RJOR	Tottori, Japan	ILS10	
RJOS	Tokushima, Japan	VOR29	

Table B1 Jeppesen Navigation Data Base - Approaches/Missed Approaches			
ICAO ID	Approach		
RJSF	Fukushima, Japan	ILS01	
RJSF	Fukushima, Japan	VOR01	
RJSF	Fukushima, Japan	VOR19	
RJSN	Nigata, Japan	VOR10	
RJSN	Nigata, Japan	VOR28	
RJSN	Nigata, Japan	ILS28	
RJSY	Shonai, Japan	VOR27	
RJSY	Shonai, Japan	VOR09	
RKPK	Kimhae, Korea	VOR36	
ROMY	Miyako, Japan	ILS22	
ROMY	Miyako, Japan	VOR04	
ROMY	Miyako, Japan	VOR22	
RORY	Yoron, Japan	VOR14	
RORY	Yoron, Japan	VOR32	
RPLL	Manila, Phillipines	VOR06	
RPLL	Manila, Phillipines	ILS06	
RPMD	Davao/Francisco Bangoy, Phillipines	VOR23	
RPMD	Davao/Francisco Bangoy, Phillipines	VOR05	
RPVA	Tacloban/Daniel Z. Romualdez, Phillipines	VOR36	
RPVB	Bacolod Negros Occidental, Phillipines	VOR04	
SBFL	Florianopolis/Hercilioluz, Brazil	VOR32	
SBUP	Castilho/Urubupunga, Brazil	VOR29	
SLVR	Viru Viru, Bolivia	ILS33	
SPIM	Lima-Callao, Peru	VOR33	
TGPY	Point Salines, GranaVORa	VOR10	
VAGO	Goa, India	VOR08	
VOMM	Madras, India	VOR12	
VOMM	Madras, India	VOR30	

Table B1 Jeppesen Navigation Data Base - Approaches/Missed Approaches			
ICAO ID	Airport	Approach	
VTBU	Rayong/Utapao, Thailand	VOR18	
VTSB	Surat Thani, Thailand	VOR22	
VTUW	Nakon Phanom, Thailand	VOR15	
WAAU	Kendari/Wolter Monginsidi, Indonesia	VOR26	
WAMM	Manado/Sam Ratulangi, India	ILS36	
WAPP	Ambon/Patimura, Indonesia	ILS04	
WRLL	Balikpapan/Sepinggan, Indonesia	ILS25	
YMAY	Albury, Australia	VOR07	
ZGNN	Nanning/Wuxu, China	VOR23	

Table B2			
Swissair Navigation Data Base - Standard Instrument Departures			
Origin Airport	Airport Name	FMC-CDU Departure	FMC-CDU Runway
EDFH	Habe Campagn	RUWE1E	RW03
	Hahn, Germany		
GCFV	Fuerteventura, Canary Is	KORA1R	RW19
GCFV	Fuerteventura, Canary Is	LPC1R	RW19
GCFV	Fuerteventura, Canary Is	LPC2R	RW19
GCFV	Fuerteventura, Canary Is	LT1R	RW19
GCFV	Fuerteventura, Canary Is	SAMA1R	RW19
GCFV	Fuerteventura, Canary Is	TFN1R	RW19
GCFV	Fuerteventura, Canary Is	TFS2R	RW19
GCFV	Fuerteventura, Canary Is	VAST1R	RW19
HKJK	Nairobi/Jomo Kenyatta, Kenya	LADANC	RW06
KHLN	Helena, MT	HLN2	RW05
KHLN	Helena, MT	HLN2	RW09
KSJC	San Jose, CA	ALTAM6	RW12
KSJC	San Jose, CA	SUNOL5	RW12
LEAS	Asturias, Spain	ARPO1A	RW29
LEAS	Asturias, Spain	ARPO1B	RW11
LEAS	Asturias, Spain	LURI1A	RW29
LEAS	Asturias, Spain	LURI1B	RW11
LEAS	Asturias, Spain	MUSI1A	RW29
LEAS	Asturias, Spain	MUSI1B	RW11
LEAS	Asturias, Spain	RATP1A	RW29
LEAS	Asturias, Spain	RATP1B	RW11
LEIB	Ibza, Spain	EO24	RW24
LEIB	Ibza, Spain	MHN1E	RW24
LEIB	Ibza, Spain	MJV1E	RW24
LEPA	Palma de Mallorca, Spain	MEBU1A	RW24
LEPA	Palma de Mallorca, Spain	MHN1A	RW24

Table B2 Swissair Navigation Data Base - Standard Instrument Departures			
Origin Airport	Airport Name	FMC-CDU Departure	FMC-CDU Runway
LEPA	Palma de Mallorca, Spain	MJV1B	RW06
LEPA	Palma de Mallorca, Spain	OSGA1A	RW24
LGAT	Athens, Greece	KEA1D	RW33
LGAT	Athens, Greece	KRS1D	RW33
LGAT	Athens, Greece	TNG1D	RW33
LGAT	Athens, Greece	VILI1F	RW15
LGSK	Skiathos, Greece	AGH1A	RW20
LGSK	Skiathos, Greece	AGH1B	RW02
LGSK	Skiathos, Greece	KORS1A	RW20
LGSK	Skiathos, Greece	KORS1B	RW02
LGSK	Skiathos, Greece	TNG1A	RW20
LGSK	Skiathos, Greece	TNG1B	RW02
LGSK	Skiathos, Greece	TSL1A	RW20
LGSK	Skiathos, Greece	TSL1B	RW02
LGTG	Tanagra, Greece	AGH1C	RW28
LGTG	Tanagra, Greece	AGH1D	RW10
LGTG	Tanagra, Greece	ATH1C	RW28
LGTG	Tanagra, Greece	ATH1D	RW10
LGTG	Tanagra, Greece	IXON1C	RW28
LGTG	Tanagra, Greece	IXON1D	RW10
LGTG	Tanagra, Greece	OLID1C	RW28
LGTG	Tanagra, Greece	OLID1D	RW10
LGTG	Tanagra, Greece	SKL1F	RW28
LGTG	Tanagra, Greece	SKL1G	RW10
LGTS	Thessaloniki/Makedonia, Greece	EO28	RW28
LGTS	Thessaloniki/Makedonia, Greece	EO34	RW34
LGTS	Thessaloniki/Makedonia, Greece	TSL1F	RW28
LIBC	Crotone, Italy	CDC5A	RW35

Table B2 Swissair Navigation Data Base - Standard Instrument Departures			
Origin Airport	Airport Name	FMC-CDU Departure	FMC-CDU Runway
LIBC	Crotone, Italy	CDC5B	RW17
LIPZ	Venezia/Tessera, Italy	CHI5H	RW22
LIPZ	Venezia/Tessera, Italy	RON5H	RW22
LIPZ	Venezia/Tessera, Italy	ROTA5H	RW22
LIRQ	Florence, Italy	PIS5A	RW23
LLBG	Tel Aviv/D. Ben Gurion, Israel	IRM2E	RW26
LLBG	Tel Aviv/D. Ben Gurion, Israel	IRM2F	RW30
LLBG	Tel Aviv/D. Ben Gurion, Israel	NAT3E	RW26
LLBG	Tel Aviv/D. Ben Gurion, Israel	SALA2E	RW26
LLBG	Tel Aviv/D. Ben Gurion, Israel	SALA2F	RW30
LLBG	Tel Aviv/D. Ben Gurion, Israel	SOLI3E	RW26
LLBG	Tel Aviv/D. Ben Gurion, Israel	TALM2E	RW26
MGGT	Guatemala/La Aurora, Guatemala	SJOB	RW01
MKJP	Kingston/Norman Manley, Jamaica	ENEKA3	RW30
MKJP	Kingston/Norman Manley, Jamaica	LETUM3	RW30
MKJP	Kingston/Norman Manley, Jamaica	NORAN3	RW30
MKJP	Kingston/Norman Manley, Jamaica	OSTER3	RW30
MKJP	Kingston/Norman Manley, Jamaica	OZARK3	RW30
MKJP	Kingston/Norman Manley, Jamaica	TIGON1	RW30
MUCU	Santiago de Cuba/Antonio Maceo, Cuba	CAOBA2	RW09
MUCU	Santiago de Cuba/Antonio Maceo, Cuba	SANTO3	RW09

Table B2 Swissair Navigation Data Base - Standard Instrument Departures			
Origin Airport	Airport Name	FMC-CDU Departure	FMC-CDU Runway
MUCU	Santiago de Cuba/Antonio Maceo, Cuba	SANTO3	RW27
NSFA	Apia/Faleolo, Samoa	ALFA	RW08
NSFA	Apia/Faleolo, Samoa	BRAVO	RW08
NSFA	Apia/Faleolo, Samoa	SALA	RW08
NSFA	Apia/Faleolo, Samoa	TELE	RW08
NSFA	Apia/Faleolo, Samoa	VASA	RW08
OIBB	Bushehr, Iran	KUGV1A	RW31
OIBB	Bushehr, Iran	KUGV1B	RW13
OIBB	Bushehr, Iran	KUGV1C	RW31
OIBB	Bushehr, Iran	KUGV1D	RW13
OICC	Kermanshah, iran	RULI1D	RW11
OIFM	Esfahan, Iran	LABT1A	RW26
OIFM	Esfahan, Iran	LADA1A	RW26
OIFM	Esfahan, Iran	LADA2C	RW26
OIFM	Esfahan, Iran	LADA2D	RW08
OIFM	Esfahan, Iran	LADL1A	RW26
OIFM	Esfahan, Iran	LADL2C	RW26
OIFM	Esfahan, Iran	LADL2D	RW08
OIFM	Esfahan, Iran	LARB1A	RW26
OIGG	Rasht, Iran	RALG1A	RW27
OIGG	Rasht, Iran	RALG1B	RW09
OIGG	Rasht, Iran	RART1A	RW27
OIGG	Rasht, Iran	RART1B	RW09
OIKB	Bandar Abbass, Iran	MOBO1B	RW21
OIKB	Bandar Abbass, Iran	MOBO2C	RW03
OIKB	Bandar Abbass, Iran	TAVN2A	RW03
OIKB	Bandar Abbass, Iran	TAVN2E	RW03

Table B2 Swissair Navigation Data Base - Standard Instrument Departures				
	Origin Airport Name FMC-CDU FMC-CD			
Airport	7 in port Traine	Departure	Runway	
OIKK	Kerman, Iran	ALGU2B	RW34	
OIKK	Kerman, Iran	ALGU2D	RW34	
OIKK	Kerman, Iran	ALGU2E	RW34	
OIKK	Kerman, Iran	ALGU2F	RW16	
OIKK	Kerman, Iran	ALGU3A	RW34	
OIKK	Kerman, Iran	ALGU3C	RW16	
OIKK	Kerman, Iran	ALKE2C	RW34	
OIKK	Kerman, Iran	ALKE2D	RW16	
OIKK	Kerman, Iran	ALKE3A	RW34	
OIKK	Kerman, Iran	ALKE3B	RW16	
OIKK	Kerman, Iran	ALKU2D	RW34	
OIKK	Kerman, Iran	ALKU2E	RW16	
OIKK	Kerman, Iran	ALKU2F	RW16	
OIKK	Kerman, Iran	ALKU3A	RW34	
OIKK	Kerman, Iran	ALKU3B	RW16	
OIKK	Kerman, Iran	ALKU3C	RW16	
OIKK	Kerman, Iran	ALME2D	RW34	
OIKK	Kerman, Iran	ALME2F	RW16	
OIKK	Kerman, Iran	ALME3A	RW34	
OIKK	Kerman, Iran	ALME3C	RW16	
OIKK	Kerman, Iran	ALMI2A	RW34	
OIKK	Kerman, Iran	ALMI2B	RW16	
OIKK	Kerman, Iran	ALMI2C	RW16	
OIKK	Kerman, Iran	ALMI2D	RW34	
OIKK	Kerman, Iran	ALMI2E	RW16	
OIKK	Kerman, Iran	ALMI2F	RW16	
OIKK	Kerman, Iran	ALMO1A	RW34	
OIKK	Kerman, Iran	ALMO2B	RW34	

Table B2 Swissair Navigation Data Base - Standard Instrument Departures			
Origin Airport	Airport Name	FMC-CDU Departure	FMC-CDU Runway
OIKK	Kerman, Iran	ALMO2C	RW16
OIKK	Kerman, Iran	ALMO2D	RW34
OIKK	Kerman, Iran	ALMO2E	RW34
OIKK	Kerman, Iran	ALMO2F	RW16
OIMM	Mashhad, Iran	METK2A	RW13
OIMM	Mashhad, Iran	METK2B	RW31
OIMM	Mashhad, Iran	METK2C	RW31
OIMM	Mashhad, Iran	MIDM1A	RW13
OIMM	Mashhad, Iran	MIDM1B	RW31
OIMM	Mashhad, Iran	NOTS2A	RW13
OIMM	Mashhad, Iran	NOTS2B	RW13
OIMM	Mashhad, Iran	NOTS2C	RW31
OIMM	Mashhad, Iran	RAMI2A	RW13
OIMM	Mashhad, Iran	RAMI2B	RW31
OITR	Uromiyeh, Iran	ZAJ1B	RW21
OITT	Tabriz, Iran	RUDA1B	RW12
OITT	Tabriz, Iran	RUDA1D	RW12
OIZH	Zaheadan, Iran	DANO2B	RW17
OIYY	Yazd, Iran	BOMI1D	RW13
OIYY	Yazd, Iran	BONE1D	RW13
OIYY	Yazd, Iran	BONI1D	RW13
OIYY	Yazd, Iran	BONO1D	RW13
OIZH	Zahedan, Iran	DANO2B	RW17
OLBA	Beirut, Lebanon	KAD1C	RW18
OLBA	Beirut, Lebanon	KAD1C	RW21
OLBA	Beirut, Lebanon	KAD1D	RW03
OLBA	Beirut, Lebanon	KAD1D	RW36
ROAH	Naha, Japan	NHC2SR	RW18

Table B2 Swissair Navigation Data Base - Standard Instrument Departures			
Origin Airport	Airport Name	FMC-CDU Departure	FMC-CDU Runway
RPVB	Bacolod Negros Occidental, Phillipines	SID 2	RW22
RPVM	Lapu-Lapu/Mactan, Phillipines	SID15	RW04
RPVM	Lapu-Lapu/Mactan, Phillipines	SID15A	RW04
RPVM	Lapu-Lapu/Mactan, Phillipines	SID16	RW04
SCIE	Concepcion/Carriel, Chile	CO4TCO	RW20
SCIE	Concepcion/Carriel, Chile	CO4VLD	RW20

Table B2 Swissair Navigation Data Base - Approaches/Missed Approaches			
Destination Airport	Approach		
EGPB	Sumburgh, UK	ILS27	
ENBR	Fergen/Flesland, Norway	ILS35	
FCBB	Brazzaville/Maya-Maya, Congo	ILS06	
FMCH	Moroni/Hahaia, Comores	ILS02	
GCRR	Arrecife/Lanzarote, Canary Is.	ILS04	
HAAB	Addis Ababa/Bole, Ethiopia	ILS25	
HAAB	Addis Ababa/Bole, Ethiopia	VOR25	
HADR	Dire Dawa/Abba Tenna Dejazmatch Yilma, Ethopia	VOR15	
HESH	Sharm-El-Shiekh, Egypt	ILS04	
KMKC	Kansas City/Downtown, KS	ILS03	
KPMD	Palmdale, CA	ILS25	
LEAM	Almeria, Spain	NDB08	
LEBL	Barcelona, Spain	VOR02	
LEBL	Barcelona, Spain	ILS07	
LEBL	Barcelona, Spain	ILS25	
LFLC	Clermont-Ferrand/Aulnat, France	ILS26	
LGKO	Marathon/Kotroni, Greece	VOR15	
LGKO	Marathon/Kotroni, Greece	VOR33	
LIPE	Bologna/Borgo Panigale, Italy	ILS12	
LIRZ	Perugia, Italy	VOR01	
LPLA	Lajes-Terceira, Is, Portugal	ILS15	
LTCG	Trabzon, Turkey	ILS11	
MUCU	Santiago de Cuba/Antonio Maceo, Cuba	ILS09	
NWWW	Noumea/La Tontouta, New Caledonia	ILS11	
OEDR	Dhahran, Saudi Arabia	ILS34L	
OIBJ	Jam Tohid, Iran	VOR11	

Table B2 Swissair Navigation Data Base - Approaches/Missed Approaches		
Destination Airport Airport Name Appro		
OIBJ	Jam Tohid, Iran	ILS11
OINR	Ramsar, Iran	NDB31
PAYA	Yakutat, AK	VOR02
RJCH	Hakodate, Japan	ILS12
RJCH	Hakodate, Japan	LOC12
RJFK	Kagoshima, Japan	ILS34
RJNK	Kanazawa/Komatsu, Japan	ILS06
RJNN	Najoya, Japan	VOR34
RJNN	Najoya, Japan	ILS34
RJSA	Aomori, Japan	ILS24
RJSN	Nigata, Japan	ILS28
RJSS	Sendai, Japan	ILS27
RKPK	Kimhae, Korea	ILS36
RKPK	Kimhae, Korea	LOC36
ROAH	Naha, Japan	VOR18
RPLL	Manila/Ninoy Aquino, Phillipines	VOR06
RPVB	Bacolod Negros Occidental, Phillipines	VOR04
VOMM	Madras, India	VOR25
VTUW	Nakon Phanom, Thailand	VOR15
WAPP	Ambon/Patimura, Indonesia	ILS04

Table B3 Racal Navigation Data Base - Standard Instrument Departures			
Origin Airport	Airport Name	FMC-CDU Departure	FMC-CDU Runway
ESNN	Sundsvall-Harnosand, Sweden	LUE1C	RW34
FACT	Cape Town, South Africa	OKTE2B	RW19
FACT	Cape Town, South Africa	PARI2B	RW19
GCFV	Fuerteventura, Canary Is	KORA1R	RW19
GCFV	Fuerteventura, Canary Is	LPC2R	RW19
GCFV	Fuerteventura, Canary Is	LT1R	RW19
GCFV	Fuerteventura, Canary Is	SAMA1R	RW19
GCFV	Fuerteventura, Canary Is	TFN1R	RW19
GCFV	Fuerteventura, Canary Is	TFS2R	RW19
GCFV	Fuerteventura, Canary Is	VAST1R	RW19
LEIB	Ibza, Spain	MHN1E	RW24
LEIB	Ibza, Spain	MJV1E	RW24
LEPA	Palma de Mallorca, Spain	MEBU1A	RW24
LEPA	Palma de Mallorca, Spain	MHN1A	RW24
LEPA	Palma de Mallorca, Spain	MJV1B	RW06
LEPA	Palma de Mallorca, Spain	OSGA1A	RW24
LGMT	Mitilini, Greece	LSV1A	RW33
LIMP	Parma, Italy	PAR5V	RW02
LIMP	Parma, Italy	PAR5Y	RW20
MGGT	Guatemala/La Aurora, Guatemala	PALEN	RW01
MKJP	Kingston/Norman Manley, Jamaica	ENEKA3	RW30
MKJP	Kingston/Norman Manley, Jamaica	MLY1	RW12
MKJP	Kingston/Norman Manley, Jamaica	NORAN3	RW30
MKJP	Kingston/Norman Manley, Jamaica	TIGON1	RW30

Table B3 Racal Navigation Data Base - Standard Instrument Departures			
Origin Airport	Airport Name	FMC-CDU Departure	FMC-CDU Runway
MUCU	Santiago de Cuba/Antonio Maceo, Cuba	CAOBA2	RW09
MUCU	Santiago de Cuba/Antonio Maceo, Cuba	SANTO3	RW09
MUCU	Santiago de Cuba/Antonio Maceo, Cuba	SANTO3	RW27
OLBA	Beirut, Lebanon	KAD1C	RW18
OLBA	Beirut, Lebanon	KAD1C	RW21

Table B3 Racal Navigation Data Base - Approaches/Missed Approache		
Destination Airport	Airport Name	Approach
DTTX	Sfax/El Maou, Tunisia	VOR15
DTTX	Sfax/El Maou, Tunisia	VOR33
EGPE	Inverness, UK	VOR06
EGPE	Inverness, UK	VOR24
ENBO	Bodo, Norway	ILS08
GCRR	Arrecife/Lanzarote, Canary Is.	VOR04
HEAX	Alexandria, Egypt	VOR04
HEAX	Alexandria, Egypt	VOR36
KDRO	Durango/La Plata Co., CO	ILS02
LIPE	Bologna/Borgo Panigale, Italy	VOR12
LTCG	Trabzon, Turkey	VOR11
MDPP	Puerto Plata, Dominican Republic	VOR26
MDSD	Santo Domingo/De Las Americas, Dominican Republic	VOR35
NSFA	Faleolo, Samoa	ILS08
NWWW	Noumea/La Tontouta, New Caledonia	ILS11
OEDR	Dhahran, Saudi Arabia	ILS34L
RJCH	Hakodate, Japan	ILS12
RJOM	Matsuyama, Japan	ILS14
RPLL	Manila, Phillipines	ILS06
SLVR	Viru Viru, Bolivia	ILS33
SPIM	Lima-Callao, Peru	VOR33
TFFF	Forte-de-France/Le Lamentin Martinque, France	VOR27
WMKL	Pulau/Langkawi, Malaysia	VOR03

Flight Crew Operations Manual Bulletin No. TBC-18, Dated February 14, 2007 (continued)

Intentionally Blank

Flight Crew Operations Manual Bulletin for The Boeing Company

The Boeing Company Seattle, Washington 98124-2207

Number: TBC-19

IssueDate: February 14, 2007

Airplane Effectivity: All Airplanes

Subject: Continuous Ignition For Flaps 1 Takeoff

Reason: This bulletin provides information informing flight crews of the need to

manually select continuous ignition for a flaps 1 takeoff.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

Background Information

Continuous ignition is not presently activated when FLAPS 1 is selected with the Engine Start Selector in the AUTO position. A wiring change to automatically activate continuous ignition for a FLAPS 1 takeoff is scheduled for production introduction on airplane line number 136 then 138 and on. This same configuration will be available for retrofit by Boeing Service Bulletin 74-0002. In the interim, manual selection of continuous ignition must be made for all takeoffs that utilize a setting of FLAPS 1.

Operations Manual Information

Effective immediately, the following pen and ink changes should be made to the normal procedure:

TAXI-OUT PROCEDURE

Add the following step immediately after the second step, "Flaps.....":

Engine Start Selectors ----- COI

If using FLAPS 1 setting for takeoff.

AFTER TAKEOFF PROCEDURE

Add the following statement to the PNF duties after the statement, "Position flap lever as directed.":

If FLAPS 1 used for takeoff, reposition Engine Start Selectors to AUTO.

Administrative Information

Insert this bulletin behind the Operations Manual Bulletin Record page in Volume 1 of your Operations Manual. Amend the Operations Manual Bulletin Record to show bulletin TBC-19 "In Effect" (IE).

This Operations Manual Bulletin will be canceled after Boeing is notified that all affected airplanes in the operators fleet have been modified by Boeing Service Bulletin 767-74-0002.

Please send all correspondence regarding Operations Manual Bulletins status to one of the following addresses:

Boeing Commercial Airplanes

Commercial Aviation Services

Attn: 767 Manager, Flight Technical Data

P.O. Box 3707, M/C 20-89

Seattle, Washington, 98124-2207 USA

Telephone: (206) 662-4000

Flight Crew Operations Manual Bulletin for The Boeing Company

The Boeing Company Seattle, Washington 98124-2207

Number: TBC-20

IssueDate: February 14, 2007

Airplane Effectivity: All Airplanes

Subject: Dual FMC Restarts And Data Link Fail CDU Messages

Reason: This bulletin provides information informing flight crews of temporary

recommended procedures required to avoid dual FMC restarts.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

Background Information

This bulletin applies to airplanes with Product Improvement Package (PIP) software installed in the Flight Management Computer (FMC) and with no ACARS installed. ACARS equipment allows electronic, non-voice communication between the airplane and ground stations. Communications are received in the cockpit on a dedicated ACARS unit, on a printer or, in the case of data link, directly into the Flight Management Computer.

An error in the PIP software results in a restart of both FMC computers when the first waypoint in the route is reached. The dual restart does not occur on every flight, however, it is not predictable. The restart results in both CDUs displaying the menu page with no prompt for selection of the FMC function. Both HSIs will display the MAP FAIL flag during the restart. The FMCs and HSIs normally recover within 30 seconds. After recovery, the FMC prompt will be displayed on the menu page and it can be selected to return to FMC operation. The route will revert to inactive, requiring reactivation and execution. Performance data will be lost during the restart and will have to be re-entered by the crew.

The restart is caused by the PIP software accessing areas of the FMC memory dedicated to ACARS data link. Without the FMC configured for ACARS, the data in this area of memory is misused, resulting in FMC restarts.

As an interim solution to avoid restarts, the FMC will be reconfigured to expect ACARS and data link installed and operational. Because of the reconfiguration, a prompt for a DATA LINK page will be available on the INIT/REF INDEX page. The DATA LINK page will display DATA LINK FAIL in the lower, right corner and will otherwise be a non-functional page. DATA LINK FAIL does not affect the normal operation of the FMC or CDU. Also, a line for Ref OAT and a line for LIM TOGW (limit takeoff gross weight) will appear on the TAKEOFF REF 2/2 page. If a temperature value is entered in the Ref OAT line, the V-speeds on the TAKEOFF REF 1/2 page will revert to dashes. The LIM TOGW line will not display dashes so it will not accept data entered with the CDU numeric keys.

The FMC will be automatically reconfigured with the interim solution in the next navigation data base update.

Operating Instructions

Do not use the DATA LINK page. Disregard DATA LINK FAIL indications.

Do not enter a value in the Ref OAT line.

Administrative Information

Insert this bulletin behind the Operations Manual Bulletin Record page in Volume 1 of your Operations Manual. Amend the Operations Manual Bulletin Record to show bulletin TBC-20 "In Effect" (IE).

Please send all correspondence regarding Operations Manual Bulletins status to one of the following addresses:

Boeing Commercial Airplanes

Commercial Aviation Services

Attn: 767 Manager, Flight Technical Data

P.O. Box 3707, M/C 20-89

Seattle, Washington, 98124-2207 USA

Telephone: (206) 662-4000

Flight Crew Operations Manual Bulletin for The Boeing Company

The Boeing Company Seattle, Washington 98124-2207

Number: TBC-21

IssueDate: February 14, 2007

Airplane Effectivity: All Airplanes

Subject: Electronic Engine Control (EEC) Software Anomaly

Reason: To inform flight crews of an EEC software anomaly that may prevent

display of EICAS messages IDLE DISAGREE or ENG LOW IDLE.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

Background Information

The EEC sets minimum or approach idle automatically. Minimum idle is selected for most ground and flight operations. Approach idle, set at a slightly higher thrust setting than minimum idle, is selected when any of the following conditions exist:

- · flaps not up, or
- engine anti-ice ON, or
- engine start selector CONT (airplanes modified by SB 767-73-0043)

EICAS advisory message IDLE DISAGREE and ENG LOW IDLE alert the crew of incorrect engine idle settings.

Boeing has received operator reports of incorrect idle settings without display of the appropriate EICAS message. Engineering investigation has determined an EEC software anomaly is responsible. Updated EEC software (Version 8.2.O) corrects the anomaly and restores EICAS alert of idle control system faults.

Operating Instructions

This bulletin does not apply to airplanes modified by GE Service Bulletin 73-0250 REV 2 (EEC software Version 8.2.O).

When operating at idle thrust under conditions requiring approach idle, verify both engines are at approach idle. If one engine is not at approach idle, advance thrust lever on the affected engine until thrust matches the engine operating at approach idle.

Administrative Information

Insert this bulletin behind the Operations Manual Bulletin Record page in Volume 1 of your Operations Manual. Amend the Operations Manual Bulletin Record to show bulletin TBC-21 "In Effect" (IE).

This Operations Manual Bulletin will be canceled after Boeing is notified that all affected airplanes in the operators fleet have been modified by GE Service Bulletin 73-0250 REV 2.

Please send all correspondence regarding Operations Manual Bulletins status to one of the following addresses:

Boeing Commercial Airplanes

Commercial Aviation Services

Attn: 767 Manager, Flight Technical Data

P.O. Box 3707, M/C 20-89

Seattle, Washington, 98124-2207 USA

Telephone: (206) 662-4000

Ø BOEING

Flight Crew Operations Manual Bulletin for The Boeing Company

The Boeing Company Seattle, Washington 98124-2207

Number: TBC-22

IssueDate: February 14, 2007

Airplane Effectivity: All Airplanes

Subject: Flight Management Computer (FMC) Anomaly of Engine Indicating

and Crew Alerting System (EICAS) Alert

Reason: To inform flight crews of a Pegasus-FMC alerting anomaly following an

FMC failure and associated corrective action.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

Background Information

A Pegasus-FMC anomaly exists, which may not result in the display of the associated EICAS advisory-level "L FMC FAIL" or "R FMC FAIL" alerts. This anomaly occurs when an FMC experiences specific internal faults that inhibit the transmission of the FMC-failure signal to the EICAS computers. However, the secondary discrete alerting lights and indications associated with an FMC failure will correctly illuminate to provide the necessary flight crew awareness of an FMC failure condition.

The secondary discrete alerting lights and indications, which are always associated with an FMC failure, are:

- 1. Illumination of the amber Control and Display Unit (CDU) "FAIL" light;
- Display of the amber Horizontal Situation Indicator (HSI) "MAP" flag with the associated FMC Instrument Source Selector positioned to the failed FMC detent; and,
- 3. Display of the "SINGLE FMC [L,R] OPERATION" scratch-pad message on the operable FMC CDU.

Boeing has confirmed this anomaly exists in all Pegasus-FMC software. Pegasus-FMC software is identified by either of the following OP PROGRAM part numbers located on the IDENT page:

- 3413-HNP-02C-03
- 3414-HNP-02C-04.

Operating Instructions

If the CDU "FAIL" light illuminates accompanied by the display of the "MAP" flag on the associated HSI and the CDU scratch-pad message "SINGLE FMC [L,R] OPERATION", the associated FMC should be considered failed. Therefore, the non-normal FMC FAIL checklist should be accomplished.

Administrative Information

Insert this bulletin behind the Operations Manual Bulletin Record page in Volume 1 of your Operations Manual. Amend the Operations Manual Bulletin Record to show bulletin TBC-22 "In Effect" (IE).

This anomaly is corrected by Boeing Service Bulletin 767-34-0317.

Please send all correspondence regarding Operations Manual Bulletins status to one of the following addresses:

Boeing Commercial Airplanes

Commercial Aviation Services

Attn: 767 Manager, Flight Technical Data

P.O. Box 3707, M/C 20-89

Seattle, Washington, 98124-2207 USA

Telephone: (206) 662-4000

Ø BOEING

Flight Crew Operations Manual Bulletin for The Boeing Company

The Boeing Company Seattle, Washington 98124-2207

Number: TBC-23

IssueDate: February 14, 2007

Airplane Effectivity: All Airplanes

Subject: Flight Management Computer (FMC) Anomaly During Descent Phase

of Flight

Reason: To inform flight crews of a Pegasus-FMC anomaly during the descent

phase of flight.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

Background Information

A Pegasus-FMC anomaly exists which may result in different Flight Mode Annunciation (FMA) pitch mode displays between the Attitude Direction Indicators (ADI) and accompanied by inconsistent flight path deviation indications on the Horizontal Situation Indicators (HSI). This anomaly may occur if any flight plan modification is entered and executed near the top of descent point or during the descent or approach phases of flight. When the anomaly occurs, the FMA pitch mode annunciations "VNAV SPD" and "VNAV PATH" ("VNAV PTH", as installed) simultaneously display between the captain's and first officer's ADIs. The HSI track deviation scale pointers may also indicate different vertical path deviations and may even result in one or both vertical path deviation scales not being displayed.

Boeing has confirmed this anomaly exists in all Pegasus-FMC software. Pegasus-FMC software is identified by either of the following OP PROGRAM part numbers located on the IDENT page:

- 3413-HNP-02C-03
- 3414-HNP-02C-04.

Operating Instructions

If continued VNAV mode use is desired, perform a "Direct-To" entry to the active waypoint. This action may result in the correct display of consistent FMA pitch modes associated with VNAV operation. If this action does not result in the correct display of consistent FMA pitch modes, and continued flight director and/or autopilot use is desired, select another appropriate Mode Control Panel (MCP) pitch mode.

Administrative Information

Insert this bulletin behind the Operations Manual Bulletin Record page in Volume 1 of your Operations Manual. Amend the Operations Manual Bulletin Record to show bulletin TBC-23 "In Effect" (IE).

This anomaly is corrected by Boeing Service Bulletin 767-34-0317.

Please send all correspondence regarding Operations Manual Bulletins status to one of the following addresses:

Boeing Commercial Airplanes

Commercial Aviation Services

Attn: 767 Manager, Flight Technical Data

P.O. Box 3707, M/C 20-89

Seattle, Washington, 98124-2207 USA

Telephone: (206) 662-4000

Ø BOEING

Flight Crew Operations Manual Bulletin for The Boeing Company

The Boeing Company Seattle, Washington 98124-2207

Number: TBC-24

IssueDate: February 14, 2007

Airplane Effectivity: All Airplanes

Subject: Flight Management Computer (FMC) Lockup Resulting from Internal

Timer Anomaly

Reason: To inform flight crews of a Pegasus-FMC Timer anomaly and

associated corrective action.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

Background Information

A Pegasus-FMC internal software timer anomaly has been discovered, which may result in a single or dual FMC to lockup during power transfers on the ground. This anomaly has been identified to have a timing cycle of approximately 12.5 hours. If a power transfer resulting in an FMC power interrupt occurs during the last 5-minutes of the 12.5-hour timer cycle, a single or dual FMC lockup can occur. This anomaly has not been reported to occur in service while airborne.

767 Maintenance Tip MT34-028, dated July, 15 1998, was issued by The Boeing Company to provide airline maintenance personnel, or equivalent, the necessary information to prevent the FMC software clock timer-induced lockup.

The recommended action specified in this Boeing Maintenance Tip is as follows:

"To prevent occurrence of an FMC [lockup], cycle the left FMC circuit breaker for at least 10 seconds. Wait for at least 5 minutes after returning power to the left FMC and then cycle the right FMC circuit breaker for at least 10 seconds. Perform this action daily and before any flight operation that will exceed 12.5 hours. If an FMC [lockup] occurs, the FMC can be recovered by performing the aforementioned recommended action."

Operating Instructions

On the ground before each flight, verify maintenance personnel, or equivalent, have complied with 767 Maintenance Tip MT34-028, dated July 15, 1998:

- If maintenance personnel have complied, then no flight crew action is required.
- If maintenance personnel is not available at your location, the flight crew should perform the recommended action specified in MT34-028, dated July 15, 1998.

Administrative Information

Insert this bulletin behind the Operations Manual Bulletin Record page in Volume 1 of your Operations Manual. Amend the Operations Manual Bulletin Record to show bulletin TBC-24 "In Effect" (IE).

This anomaly will be corrected by Boeing Service Bulletin 767-34-0291 scheduled to be available April 1, 1999. This Operations Manual Bulletin will be canceled after Boeing is notified that all affected airplanes in the operators fleet have been modified.

Please send all correspondence regarding Operations Manual Bulletins status to one of the following addresses:

Boeing Commercial Airplanes

Commercial Aviation Services

Attn: 767 Manager, Flight Technical Data

P.O. Box 3707, M/C 20-89

Seattle, Washington, 98124-2207 USA

Telephone: (206) 662-4000

Flight Crew Operations Manual Bulletin for The Boeing Company

The Boeing Company Seattle, Washington 98124-2207

Number: TBC-25

IssueDate: February 14, 2007

Airplane Effectivity: All Airplanes

Subject: Flight Management Computer (FMC) Lockup Resulting from Flight

Plan Route Uplink

Reason: This bulletin describes a Pegasus-FMC Datalink anomaly and

associated corrective actions.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

Background Information

A Pegasus-FMC software anomaly exists, which may result in the lock up of both the left and right FMC when repeated attempts to load a route uplink are accomplished. When a route uplink is received and the scratchpad message, "ROUTE 1 UPLINK READY" or "ROUTE 2 UPLINK READY" displays, the flight crew normally loads the route by pushing line-select key 4L adjacent to the "< LOAD" prompt on the RTE 1/X page. If the "< LOAD" prompt is selected and the software anomaly is in effect, the route will not load and the "< LOAD" prompt will continue to display at line-select key 4L. Furthermore, repeated attempts to load the route uplink may result in a single or dual FMC lockup. If an FMC lockup occurs, pulling an FMC circuit breaker(s) to remove power will not return either FMC to normal operation. To resolve the lockup, maintenance personnel, or equivalent, must software load an earlier edition of the navigation database. Line selecting the out-of-date navigation data base on the IDENT page will not correct the lockup.

Note: This Pegasus-FMC software anomaly occurs randomly and does not affect all route uplinks.

Operating Instructions

On ground:

When the "ROUTE 1 UPLINK READY" or "ROUTE 2 UPLINK READY" scratchpad message displays, push line-select key 4L adjacent to the "< LOAD" prompt on the RTE 1/X page only once. Verify the "< LOAD" prompt at line-select key 4L on the RTE page disappears. If the "< LOAD" prompt at line-select key 4L remains displayed, do not re-select.

If the route is INACTIVE, select the "PURGE >" prompt at line-select key 4R. The route uplink will purge normally and the FMC will continue normal operation. Subsequent uplinks may be attempted.

If the route is ACTIVE, manually enter a new flight plan, if required. Do not attempt a subsequent load of the failed route uplink. If the aircraft is on the ground, maintenance personnel, or equivalent, may pull both FMC circuit breakers for approximately 10 seconds, then reset both FMC circuit breakers to clear the anomaly.

In flight:

Do not load a route uplink via the "< LOAD" prompt adjacent to line-select key 4L on the RTE 1/X page.

Administrative Information

Insert this bulletin behind the Operations Manual Bulletin Record page in Volume 1 of your Operations Manual. Amend the Operations Manual Bulletin Record to show bulletin TBC-25 "In Effect" (IE).

This anomaly will be corrected by Boeing Service Bulletin 767-34-0291 scheduled to be available April 1, 1999. This Operations Manual Bulletin will be canceled after Boeing is notified that all affected airplanes in the operators fleet have been modified.

Please send all correspondence regarding Operations Manual Bulletins status to one of the following addresses:

Boeing Commercial Airplanes

Commercial Aviation Services

Attn: 767 Manager, Flight Technical Data

P.O. Box 3707, M/C 20-89

Seattle, Washington, 98124-2207 USA

Telephone: (206) 662-4000

BOEING

Flight Crew Operations Manual Bulletin for The Boeing Company

The Boeing Company Seattle, Washington 98124-2207

Number: TBC-26

IssueDate: February 14, 2007

Airplane Effectivity: All Airplanes

Subject: FMC Holding Pattern Anomaly

Reason: To inform flight crews of incorrect FMC holding pattern size when

flying without LNAV engaged.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

Background Information

The FMC calculates holding pattern size based on the target holding airspeed, current winds and altitude when crossing the holding fix, and FAA/ICAO holding protected airspace limits. The FMC updates holding pattern size, as required, each time the airplane crosses the holding fix. However, current FMC software prevents pattern size update if LNAV was not engaged on the previous crossing of the holding fix. If a holding pattern has been modified after crossing the holding fix without LNAV engaged, the FMC will not update the holding pattern size when the fix is crossed again. The airplane must cross the holding fix twice with LNAV engaged for FMC holding pattern update to occur. This does not affect holding pattern size for initial holding pattern entry.

The anomaly can occur when descending in holding or modifying a holding pattern. In one reported event, the flight crew created a holding pattern in the FMC at an initial approach fix and entered the holding pattern using HDG SEL. Upon receiving ATC clearance, the flight crew began a descent and engaged LNAV. Before crossing the holding fix twice with LNAV engaged, the flight crew descended to an altitude where the original holding pattern size no longer met protected airspace criteria. A GPWS warning was generated from nearby terrain. This terrain alert would have been avoided had a holding pattern update occurred.

The anomaly does not exist with PEGASUS FMC, P/N S242T102-455.

Operating Instructions

When possible, enter and fly FMC holding patterns with LNAV engaged. Holding pattern size will be updated, as required, each time the airplane crosses the holding fix and the airplane will remain within FAA/ICAO hold protected airspace. Cross check lateral and vertical navigation for proper operation.

If 1) climbing or descending in, or 2) modifying, a holding pattern without LNAV engaged, fly the holding pattern in HDG SEL and use time/distance techniques. Under these conditions, use the FMC holding pattern for reference only since pattern size is not updated when the holding fix is crossed.

Administrative Information

Insert this bulletin behind the Operations Manual Bulletin Record page in Volume 1 of your Operations Manual. Amend the Operations Manual Bulletin Record to show bulletin TBC-26 "In Effect" (IE).

This anomaly is corrected by Boeing Service Bulletin 767-34-0291 or 767-34-0301 or 767-34-0302 or 767-34-0303 or 767-34-0304. Refer to individual Service Bulletin for applicability.

This Operations Manual Bulletin will be canceled after Boeing is notified that all affected airplanes in the operators fleet have been modified.

Please send all correspondence regarding Operations Manual Bulletins status to one of the following addresses:

Boeing Commercial Airplanes

Commercial Aviation Services

Attn: 767 Manager, Flight Technical Data

P.O. Box 3707, M/C 20-89

Seattle, Washington, 98124-2207 USA

Telephone: (206) 662-4000

Flight Crew Operations Manual Bulletin for The Boeing Company

The Boeing Company Seattle, Washington 98124-2207

Number: TBC-27

IssueDate: February 14, 2007

Airplane Effectivity: All Airplanes

Subject: FMC CDU Scratchpad Message "Enter IRS Position"

Reason: To inform flight crews the FMC CDU scratchpad message ENTER IRS

POSITION may not display when an incorrect present position is

entered for IRS alignment.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

Background Information

The FMC CDU scratchpad message ENTER IRS POSITION indicates the flight crew-entered present position did not pass an IRS comparison check, or the IRS is ready to enter the navigation mode and a present position has not been entered. Operators have reported isolated incidents of IRS alignment without display of the ENTER IRS POSITION message when an incorrect present position has been entered during preflight. As a result, airplanes have inadvertently dispatched with unreliable IRS position information. Engineering analysis indicates the anomaly is the result of a timing problem between the FMCs.

Engaging the autothrottle for takeoff (GPS not available) does not correct the error. If the error is sufficiently large, FMC radio position updating will be locked out in flight. GPS position updating (if available) will function and slowly correct the position error at a rate of 4 NM per minute.

In addition, large initial position errors can cause IRS magnetic variation errors affecting the accuracy of magnetic heading and track. Excessive magnetic track errors can cause AFDS localizer mode failure and subsequent inhibiting of automatic approaches. Complete correction of the FMC/IRS position error requires landing and full realignment in the navigation mode.

The flight crew can detect a large FMC position error by comparing relative positions of the airplane and runway symbols on the HSI. On the POS REF page, individual IRS positions should be compared to the required alignment position (gate coordinates, etc.). If an initial position error is discovered before takeoff, a fast alignment with a correct position entry may not resolve the problem. A full alignment must be accomplished by rotating the IRS Mode Selectors to OFF, then to NAV, and entering the correct present position in the SET IRS POSITION line on the POS INIT page.

Also, due to an unrelated anomaly, the use of LAST POS for IRS alignment has not always resulted in correct IRS alignment. If the last positions stored in the FMCs differ, using either for IRS alignment may result in an incorrect alignment position.

This anomaly exists only in PIP FMC and Pegasus FMC. Following are the affected software part numbers:

• Pegasus: 3413-HNP-02C-03.

• PIP: PS4052970-952, -953, -954, -955, -956

Operating Instructions

During preflight, after entering present position on SET IRS POS line, select the POS REF page and verify L, C, and R IRS position coordinates are correct.

If an incorrect initial position is discovered in flight, the situation cannot be corrected without full IRS realignment on the ground.

Administrative Information

Insert this bulletin behind the Operations Manual Bulletin Record page in Volume 1 of your Operations Manual. Amend the Operations Manual Bulletin Record to show bulletin TBC-27 "In Effect" (IE).

The PEGASUS FMC anomaly will be corrected by Boeing Service Bulletin 767-34-0291. Other FMC's are corrected by Boeing Service Bulletin 767-34-0301 or 767-34-0302 or 767-34-0303 or 767-34-0304. Refer to individual Service Bulletin for applicability.

This Operations Manual Bulletin will be canceled after Boeing is notified that all affected airplanes in the operators fleet have been modified.

Flight Crew Operations Manual Bulletin No. TBC-27, Dated February 14, 2007 (continued)

Please send all correspondence regarding Operations Manual Bulletins status to one of the following addresses:

Boeing Commercial Airplanes

Commercial Aviation Services

Attn: 767 Manager, Flight Technical Data

P.O. Box 3707, M/C 20-89

Seattle, Washington, 98124-2207 USA

Telephone: (206) 662-4000

Flight Crew Operations Manual Bulletin No. TBC-27, Dated February 14, 2007 (continued)

Intentionally Blank

Flight Crew Operations Manual Bulletin for The Boeing Company

The Boeing Company Seattle, Washington 98124-2207

Number: TBC-28

IssueDate: February 14, 2007

Airplane Effectivity: All Airplanes

Subject: FMC VNAV Anomaly During Intermediate Level Off

Reason: To inform pilots of a VNAV anomaly which may result in a level-off

altitude error.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

Background Information

Boeing has received operator reports of VNAV overshooting the intended altitude following climb. This occurred at intermediate altitudes when the local barometric pressure was significantly lower than standard. Each event occurred when the level-off was initiated shortly after climbing through transition altitude.

The FMC uses a filter to smooth the computed aircraft altitude to compensate for a rapid adjustment to the barometric correction setting. This altitude smoothing function compensates for a barometric correction change at the rate of 1 inch mercury (33.9 hPa) or 1000 feet in two minutes.

During climb, when a VNAV level-off is initiated shortly after passing transition altitude and the altimeter is reset from a very low pressure to QNE (29.92 or 1013), VNAV may overshoot the level-off. In descent, an undershoot condition may occur when a VNAV level-off is initiated shortly after passing the transition level and the altimeter has been reset from QNE to a very low pressure QNH setting. The amount of overshoot or undershoot depends on the amount of barometric correction, when the altimeter is reset, and the elapsed time from altimeter reset to level-off.

Operating Instructions

If leveling off within 2000 feet after changing altimeter setting from QNE to QNH, or QNH to QNE, do not use VNAV to execute the level-off if QNH is less than 29.70 hg/1006 hPa (low altimeter setting). After the level-off is complete, VNAV may be re-engaged for climb or cruise.

Administrative Information

Insert this bulletin behind the Operations Manual Bulletin Record page in Volume 1 of your Operations Manual. Amend the Operations Manual Bulletin Record to show bulletin TBC-28 "In Effect" (IE).

This anomaly is corrected by Boeing Service Bulletin 767-34A0389. This Flight Crew Operations Manual Bulletin will be canceled after Boeing is notified that all affected airplanes in the operator's fleet have been modified.

Please send all correspondence regarding Operations Manual Bulletins status to one of the following addresses:

Boeing Commercial Airplanes

Commercial Aviation Services

Attn: 767 Manager, Flight Technical Data

P.O. Box 3707, M/C 20-89

Seattle, Washington, 98124-2207 USA

Telephone: (206) 662-4000

Flight Crew Operations Manual Bulletin for The Boeing Company

The Boeing Company Seattle, Washington 98124-2207

Number: TBC-29

IssueDate: February 14, 2007

Airplane Effectivity: All Airplanes

Subject: FMC Failure During VOR Remote Tuning

Reason: This bulletin provides information informing flight crews that FMC

failure can occur when remote tuning a VOR station with the FMC

while the right autopilot is engaged.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

Background Information

While remote tuning a VOR with the FMC during a recent test flight, a dual FMC restart occurred with a loss of performance data and deactivation of the active route. Investigation has revealed that this anomaly is due to a conflict between the FMC tuning master, which is normally the left FMC, and the FMC guidance master, which is determined by which autopilot is engaged. Therefore, this anomaly only occurs when remote tuning a VOR while the right autopilot is engaged, but does not occur every time this situation is encountered.

The indication to the flight crew that this anomaly is about to occur is that when a VOR frequency or identifier is line selected to the VOR display line on Progress page 1/2, the data remains in the scratch pad and does not transfer to the line. If no further action is attempted, an FMC generated short term interrupt will occur, the scratch pad will clear and normal operation will be restored. However, a second attempt to remote tune will result in a long term restart and a loss of performance data and deactivation of the rote. A third attempt will result in dual FMC failure (single failure with -952 and -953 software).

Operating Instructions

Until this anomaly is corrected, do not remote tune VOR stations using the FMC when the right autopilot is engaged.

Administrative Information

Insert this bulletin behind the Operations Manual Bulletin Record page in Volume 1 of your Operations Manual. Amend the Operations Manual Bulletin Record to show bulletin TBC-29 "In Effect" (IE).

This anomaly is corrected by Boeing Service Bulletin 767-34-0242.

Please send all correspondence regarding Operations Manual Bulletins status to one of the following addresses:

Boeing Commercial Airplanes

Commercial Aviation Services

Attn: 767 Manager, Flight Technical Data

P.O. Box 3707, M/C 20-89

Seattle, Washington, 98124-2207 USA

Telephone: (206) 662-4000

Flight Crew Operations Manual Bulletin for The Boeing Company

The Boeing Company Seattle, Washington 98124-2207

Number: TBC-30

IssueDate: February 14, 2007

Airplane Effectivity: All Airplanes

Subject: FMC Assumed Temperature Derate Anomaly

Reason: This bulletin provides information for flight crews regarding FMC

anomaly.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

Background Information

Re-entering the previously entered assumed temperature on the CDU TAKEOFF REF page may not be accepted by the FMC. Assumed temperature entries selected via the Thrust Mode Select Panel (TMSP) are accepted by the FMC.

This anomaly appears on airplanes with an earlier version of the PEGASUS FMC installed. The earlier version can be identified by the OP PROGRAM part number displayed on the IDENT page:

• 3413-HNP-02C-03

Operating Instructions

Enter assumed temperature using the TMSP if the FMC assumed temperature entry is not accepted.

Administrative Information

Insert this bulletin behind the Operations Manual Bulletin Record page in Volume 1 of your Operations Manual. Amend the Operations Manual Bulletin Record to show bulletin TBC-30 "In Effect" (IE).

Flight Crew Operations Manual Bulletin No. TBC-30, Dated February 14, 2007 (continued)

This anomaly will be corrected by Boeing Service Bulletin 767-34-0291 scheduled to be available April 1, 1999. This Operations Manual Bulletin will be canceled after Boeing is notified that all affected airplanes in the operators fleet have been modified.

Please send all correspondence regarding Operations Manual Bulletins status to one of the following addresses:

Boeing Commercial Airplanes

Commercial Aviation Services

Attn: 767 Manager, Flight Technical Data

P.O. Box 3707, M/C 20-89

Seattle, Washington, 98124-2207 USA

Telephone: (206) 662-4000

Ø BOEING

Flight Crew Operations Manual Bulletin for The Boeing Company

The Boeing Company Seattle, Washington 98124-2207

Number: TBC-31

IssueDate: February 14, 2007

Airplane Effectivity: All Airplanes

Subject: Fuel System Imbalance Anomaly

Reason: To provide information regarding a fuel system imbalance anomaly.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

Background Information

Boeing has received several operator reports of an imbalance anomaly pertaining to the 767 Fuel System. All operator reports describe simultaneous fuel consumption from the center fuel tank and either the left or right main fuel tank, or simultaneous fuel consumption between the center fuel tank and both left and right main fuel tanks.

Boeing analysis has determined this simultaneous fuel tank consumption anomaly is a result of the center fuel tank pumps not producing adequate pressure to override the main tank fuel pumps. With exception of an empty center fuel tank, the occurrence of the anomaly cannot be accurately predicted for any given flight or any given flight condition.

Boeing is continuing investigation of this anomaly. Several modifications have been made to the center fuel tank override pumps as directed by Federal Aviation Administration (FAA) Airworthiness Directive (AD) 2001-15-08, Amendment 39-12342, effective September 4, 2001, which may be responsible for the imbalance characteristic. FAA AD 2001-15-08 supercedes FAA AD 97-19-15, which is no longer in effect. Therefore, flight crews should be advised of this simultaneous fuel consumption anomaly and provided with recommended operating instructions as temporary corrective action.

The recommended operating instructions contained in this Operations Manual Bulletin have demonstrated in service to both terminate the simultaneous fuel consumption characteristic as well as prevent re-occurrence of the characteristic for the remainder of flight.

There are two means for the flight crew to determine if fuel is simultaneously being consumed from the center fuel tank and either or both main fuel tanks. These are:

- 1. Flight crew observance of Fuel Quantity Indicating System (FQIS) quantity indicators simultaneously decreasing from the center fuel tank and either or both left and right main fuel tanks without receiving an EICAS fuel system alert; or,
- 2. Flight crew observance of FQIS quantity indicators simultaneously decreasing from the center fuel tank and either or both left and right main fuel tanks after receiving an EICAS fuel system alert.

Operating Instructions

 If the flight crew observes FQIS quantity indicators simultaneously decreasing from the center tank and either the left or right main fuel tank without the "FUEL CONFIG" advisory-level EICAS alert displayed and FUEL CONFIG light illuminated, accomplish the FUEL BALANCING supplementary procedure.

Note: Accomplishing the FUEL BALANCING supplementary procedure allows the center tank fuel pump on the low main fuel tank side to resume override pressure. The left and right main fuel tanks will remain unbalanced at the amount at which the low main fuel tank pumps are selected OFF. When center tank fuel is depleted, the main tanks will begin balancing.

 If the EICAS advisory-level "FUEL CONFIG" alert displays accompanied by the FUEL CONFIG light, and the flight crew observes FQIS quantity indicators simultaneously decreasing from the center tank and either the left or right main fuel tank, accomplish the FUEL CONFIGURATION non-normal checklist

Note: Accomplishing the FUEL CONFIGURATION non-normal checklist allows the center tank fuel pump on the low main fuel tank side to resume override pressure. The left and right main fuel tanks will remain unbalanced at the amount at which the low main fuel tank pumps are selected OFF. When center tank fuel is depleted, the main tanks will begin balancing.

If the flight crew observes FQIS quantity indicators simultaneously
decreasing from the center tank and both the left and right main fuel tanks
without the "LOW FUEL" caution-level EICAS alert displayed, continue
normal operation.

Note: Operator in-service reports have indicated a higher rate of fuel consumption from the center fuel tank being observed in comparison to the rate of fuel consumption from the left and right main fuel tanks. In addition, Boeing analysis has determined that the center fuel tank will empty before the main fuel tank quantities are reduced by an appreciable amount.

4. If the EICAS caution-level "LOW FUEL" alert displays accompanied by the FUEL CONFIG light, accomplish the LOW FUEL non-normal checklist.

Note: In-service reports have indicated a higher rate of fuel consumption from the center fuel tank in comparison to the rate of fuel consumption from the left and right main fuel tanks. In addition, subsequent Boeing analysis has determined that the center fuel tank will empty before the main fuel tank quantities are reduced by an appreciable amount. Therefore, the "LOW FUEL" alert should be treated with all due vigilance, and the LOW FUEL non-normal checklist accomplished.

5. If the flight crew suspects a fuel leak may exist, accomplish the ENGINE FUEL LEAK non-normal checklist.

Note: Accomplishing the ENGINE FUEL LEAK non-normal checklist is appropriate if the flight crew suspects or confirms a fuel leak exists. One or more of the following may be evidence of a fuel leak:

- a. Visual observation of fuel spray from strut or engine;
- b. Excessive engine fuel flow;
- c. Total fuel quantity decreasing at an abnormal rate;
- d. "FUEL CONFIG" message on EICAS;
- e. "LOW FUEL" message on EICAS
- f. FUEL DISAGREE PROG 2 or FUEL QTY ERROR PROG 2 message on the CDU scratchpad;
- g. INSUFFICIENT FUEL message on the CDU scratchpad.
- If fuel jettison operation is required, accomplish the FUEL JETTISON non-normal checklist.

Note: Accomplishing the FUEL JETTISON non-normal checklist will exclusively isolate the center tank fuel for fuel jettison operation.

As a reminder, Auxiliary Power Unit (APU) operation on the ground or in flight may result in depletion of fuel from the left main fuel tank. Therefore, flight crews should be reminded that a left and right main fuel tank unbalance condition might be a result of APU operation.

Master Minimum Equipment List (MMEL) Item 28-41-1 allows airplane dispatch with an FQIS quantity indicator inoperative if the associated provisos are complied with. Boeing recommends not dispatching an airplane under MMEL Item 28-41-1, if the airplane has been modified by Service Bulletins 767-28-0052 or 767-28-0062, or production equivalents, and center tank fuel is loaded. With a main fuel tank FQIS quantity indicator inoperative, flight crew confusion can result in determining whether the fuel system anomaly described above is occurring or if a suspected engine fuel leak condition exists.

Boeing further recommends if a main fuel tank FQIS quantity indicator failure occurs after dispatch on an airplane modified by Service Bulletin 767-28-0052 or 767-28-0062 with center tank fuel loaded, the flight be terminated by taxiing back to parking or landing at the nearest suitable airport.

Administrative Information

Insert this bulletin behind the Operations Manual Bulletin Record page in Volume 1 of your Operations Manual. Amend the Operations Manual Bulletin Record to show bulletin TBC-31 "In Effect" (IE).

This condition is under investigation. This bulletin will be revised to include Service Bulletin information when available.

Please send all correspondence regarding Operations Manual Bulletins status to one of the following addresses:

Boeing Commercial Airplanes

Commercial Aviation Services

Attn: 767 Manager, Flight Technical Data

P.O. Box 3707, M/C 20-89

Seattle, Washington, 98124-2207 USA

Telephone: (206) 662-4000

The Boeing Company Seattle, Washington 98124-2207

Number: TBC-32

IssueDate: February 14, 2007

Airplane Effectivity: All Airplanes

Subject: FMC Alternate Airport Anomaly

Reason: This bulletin provides information for flight crews regarding FMC

anomaly.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

Background Information

When the ALTN CDU page is selected, the displayed alternate airports may contain only three airports because one airport is duplicated.

This anomaly appears on airplanes with an earlier version of the PEGASUS FMC installed. The earlier version can be identified by the OP PROGRAM part number displayed on the IDENT page:

• 3413-HNP-02C-03

Operating Instructions

If necessary, select or enter the appropriate alternate airport.

Administrative Information

Insert this bulletin behind the Operations Manual Bulletin Record page in Volume 1 of your Operations Manual. Amend the Operations Manual Bulletin Record to show bulletin TBC-32 "In Effect" (IE).

Flight Crew Operations Manual Bulletin No. TBC-32, Dated February 14, 2007 (continued)

This anomaly will be corrected by Boeing Service Bulletin 767-34-0291 scheduled to be available April 1, 1999. This Operations Manual Bulletin will be canceled after Boeing is notified that all affected airplanes in the operators fleet have been modified.

Please send all correspondence regarding Operations Manual Bulletins status to one of the following addresses:

Boeing Commercial Airplanes

Commercial Aviation Services

Attn: 767 Manager, Flight Technical Data

P.O. Box 3707, M/C 20-89

Seattle, Washington, 98124-2207 USA

Telephone: (206) 662-4000

The Boeing Company Seattle, Washington 98124-2207

Number: TBC-33

IssueDate: February 14, 2007

Airplane Effectivity: All Airplanes

Subject: FMC Altitude Display Anomaly

Reason: This bulletin provides information for flight crews regarding FMC

anomaly.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

Background Information

During descent, the HSI and CDU LEGS page may display "altitudes" instead of "flight levels" when above the destination airport's transition level or may display "flight levels" instead of "altitudes" when below the destination airport's transition level. This anomaly should not affect crew checklist procedures which require altimeter change at the transition level for the local area.

This anomaly appears on airplanes with an earlier version of the PEGASUS FMC installed. The earlier version can be identified by the OP PROGRAM part number displayed on the IDENT page:

• 3413-HNP-02C-03

Operating Instructions

Ensure that the appropriate altimeter setting for the local area is set at transition level.

Administrative Information

Insert this bulletin behind the Operations Manual Bulletin Record page in Volume 1 of your Operations Manual. Amend the Operations Manual Bulletin Record to show bulletin TBC-33 "In Effect" (IE).

This anomaly will be corrected by Boeing Service Bulletin 767-34-0291 scheduled to be available April 1, 1999. This Operations Manual Bulletin will be canceled after Boeing is notified that all affected airplanes in the operators fleet have been modified.

Please send all correspondence regarding Operations Manual Bulletins status to one of the following addresses:

Boeing Commercial Airplanes

Commercial Aviation Services

Attn: 767 Manager, Flight Technical Data

P.O. Box 3707, M/C 20-89

Seattle, Washington, 98124-2207 USA

Telephone: (206) 662-4000

The Boeing Company Seattle, Washington 98124-2207

Number: **TBC-34**

IssueDate: February 14, 2007

Airplane Effectivity: All Airplanes

Subject: FMC Engine Out (E/O) Standard Instrument Departure (SID)

Reason: This bulletin provides information for flight crews regarding engine out

FMC anomaly after takeoff.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

Background Information

On flights such as training flights where multiple takeoffs and landings occur, the Engine Out Standard Instrument Departure (E/O SID) will not automatically load with loss of an engine after takeoff. The E/O SID can still be manually selected by the crew.

This anomaly appears on airplanes with an earlier version of the PEGASUS FMC installed. The earlier version can be identified by the OP PROGRAM part number displayed on the IDENT page:

• 3413-HNP-02C-03

Operations Manual Information

Ensure the departure runway is re-selected prior to each takeoff if the engines have not been shutdown

Administrative Information

Insert this bulletin behind the Operations Manual Bulletin Record page in Volume 1 of your Operations Manual. Amend the Operations Manual Bulletin Record to show bulletin TBC-34 "In Effect" (IE).

Flight Crew Operations Manual Bulletin No. TBC-34, Dated February 14, 2007 (continued)

This anomaly will be corrected by Boeing Service Bulletin 767-34-0291 scheduled to be available April 1, 1999. This Operations Manual Bulletin will be canceled after Boeing is notified that all affected airplanes in the operators fleet have been modified.

Please send all correspondence regarding Operations Manual Bulletins status to one of the following addresses:

Boeing Commercial Airplanes

Commercial Aviation Services

Attn: 767 Manager, Flight Technical Data

P.O. Box 3707, M/C 20-89

Seattle, Washington, 98124-2207 USA

Telephone: (206) 662-4000

The Boeing Company Seattle, Washington 98124-2207

Number: TBC-35

IssueDate: February 14, 2007

Airplane Effectivity: All Airplanes

Subject: Incorrect Display of VREF On The ADI Speed Tape

Reason: This bulletin provides information for flight crews regarding FMC

anomaly.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

Background Information

Flight test has discovered an anomaly in the Pegasus FMC which may cause the display of incorrect Vref information on one of the two ADI Speed Tapes. When a manual "speed-only" Vref change is made to a previously entered Vref on the APPROACH REF page, the new value will be displayed correctly on one Speed Tape, but the other Speed Tape will remain at the previously entered speed value. This anomaly occurs only when a speed scratchpad entry (/ XXX) is line-selected into 4R on the APPROACH REF page.

Example 1, no anomaly: During the Approach check, the Captain downselects line 3R (30 O/133 KT) and then enters it into 4R. The 133 KT Vref speed bug will be correctly displayed on both sides.v

Example 2, with anomaly: The Captain directs a Vref speed change to 140 KT and " / 140" is entered into 4R on the APPROACH REF page. In this case, the Vref bug will be displayed at 140 on one speed tape, but the previously entered value (133) is displayed on the other speed tape. The speed tape displaying the correct value is on the side of the master FMC and does not depend on which CDU is used to make the input.

This anomaly only occurs when a speed-only format entry is made. This anomaly appears on airplanes with the PEGASUS FMC installed. The PEGASUS FMC can be identified by the OP PROGRAM part number displayed on the IDENT page:

• 3413-HNP-02C-03

Operating Instructions

When a previous Vref entry requires a speed alteration, ensure that the entry into 4R includes both the desired flap setting and the new Vref speed (e.g. 30° / 134). The FMC computed speeds in 1R, 2R, or 3R may also be downselected and then entered into 4R for display on both speed tapes.

Administrative Information

Insert this bulletin behind the Operations Manual Bulletin Record page in Volume 1 of your Operations Manual. Amend the Operations Manual Bulletin Record to show bulletin TBC-35 "In Effect" (IE).

This anomaly will be corrected by Boeing Service Bulletin 767-34-0291 scheduled to be available April 1, 1999. This Operations Manual Bulletin will be canceled after Boeing is notified that all affected airplanes in the operators fleet have been modified.

Please send all correspondence regarding Operations Manual Bulletins status to one of the following addresses:

Boeing Commercial Airplanes

Commercial Aviation Services

Attn: 767 Manager, Flight Technical Data

P.O. Box 3707, M/C 20-89

Seattle, Washington, 98124-2207 USA

Telephone: (206) 662-4000

The Boeing Company Seattle, Washington 98124-2207

Number: **TBC-36**

IssueDate: February 14, 2007

Airplane Effectivity: All Airplanes **Subject:** Invalid ILS Indication

Reason: This bulletin provides information informing flight crews of the

potential for false localizer indications.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

Background Information

It has been determined by ground tests that Electro Magnetic Interference (EMI) generated by X-band weather radar systems may cause false localizer indications on the EFIS. The EMI causes audio noise in all three ILS systems and may cause false localizer deviation indications on both Captain's and First Officer's EFIS. The EMI also affects the standby attitude ILS display. The false localizer indication may occur when the ILS receiver is tuned to an ILS frequency not in use or when a normal localizer signal being received goes off the air for any reason. There are no visual indications in the cockpit to warn the flight crew of this localizer signal anomaly.

The EMI, which causes false localizer indications, is introduced into the ILS system by weather radar interference picked up by the localizer antenna. Some ILS frequencies are more susceptible than others to EMI interference. VOR and glideslope signals, and indications, are not known to be affected by the EMI.

Airline Engineering and Maintenance personnel are being advised of the EMI anomaly and will be provided information to correct the problem via Service Letter and Service Bulletin.

Operating Instructions

When conditions permit, accomplish ILS approaches with weather radar OFF.

If this is not possible, until the affected airplane radars are modified, the following operating instructions apply:

If the weather radar is OFF, follow the normal procedures. If the weather radar is ON, in addition to the normal procedures perform the following:

- Aurally identify the ILS station prior to the outer marker and continuously monitor the audio signal through completion of the ILS approach.
- Unless the runway is in sight, do not continue an ILS approach if the ILS audio signal is lost.
- Do not use ILS localizer to track outbound (eg departures, ILS outbound to procedure turn, or missed approaches).

Administrative Information

Insert this bulletin behind the Operations Manual Bulletin Record page in Volume 1 of your Operations Manual. Amend the Operations Manual Bulletin Record to show bulletin TBC-36 "In Effect" (IE).

This Operations Manual Bulletin will be canceled after Boeing is notified that all affected airplanes in the operators fleet have been modified by Boeing Service Bulletin 767-34A0055.

Please send all correspondence regarding Operations Manual Bulletins status to one of the following addresses:

Boeing Commercial Airplanes

Commercial Aviation Services

Attn: 767 Manager, Flight Technical Data

P.O. Box 3707, M/C 20-89

Seattle, Washington, 98124-2207 USA

Telephone: (206) 662-4000

The Boeing Company Seattle, Washington 98124-2207

Number: TBC-37

IssueDate: February 14, 2007

Airplane Effectivity: All Airplanes

Subject: Pegasus Flight Management Computer (FMC) VNAV Level Off

Anomaly

Reason: This bulletin provides information for flight crews regarding FMC

anomaly.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

Background Information

Several in-service occurrences of an anomaly at high altitude have been reported on airplanes equipped with the Pegasus FMC. During a normal cruise altitude capture, VNAV SPD transitions to VNAV PATH. If the cruise altitude is near Cruise Thrust Limit Altitude and the airplane climb speed is slightly below target cruise speed when altitude capture is initiated, the airplane may pitch down and descend attempting to accelerate to the target speed. Also, some occurrences have been accompanied by a thrust lever reduction concurrent with the descent.

This anomaly appears on airplanes with the PEGASUS FMC installed. The PEGASUS FMC can be identified by the OP PROGRAM part number displayed on the IDENT page:

- 3413-HNP-02C-03 or
- 3414-HNP-02C-04

Operating Instructions

Normal pilot action is appropriate. The Boeing Fight Crew Training Manual and Operations Manual recommend that for any unsatisfactory automatic system performance that the pilot intervenes. Should this anomaly occur at high altitude, the pilot should ensure proper thrust is set and complete the level-off.

Any operator observing this condition, especially where the condition also results in a thrust lever reduction, is requested to provide flight profile data such as:

- summary of pilot actions (CDU entries, flight mode changes, such as autopilot flight level change to VNAV engagement or use of VNAV during climb)
- VNAV mode displayed (VNAV PATH or VNAV SPD)
- autothrottle mode displayed (EPR/N1, SPD, IDLE etc...)
- TMC mode displayed (CLB, CRZ etc...)
- airplane state (altitude, climb rate, speed, and speed target).

Administrative Information

Insert this bulletin behind the Operations Manual Bulletin Record page in Volume 1 of your Operations Manual. Amend the Operations Manual Bulletin Record to show bulletin TBC-37 "In Effect" (IE).

This anomaly is corrected by Boeing Service Bulletin 767-34-0317.

Please send all correspondence regarding Operations Manual Bulletins status to one of the following addresses:

Boeing Commercial Airplanes

Commercial Aviation Services

Attn: 767 Manager, Flight Technical Data

P.O. Box 3707, M/C 20-89

Seattle, Washington, 98124-2207 USA

Telephone: (206) 662-4000

The Boeing Company Seattle, Washington 98124-2207

Number: **TBC-38**

IssueDate: February 14, 2007

Airplane Effectivity: All Airplanes

Subject: Pegasus FMC HSI Map Display Anomaly

Reason: This bulletin provides information for flight crews regarding an FMC

anomaly.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

Background Information

Data search function. At initial power up, the FMC searches the navigation database for all navaids, airports, and waypoints within a 700NM radius and loads them into memory. The data search function requires approximately 25 seconds and is done in background (not visible to the pilot). The search is also initiated when any function on the HSI control panel is changed (e.g. range scale, mode, or map switches). If a "power transition" occurs while the search is in progress, the search function will not operate again until power is removed from the FMC's. Removing FMC power resets the search function.

Problem. Operators have reported several in-service occurrences of an HSI display anomaly in which navaids, airports, and waypoints were not displayed when the respective switch on the HSI control panel was selected. The anomaly is caused by the occurrence of an airplane power transition (e.g. during engine start) while the FMC's EFIS data search function is in progress.

This anomaly may not be detectable by the crew until the airplane is more than 700NM from the departure airport because it is likely that a successful search occurred at power up prior to any failure. In this case, the map data may appear correct until exceeding the 700NM radius. Beyond that radius, map background data may not be displayed. Tuned navaids, alternate airports (as shown on the ALTN page) and entries on the FIX page will be displayed as expected.

This anomaly appears on airplanes with the PEGASUS FMC installed. The PEGASUS FMC can be identified by the OP PROGRAM part numbers, either 3413-HNP-02C-03 or 3414-HNP-02C-04, displayed on the IDENT page.

Operating Instructions

- 1. Avoid making switch selections on the HSI control panel within approximately 30 seconds of an anticipated power transfer (e.g. ground to APU, APU to engine generator).
- 2. If preflight data has already been entered and the anomaly is suspected (e.g. an unanticipated power transfer occurred), normal operation can be restored by maintenance personnel as advised in the Boeing maintenance TIP sheets 757 MT 34-032 and 767 MT 34-036 dated 06 Aug 99.
- If this occurs while airborne, the discrepancy should be documented for maintenance action.

Administrative Information

Insert this bulletin behind the Operations Manual Bulletin Record page in Volume 1 of your Operations Manual. Amend the Operations Manual Bulletin Record to show bulletin TBC-38 "In Effect" (IE).

This anomaly is corrected by Boeing Service Bulletin 767-34-0317.

Please send all correspondence regarding Operations Manual Bulletins status to one of the following addresses:

Boeing Commercial Airplanes

Commercial Aviation Services

Attn: 767 Manager, Flight Technical Data

P.O. Box 3707, M/C 20-89

Seattle, Washington, 98124-2207 USA

Telephone: (206) 662-4000

The Boeing Company Seattle, Washington 98124-2207

Number: **TBC-39**

IssueDate: February 14, 2007

Airplane Effectivity: All Airplanes

Subject: Performance Adjustments for Thrust Shortfall of PW4000 Series

Powered Airplanes with FB2B and FB2T Fans Installed

Reason: To provide subject adjustments for Operations Manual (OM)

Performance Inflight (PI) chapter in accordance with 767 Airworthiness

Directive AD 2001-01-10

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

Background Information

This bulletin advises operators of revised performance information applicable to the 767 with Pratt & Whitney PW4000 series engines equipped with FB2B or FB2T fans. Engines equipped with FB2B/FB2T (Phase 0/1) fans have been found to be subject to a shortfall in thrust at high EPR due to fan blade leading edge erosion which occurs normally in service. Engines equipped with FB2C (Phase 3) fans have been shown to be free from thrust degradation and have no shortfall in rated thrust. All PW4062 engines are equipped with FB2C (Phase 3) fans and therefore are not affected by this bulletin.

Engine Identification:

On each airplane, each engine's model designation must be established. Listed below are the model designations as they appear on the dataplate for engines with a hardware configuration that includes an FB2C (Phase 3) fan. Unless all engines on a particular airplane have been confirmed to have FB2C (Phase 3) fans, the performance adjustments will apply.

PW4000 Engine Dataplate Model Designations For Engines With FB2C (Phase 3) Fans which are **NOT** Affected by the Thrust Shortfall:

PW4052 (-3)	PW4052 (-1C)
PW4056 (-3)	PW4056 (-1C)
PW4060 (-3)	PW4060 (-1C)
PW4060A (-3)	PW4060A (-1C)
PW4060C (-3)	PW4060C (-1C)
PW4062 (-3)	PW4062 (-1C)

Operating Instructions

The following airplane performance adjustments apply when operating with one or both engines which are not equipped with FB2C (Phase 3) fans.

Reduce Long Range Cruise Maximum Operating Altitude by 800 ft.

Reduce Engine Inoperative Altitude Capability for all speeds by 1500 ft.

Reduce Gear Down Long Range Cruise Altitude Capability by 1400 ft.

Reduce Engine Inoperative Gear Down Long Range Cruise Altitude Capability by 2000 ft.

Increase Driftdown/LRC Cruise Range Capability fuel required by 2%.

Operations Manual Performance Inflight (PI) Chapter and FMC performance numbers should be adjusted accordingly.

Administrative Information

Insert this bulletin behind the Operations Manual Bulletin Record page in Volume 1 of your Operations Manual. Amend the Operations Manual Bulletin Record to show bulletin TBC-39 "In Effect" (IE).

This Operations Manual Bulletin will remain in effect as long as 767 Airworthiness Directive AD 2001-01-10 is effective. Application of the information contained herein may change if and when alternate means of compliance with the AD are granted.

Flight Crew Operations Manual Bulletin No. TBC-39, Dated February 14, 2007 (continued)

Please send all correspondence regarding Operations Manual Bulletins status to one of the following addresses:

Boeing Commercial Airplanes

Commercial Aviation Services

Attn: 767 Manager, Flight Technical Data

P.O. Box 3707, M/C 20-89

Seattle, Washington, 98124-2207 USA

Telephone: (206) 662-4000

Flight Crew Operations Manual Bulletin No. TBC-39, Dated February 14, 2007 (continued)

Intentionally Blank

The Boeing Company Seattle, Washington 98124-2207

Number: **TBC-40**

IssueDate: February 14, 2007

Airplane Effectivity: All Airplanes

Subject: PW4000 Engine Operation In Heavy Rain Or Hail

Reason: This bulletin provides information informing flight crews of temporary

recommended procedures for maintaining a minimum thrust setting of

approach idle if heavy rain or hail is encountered or anticipated.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

Background Information

In compliance with Airworthiness Directive 90-20-11, PW4000 series engines are currently limited inflight to a minimum thrust setting of approach idle. A new Airworthiness Directive 93-08-16 has been released which will restore inflight low idle operation. Boeing Service Bulletin 767-73-0041 is expected to be released in late November, 1993 providing the necessary information for this modification

However, the Boeing preferred method of operating the PW4000 series engine in very heavy rain or hail is to maintain a minimum thrust setting of approach idle. An airplane modification is planned to automatically set a minimum thrust setting of approach idle when ignition is selected to CONT. In the interim, Boeing recommends that the flight crew procedures be modified to maintain a minimum of approach idle in conditions likely to result in very heavy rain or hail encounter. Increasing engine RPM to approach idle will assure satisfactory engine operation.

Operating Instructions

Flights should be conducted to avoid thunderstorm activity by over flight or circumnavigation. To the maximum extent possible, heavy rain or hail should also be avoided. Weather radar, pilot reports, and flight crew observations may be used by the flight crew to determine when heavy rain or hail is anticipated. Should flight in heavy rain or hail be encountered or anticipated, accomplish the following procedure:

Set a minimum of 50 % N1 at or above 10,000 ft, 45% N1 below 10,000 ft except for landing.

Note: In heavy precipitation, engine parameter fluctuations may occur,

Note: In heavy precipitation, engine parameter fluctuations may occur particularly a noticeable drop in EGT. Engine parameters will return to normal immediately upon leaving the area of heavy precipitation.

Administrative Information

Insert this bulletin behind the Operations Manual Bulletin Record page in Volume 1 of your Operations Manual. Amend the Operations Manual Bulletin Record to show bulletin TBC-40 "In Effect" (IE).

This Operations Manual Bulletin will be canceled after Boeing is notified that all affected airplanes in the operators fleet have been modified by Boeing Service Bulletin 767-73-0044.

Flight Crew Operations Manual Bulletin No. TBC-40, Dated February 14, 2007 (continued)

Please send all correspondence regarding Operations Manual Bulletins status to one of the following addresses:

Boeing Commercial Airplanes

Commercial Aviation Services

Attn: 767 Manager, Flight Technical Data

P.O. Box 3707, M/C 20-89

Seattle, Washington, 98124-2207 USA

Telephone: (206) 662-4000

Flight Crew Operations Manual Bulletin No. TBC-40, Dated February 14, 2007 (continued)

Intentionally Blank

The Boeing Company Seattle, Washington 98124-2207

Number: **TBC-41**

IssueDate: February 14, 2007

Airplane Effectivity: All Airplanes

Subject: PW4000 Engine Idle Modification

Reason: This bulletin provides information informing flight crews of temporary

recommended procedures for descent planning.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

Background Information

Recent test cell and inflight testing have revealed a potential for engine surges following rapid, re-application of full power after several minutes operation at minimum idle. Further, ground and flight testing have shown no occurrence of this anomaly when inflight engine idle is limited to approach idle. This condition has not been reported by any operator as an in-service problem.

When Boeing Service Bulletin 767-73-0033 is incorporated, the engine fuel control system limits the inflight idle to approach idle, This change affects the FMC descent forecast which must be modified by the crew prior to descent. There is no impact on takeoff or landing performance and a small change in trip fuel.

Boeing Service Bulletin 767-73-0041 enables returning to inflight idle settings.

Operating Instructions

To assist in forecasting an accurate descent path in-flight, 30 minutes, or not less than 50 miles, prior to top of descent, the flight crew should enter on the Descent Forecast Page on the FMC, a TAI/ON altitude equal to the top of descent altitude until Boeing Service Bulletin 767-73-0041 is incorporated.

Administrative Information

Insert this bulletin behind the Operations Manual Bulletin Record page in Volume 1 of your Operations Manual. Amend the Operations Manual Bulletin Record to show bulletin TBC-41 "In Effect" (IE).

This Operations Manual Bulletin will be canceled after Boeing is notified that all affected airplanes in the operators fleet have been modified by Boeing Service Bulletin 767-73-0041.

Please send all correspondence regarding Operations Manual Bulletins status to one of the following addresses:

Boeing Commercial Airplanes

Commercial Aviation Services

Attn: 767 Manager, Flight Technical Data

P.O. Box 3707, M/C 20-89

Seattle, Washington, 98124-2207 USA

Telephone: (206) 662-4000

The Boeing Company Seattle, Washington 98124-2207

Number: TBC-42

IssueDate: February 14, 2007

Airplane Effectivity: All Airplanes

Subject: Unscheduled In Motion Brake Application

Reason: This bulletin provides information informing flight crews of temporary

recommended procedures for arming autobrakes.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

Background Information

Several incidents of unscheduled in motion brake application while positioning the autobrakes selector to RTO have been reported.

Operating Instructions

Pending completion of Boeing Service Bulletin 767-32-0057, it is suggested that flight crews comply with the published Boeing procedural sequence and select RTO before taxi. In addition, it is recommended that RTO be selected only when the airplane is not in motion to preclude any possibility of interference with the pushback operation.

Administrative Information

Insert this bulletin behind the Operations Manual Bulletin Record page in Volume 1 of your Operations Manual. Amend the Operations Manual Bulletin Record to show bulletin TBC-42 "In Effect" (IE).

This Operations Manual Bulletin will be canceled after Boeing is notified that all affected airplanes in the operators fleet have been modified by Boeing Service Bulletin 767-32-0057.

Flight Crew Operations Manual Bulletin No. TBC-42, Dated February 14, 2007 (continued)

Please send all correspondence regarding Operations Manual Bulletins status to one of the following addresses:

Boeing Commercial Airplanes

Commercial Aviation Services

Attn: 767 Manager, Flight Technical Data

P.O. Box 3707, M/C 20-89

Seattle, Washington, 98124-2207 USA

Telephone: (206) 662-4000

The Boeing Company Seattle, Washington 98124-2207

Number: **TBC-43**

IssueDate: February 14, 2007

Airplane Effectivity: All Airplanes

Subject: Uncommanded Autopilot Engagement, Flight Mode Changes, And

IAS/MACH Window Speed Changes

Reason: To advise flight crews of the possibility of uncommanded autopilot

engagement, flight mode changes, and IAS/Mach Window speed changes, and provide recommended temporary instructions for these

situations

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

Background Information

UNCOMMANDED AUTOPILOT ENGAGEMENT AND FLIGHT MODE **CHANGES**

Boeing has received reports from operators of uncommanded autopilot engagement and flight mode changes. The reports document at least one rejected takeoff and one undesired heading change. Engineering investigation has determined these anomalies are caused by faulty MCP push-button switches installed during production or subsequent component repair. Intermittent switch malfunction can cause this anomaly without pilot action. The normal means for disengaging the autopilot, Autopilot Disengage Switches and the Autopilot Disengage Bar, are unaffected by this anomaly and operate normally.

Alert Service Bulletin SB 767-22A0092 corrects these anomalies.

UNCOMMANDED IAS/MACH WINDOW SELECTED SPEED CHANGES

Boeing has also received reports from operators of unexpected transition from selected speed to 0.80 Mach upon multiple channel autopilot engagement during automatic approach, and upon autopilot disengagement. Under these conditions, the selected IAS/MACH Window speed changes to 0.80 Mach, requiring pilot intervention to regain airspeed control. Investigation has determined these anomalies occur only with older flight control computers (FCC S241T100-101 thru 109 and S241T100-131 thru 133).

Alert Service Bulletin SB 767-22A0092 corrects these anomalies.

Operating Instructions

UNCOMMANDED AUTOPILOT ENGAGEMENT

Flight crews should closely monitor ADI flight mode annunciations for autopilot status, and be prepared to respond to uncommanded autopilot engagement during critical phases of flight, including takeoff. Uncommanded autopilot engagement can be corrected by disengaging the autopilot.

UNCOMMANDED FLIGHT MODE CHANGES

Flight crews should closely monitor ADI flight mode annunciations for autothrottle, roll, and pitch status, and be prepared to respond to uncommanded mode changes during critical phases of flight, including takeoff. Uncommanded flight mode changes can be corrected by selecting the desired mode on the MCP.

UNCOMMANDED IAS/MACH WINDOW SPEED CHANGES

Flight crews should closely monitor command speed bug and be prepared to respond to uncommanded changes to 0.80 Mach under the following conditions:

- multiple channel autopilot engagement during automatic approach
- autopilot disengagement.

If the command speed changes to 0.80 Mach under either condition; disconnect the autothrottle, push the IAS/MACH Select Switch to change IAS/MACH Window display to IAS, then set desired speed in the IAS/MACH Window. After resetting speed, the autothrottle may be reconnected.

Administrative Information

Insert this bulletin behind the Operations Manual Bulletin Record page in Volume 1 of your Operations Manual. Amend the Operations Manual Bulletin Record to show bulletin TBC-43 "In Effect" (IE).

This Operations Manual Bulletin will be canceled after Boeing is notified that all affected airplanes in the operators fleet have been modified by Boeing Alert Service Bulletin SB 767-22A0092.

Flight Crew Operations Manual Bulletin No. TBC-43, Dated February 14, 2007 (continued)

Please send all correspondence regarding Operations Manual Bulletins status to one of the following addresses:

Boeing Commercial Airplanes

Commercial Aviation Services

Attn: 767 Manager, Flight Technical Data

P.O. Box 3707, M/C 20-89

Seattle, Washington, 98124-2207 USA

Telephone: (206) 662-4000

Flight Crew Operations Manual Bulletin No. TBC-43, Dated February 14, 2007 (continued)

Intentionally Blank

The Boeing Company Seattle, Washington 98124-2207

Number: TBC-44

IssueDate: February 14, 2007

Airplane Effectivity: All Airplanes

Subject: Uncommanded CDU Page Changes

Reason: This bulletin provides information for flight crews regarding FMC

anomaly.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

Background Information

On airplanes with PEGASUS FMC installed, crews may experience an uncommanded page change on the CDU.

This anomaly appears on airplanes with an earlier version of the PEGASUS FMC installed. The earlier version can be identified by the OP PROGRAM part number displayed on the IDENT page:

• 3413-HNP-02C-03

Operating Instructions

Select the desired page appropriate for phase of flight.

Administrative Information

Insert this bulletin behind the Operations Manual Bulletin Record page in Volume 1 of your Operations Manual. Amend the Operations Manual Bulletin Record to show bulletin TBC-44 "In Effect" (IE).

Flight Crew Operations Manual Bulletin No. TBC-44, Dated February 14, 2007 (continued)

This anomaly will be corrected by Boeing Service Bulletin 767-34-0291 scheduled to be available April 1, 1999. This Operations Manual Bulletin will be canceled after Boeing is notified that all affected airplanes in the operators fleet have been modified.

Please send all correspondence regarding Operations Manual Bulletins status to one of the following addresses:

Boeing Commercial Airplanes

Commercial Aviation Services

Attn: 767 Manager, Flight Technical Data

P.O. Box 3707, M/C 20-89

Seattle, Washington, 98124-2207 USA

Telephone: (206) 662-4000

The Boeing Company Seattle, Washington 98124-2207

Number: **TBC-45**

IssueDate: February 14, 2007

Airplane Effectivity: All Airplanes

Subject: Use of Manual Trim for Flap 1 Takeoff

Reason: This bulletin provides information providing flight crews with interim

operating instructions for setting stabilizer trim for a Flap 1 takeoff.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

Background Information

A dual position nose down electric trim limit switch was incorporated by Boeing Service Bulletins 767-27-0052 and 767-27A0071 and in production on airplane line number 183 and on. The purpose of this modification was to limit nose down stabilizer trim to 1.5 units with the flaps up and to .5 units with the flaps down.

Since flap position is sensed from the position of the trailing edge flaps, the flight crew may be unable to electrically set the stabilizer trim forward of 1.5 units when using Flap 1 (leading edge only).

Future revision of the above Service Bulletins will be issued to change the flap position sensor to the leading edge flaps which will set the stabilizer limit switch to .5 units for all flap down conditions.

Operating Instructions

Pending incorporation of the revised Service Bulletins, flight crews may be required to use the Stabilizer Trim Levers when selecting stab trim positions between 1.5 and .5 units for a Flap 1 takeoff.

Administrative Information

Insert this bulletin behind the Operations Manual Bulletin Record page in Volume 1 of your Operations Manual. Amend the Operations Manual Bulletin Record to show bulletin TBC-45 "In Effect" (IE).

This Operations Manual Bulletin will be canceled after Boeing is notified that all affected airplanes in the operators fleet have been modified by Boeing Service Bulletins 767-27A0071 R2 and 767-27-0052 R2.

Please send all correspondence regarding Operations Manual Bulletins status to one of the following addresses:

Boeing Commercial Airplanes

Commercial Aviation Services

Attn: 767 Manager, Flight Technical Data

P.O. Box 3707, M/C 20-89

Seattle, Washington, 98124-2207 USA

Telephone: (206) 662-4000

The Boeing Company Seattle, Washington 98124-2207

Number: TBC-46

IssueDate: February 14, 2007

Airplane Effectivity: All Airplanes

Subject: VNAV Descent to Holding Altitude

Reason: This bulletin provides information for flight crews regarding an FMC

anomaly.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

Background Information

An operator has reported incidents of VNAV incorrectly allowing descent through the selected MCP altitude. This may occur while descending enroute to a holding pattern. When a VNAV descent is in progress and an altitude constraint is entered in 1R on the HOLD page, the altitude constraint will be displayed in large font on the respective HOLD AT line on the LEGS page. This condition results in the altitude constraint being placed on the HOLD, not necessarily on the waypoint. In some cases, VNAV may allow the airplane to descend below the constraint / HOLD altitude, even if the MCP window is set at the HOLD altitude.

A corresponding anomaly does not exist while the airplane is in a climb. While performing a VNAV climb to a holding pattern, the airplane will not climb through the MCP altitude.

This anomaly has been verified by Boeing and exists in the 200K, 700K, 1-Meg Non PIP FMCs. The anomaly will not occur on those FMCs which incorporate the VNAV ALT mode.

The pilot can identify the applicable FMC by reference to Line 5 on the IDENT page. The applicable FMC will show DRAG FACTOR on Line 5L and F-F Factor (fuel flow factor) on Line 5R.

For information purposes, the non-applicable FMCs will show DRAG/FF (drag and fuel flow factor) on Line 5L and CO DATA on Line 5R (PIP FMC) or OPC on Line 5L and DRAG/FF on Line 5R (PEGASUS). The installed CDU does not provide a reliable indication of the installed FMC because some airplanes have been retrofitted with PIP or PEGASUS FMCs while retaining the basic CDU.

Operating Instructions

When directed to descend and hold at a specified altitude at a waypoint in the route, enter the altitude constraint on the LEGS page. This can be done prior to or after creating the HOLD but must be done on the LEGS page.

Administrative Information

Insert this bulletin behind the Operations Manual Bulletin Record page in Volume 1 of your Operations Manual. Amend the Operations Manual Bulletin Record to show bulletin TBC-46 "In Effect" (IE).

This anomaly will be corrected by Boeing Service Bulletin 767-34-0301 or 767-34-0302 or 767-34-0303. Refer to individual Service Bulletin for applicability.

Please send all correspondence regarding Operations Manual Bulletins status to one of the following addresses:

Boeing Commercial Airplanes

Commercial Aviation Services

Attn: 767 Manager, Flight Technical Data

P.O. Box 3707, M/C 20-89

Seattle, Washington, 98124-2207 USA

Telephone: (206) 662-4000

The Boeing Company Seattle, Washington 98124-2207

Number: TBC-47

IssueDate: February 14, 2007

Airplane Effectivity: All Airplanes

Subject: CDU Page Changes During Engine Inoperative Operation

Reason: This bulletin provides information informing flight crews of temporary

recommended procedures for determining the engine out cruise speed.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

Background Information

The FMC operating programs listed immediately below will not allow the CDU display to automatically switch from ACT ENG OUT CRZ D/D to ACT ENG OUT CRZ following single engine driftdown unless VNAV is engaged. Selecting VNAV in single engine cruise will cause the CDU to display ACT ENG OUT CRZ.

	Operating Programs	
PS4038178-131	PS4052520-132	PS4052520-136
PS4038178-132	PS4052520-133	PS4052520-137
PS4038178-133	PS4052520-134	PS4052520-140
PS4052520-123	PS4052520-135	PS4052970-940

Incorporation of Boeing Service Bulletin 767-34-0103 will correct this problem for General Electric powered airplanes.

Incorporation of Boeing Service Bulletin 767-34-0079 will correct this problem for Pratt & Whitney powered airplanes.

Operating Instructions

During engine inoperative operation, engine out LRC speed may be determined using the CDU if VNAV is engaged. IF VNAV is not engaged, use the QRH or other approved source to determine engine out long range cruise speed.

Administrative Information

Insert this bulletin behind the Operations Manual Bulletin Record page in Volume 1 of your Operations Manual. Amend the Operations Manual Bulletin Record to show bulletin TBC-47 "In Effect" (IE).

This Operations Manual Bulletin will be canceled after Boeing is notified that all affected airplanes in the operators fleet have been modified by Boeing Service Bulletin 767-34-0103 or 767-34-0079.

Please send all correspondence regarding Operations Manual Bulletins status to one of the following addresses:

Boeing Commercial Airplanes

Commercial Aviation Services

Attn: 767 Manager, Flight Technical Data

P.O. Box 3707, M/C 20-89

Seattle, Washington, 98124-2207 USA

Telephone: (206) 662-4000

The Boeing Company Seattle, Washington 98124-2207

Number: TBC-48

IssueDate: February 14, 2007

Airplane Effectivity: All Airplanes

Subject: CF6-80C2 FADEC Engine Operation In Heavy Rain Or Hail

Reason: This bulletin provides information informing flight crews of temporary

recommended procedures for maintaining a minimum thrust setting of approach idle if heavy rain or hail is encountered or anticipated.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

Background Information

GE Aircraft Engines has conducted hail ingestion testing to determine the capability of the CF6-80C2 engine to meet ingestion criterion recommended by the Aerospace Industries Association following their "Investigation of Power Loss and Instability in Inclement Weather." Based upon this testing, GE has concluded that the Power Management Control (PMC) equipped engines have sufficient capability under all conditions; however, the FADEC equipped engines, because of their lower minimum idle speed in flight, and different Variable Bypass Valve (VBV) schedules, may have less than the desired capability at engine speeds below approach idle.

Flights through clouds, drizzle, light rain or snow will have no effect on engine operation assuming current procedures for these conditions are observed. However, flight through heavy rain or hail can cause engine spool down or flame out if thrust settings are below approach idle. To clarify weather conditions of concern, very heavy precipitation is rarely encountered except in thunderstorms.

An airplane modification is planned to automatically set a minimum thrust setting of approach idle when ignition is selected to CONT. In the interim, Boeing recommends that the flight crew procedures be modified to maintain a minimum of approach idle in conditions likely to result in very heavy rain or hail encounter. Increasing engine RPM to approach idle will assure satisfactory engine operation in the worst case conditions.

Operating Instructions

Flights should be conducted to avoid thunderstorm activity by over flight or circumnavigation. To the maximum extent possible, heavy rain or hail should also be avoided. Weather radar, pilot reports, and flight crew observations may be used by the flight crew to determine when heavy rain or hail is anticipated. Should flight in heavy rain or hail be encountered or anticipated, accomplish the following procedure:

CF6-80C2 SERIES FADEC ENGINE OPERATION IN HEAVY RAIN OR HAIL Condition: Heavy rain or hail encountered or anticipated.

If TAT is 10 degrees C or below:

ENGINE ANTI-ICE-----ON

[Maintains a minimum thrust setting of approach idle and provides continuous ignition.]

If TAT is above 10 degrees C:

AUTOTHROTTLE (If engaged) ----- DISENGAGE

Autothrottle may remain engaged during takeoff, climb and cruise.

[Prevents autothrottle thrust reduction below desired setting during descent.]

THRUST LEVERS ----- SET

Set a minimum of 50% N1 at or above 10,000 ft, 45% N1 below 10,000 ft except for landing.

Note: In heavy precipitation, engine parameter fluctuations may occur, particularly a noticeable drop in EGT. Engine parameters will return to normal immediately upon leaving the area of heavy precipitation.

Administrative Information

Insert this bulletin behind the Operations Manual Bulletin Record page in Volume 1 of your Operations Manual. Amend the Operations Manual Bulletin Record to show bulletin TBC-48 "In Effect" (IE).

This Operations Manual Bulletin will be canceled after Boeing is notified that all affected airplanes in the operators fleet have been modified by Boeing Service Bulletin 767-73-0043.

Please send all correspondence regarding Operations Manual Bulletins status to one of the following addresses:

Boeing Commercial Airplanes Commercial Aviation Services

Attn: 767 Manager, Flight Technical Data

P.O. Box 3707, M/C 20-89

Seattle, Washington, 98124-2207 USA

Telephone: (206) 662-4000

Flight Crew Operations Manual Bulletin No. TBC-48, Dated February 14, 2007 (continued)

Intentionally Blank

The Boeing Company Seattle, Washington 98124-2207

Number: TBC-49

IssueDate: February 14, 2007

Airplane Effectivity: All Airplanes

Subject: Erroneous ILS Receiver Outputs

Reason: To advise operators of possible erroneous outputs from the Allied Signal

"Quantum" ILS receivers.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

Background Information

A potential fault within the Allied Signal "Quantum" ILS receiver may cause either an erroneous localizer deviation indication or an erroneous glideslope deviation indication on the Standby ADI or on EFIS. The localizer and glideslope deviation indication on the opposite EFIS is not affected if this fault occurs in a single ILS receiver.

The Autopilot Flight Director System (AFDS) compares signals from the three ILS receivers and will not use signals from a faulty receiver. No EFIS flags are accompanied by the AFDS exclusion of a faulty ILS receiver; the AFDS simply ignores the receiver which is in disagreement. The Autoland Status Annunciator (ASA) will display "NO LAND 3", if installed, when the AFDS senses a faulty receiver. The AFDS will continue with the approach with no degradation in autopilot or flight director performance. In this case, the flight crew can expect the ASA "LAND 2" or "AUTOLAND 2", as installed, to display. If the airplane is dispatched with one inoperable ILS receiver, and a subsequent ILS receiver fault occurs, the ASA "NO AUTOLND" or "MANUAL LND", as installed, will display. The flight director command bar(s) will disappear from view.

Operating Instructions

This Operations Manual bulletin applies to all airplanes equipped with Allied Signal "Quantum" ILS receiver (P/N 066-50006-0101).

If both EFI Instrument Source Select switches are in the ALTN position, do not attempt any departure, approach, or missed approach utilizing a localizer or glideslope based navigation radio station. This will preclude the flight crew from potentially being presented with faulty localizer or glideslope deviation raw data in the event of a center ILS receiver fault. Such departure, approach or missed approaches include, but are not limited to: ILS, IGS, Localizer-only, Localizer-Backcourse, LDA and SDF-type instrument procedures.

While cross-checking the Captain's and First Officer's EFIS, if a disagreement is noted between the two ILS raw data indications during an approach, attempt to isolate the faulty signal as described below:

Note: The following should only be attempted if time permits. It should be completed prior to 1500 feet AGL and prior to the final approach fix:

- The Pilot Not Flying (PNF) should push the EFI Instrument Source Select switch to the ALTN position.
- If the Captain's and First Officer's ILS raw data indications agree, continue the approach and landing.
- If the ILS raw data indications disagree, the PNF should return the EFI Instrument Source Select switch to the normal position, and the Pilot Flying (PF) should push the EFI Instrument Source Select switch to the ALTN position.
- If the Captain's and First Officer's displays agree, continue with the approach and landing. Otherwise, initiate a go-around unless visual contact with the runway has been established.

If a go-around has been initiated, it is possible to inhibit the display of an erroneous deviation indication by placing the ILS in the "parked" mode. This can be accomplished by rotating the ILS Frequency Selector until "----" is displayed on the ILS Frequency Indicator. The ILS Frequency Selector should be left in this position for a minimum of one minute before re-tuning the radio for the approach. A second approach can be attempted using normal procedures.

Administrative Information

Insert this bulletin behind the Operations Manual Bulletin Record page in Volume 1 of your Operations Manual. Amend the Operations Manual Bulletin Record to show bulletin TBC-49 "In Effect" (IE).

This anomaly is corrected by Boeing Service Bulletin 767-34A0269.

Flight Crew Operations Manual Bulletin No. TBC-49, Dated February 14, 2007 (continued)

Please send all correspondence regarding Operations Manual Bulletins status to one of the following addresses:

Boeing Commercial Airplanes

Commercial Aviation Services

Attn: 767 Manager, Flight Technical Data

P.O. Box 3707, M/C 20-89

Seattle, Washington, 98124-2207 USA

Telephone: (206) 662-4000

Flight Crew Operations Manual Bulletin No. TBC-49, Dated February 14, 2007 (continued)

Intentionally Blank

The Boeing Company Seattle, Washington 98124-2207

Number: TBC-50

IssueDate: February 14, 2007

Airplane Effectivity: All Airplanes

Subject: Flight Management Computer (FMC) Resynchronizations

Reason: This bulletin provides information providing flight crews with interim

operating instructions to reduce the number of FMC resynchronizations.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

Background Information

Reports have been received of excessive resynchronizations (resynchs) following entry of the arrival procedure. The majority of resynchs occurred in a tailwind condition shortly after entering an arrival procedure and the estimated thermal anti-ice (TAI) ON altitude. An investigation revealed that the majority of the resynchs were caused by a disagreement between the FMC descent paths.

Resynchs are a normal process used to restore the FMCs to identical states. However, they can be irritating to flight crews when they frequently occur during the accomplishment of normal procedures. When two FMCs are operating, both FMCs operate independently, but are required to maintain data sychronization. This is accomplished by the FMCs comparing data and resynching if the data is outside of established tolerances. Descent path comparisons occur every 5 minutes during climb, every 5 to 10 seconds in cruise, and immediately following any route modification.

A flight plan or vertical profile modification results in multiple recomputations of the descent path. The computations are performed asynchronously by the two FMCs and use the latest available wind data. It is possible, because of the asynchronous computations, that each FMC may use a different wind value. This may result in different values being computed for some parameters, such as speeds, causing a descent path miscompare. In FMCs with disc memories, the second consecutive miscomparison causes a resynch if the airplane is within 100 miles of the top of descent point. Entry of a non-executed modification, such as a TAI ON altitude, is more likely to cause miscomparisons since the timing of the initiation of the computation is less critically controlled than for an executed modification.

Descent paths are calculated using forecast and predicted wind. Forecast wind is displayed on the PERF INIT page cruise wind line and on the RTE DATA and DES FORECAST pages. Predicted wind in cruise is a blending of the actual wind at the present position and the forecast wind. When near the top of descent, predicted wind becomes equal to the actual wind. The probability of a resync occurring is increased if no wind entry is made after the initial cruise wind entry on the PERF INIT page. When in cruise, if the actual wind is different from the entered wind, a difference will exist between forecast wind and predicted wind. In this condition, entry of the TAI ON altitude may cause a descent path miscomparison when the descent path is recomputed, which may in turn result in a resynch. If the TAI ON altitude entry is made shortly after the initial entry of the descent path, the probability of a resynch occurring may be increased further.

Operating Instructions

For many reasons, it is operationally beneficial to enter the arrival procedure early in the flight and make accurate wind forecast entries. If the forecast changes, new entries should be made.

To reduce resynchs near the top of descent:

- Enter an arrival procedure, or a descent waypoint altitude constraint, as early in the flight as possible.
- Prior to entry or deletion of TAI ON altitude, check that the cruise wind on PERF INIT page equals actual cruise wind. If not equal, enter actual wind direction and speed.

Administrative Information

Insert this bulletin behind the Operations Manual Bulletin Record page in Volume 1 of your Operations Manual. Amend the Operations Manual Bulletin Record to show bulletin TBC-50 "In Effect" (IE).

Flight Crew Operations Manual Bulletin No. TBC-50, Dated February 14, 2007 (continued)

Please send all correspondence regarding Operations Manual Bulletins status to one of the following addresses:

Boeing Commercial Airplanes

Commercial Aviation Services

Attn: 767 Manager, Flight Technical Data

P.O. Box 3707, M/C 20-89

Seattle, Washington, 98124-2207 USA

Telephone: (206) 662-4000

Flight Crew Operations Manual Bulletin No. TBC-50, Dated February 14, 2007 (continued)

Intentionally Blank

The Boeing Company Seattle, Washington 98124-2207

Number: TBC-51

IssueDate: February 14, 2007

Airplane Effectivity: All Airplanes Subject: Loss Of FMC Operation

Reason: This bulletin provides information informing flight crews of temporary

recommended procedures for manually tuning the VOR/DME's.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

Background Information

During a recent Boeing flight test both FMC's shutdown after multiple resync attempts. It has been determined that this anomaly may occur with some FMC's when both VOR/DME control panels are operated in MAN. This condition is more likely to occur with a large number of navigation aids in the data base and when flight plan changes are being made through the CDU.

In the unlikely event this problem should occur, recovery of FMC operation can be accomplished only by returning at least one of the VOR/DME control panels to AUTO, and pulling both FMC-L and FMC-R circuit breakers for a minimum of 15 seconds before resetting.

Boeing Service Bulletin 767-34-0079 corrects this problem for Pratt and Whitney powered airplanes.

Boeing Service Bulletin 767-34-0103 corrects this problem for General Electric powered airplanes.

Operating Instructions

If it is desired to tune both VOR's manually during departure or enroute, at least one of the VOR's should be tuned remotely through the CDU, so that both AUTO/MANUAL Select Switches on the VOR/DME control panels are not in MAN at the same time.

The above recommendations also apply during approaches whenever practical, except for VOR approaches, where current procedures remain unchanged. For VOR approaches, the pilot flying should remain in MAP mode, if map data is acceptable. One pilot is required to display raw data by selecting VOR mode and manually tuning the VOR frequency. The other pilot should preselect the VOR frequency on his VOR/DME control panel and return to AUTO mode.

Administrative Information

Insert this bulletin behind the Operations Manual Bulletin Record page in Volume 1 of your Operations Manual. Amend the Operations Manual Bulletin Record to show bulletin TBC-51 "In Effect" (IE).

This Operations Manual Bulletin will be canceled after Boeing is notified that all affected airplanes in the operators fleet have been modified by Boeing Service Bulletin 767-34-0079 or 767-34-0103.

Please send all correspondence regarding Operations Manual Bulletins status to one of the following addresses:

Boeing Commercial Airplanes

Commercial Aviation Services

Attn: 767 Manager, Flight Technical Data

P.O. Box 3707, M/C 20-89

Seattle, Washington, 98124-2207 USA

Telephone: (206) 662-4000

The Boeing Company Seattle, Washington 98124-2207

Number: TBC-52

IssueDate: February 14, 2007

Airplane Effectivity: All Airplanes

Subject: VNAV PATH Altitude Overshoot

Reason: To inform crews that during climb the VNAV PATH mode can

temporarily overshoot its programmed altitude.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

Background Information

Recent testing has shown that during VNAV climbs (using either flight director or autopilot), the VNAV PATH mode may temporarily overshoot the programmed altitude. This can occur during level offs at either waypoint altitude constraints or at the cruise altitude entered on the VNAV cruise page. Altitude overshoots of as much as 500 feet have been observed before the airplane returned to the programmed altitude.

These overshoots are caused by two factors:

- an unannunciated internal FMC performance verification/update of the current VNAV descent path, or
- a flight crew execution of a FMC modification.

If either of these events happens at or near the altitude where the FMC transitions to VNAV PATH for the level off, mode transition to VNAV PATH is delayed, and the airplane will overshoot the programmed altitude by an amount proportional to the climb rate

Setting the MCP altitude to each intermediate VNAV waypoint altitude constraint will assure that level offs below the final cruise altitude will occur using the ALT CAP mode, and the overshoot will not occur. However, the final VNAV cruise altitude is always captured in VNAV PATH, and the overshoot will be possible, even if the MCP altitude is set to the final cruise value.

This anomaly only occurs with the following FMCs installed:

- S242T102-226
- S242T102-330
- PS4052970-944

Operating Instructions

Avoid executing any FMC modifications when approaching either a waypoint altitude constraint or the final cruise altitude.

All intermediate waypoint altitude restrictions should be set on the MCP.

During all level offs in the VNAV PATH mode, be prepared to disconnect the autopilot/flight director and manually level the airplane as required.

Administrative Information

Insert this bulletin behind the Operations Manual Bulletin Record page in Volume 1 of your Operations Manual. Amend the Operations Manual Bulletin Record to show bulletin TBC-52 "In Effect" (IE).

This anomaly is corrected by Boeing Service Bulletin 767-34-0266 or 767-34-0267. Refer to individual Service Bulletin for applicability.

Please send all correspondence regarding Operations Manual Bulletins status to one of the following addresses:

Boeing Commercial Airplanes

Commercial Aviation Services

Attn: 767 Manager, Flight Technical Data

P.O. Box 3707, M/C 20-89

Seattle, Washington, 98124-2207 USA

Telephone: (206) 662-4000

The Boeing Company Seattle, Washington 98124-2207

Number: TBC-53

IssueDate: February 14, 2007

Airplane Effectivity: All Airplanes
Subject: Engine Inoperative FMC Data

Reason: This bulletin provides information informing flight crews of temporary

recommended procedures for drift down subsequent engine out cruise

for use with the FMC.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

Background Information

Some FMC operating programs do not provide accurate engine out performance data following engine shutdown. VNAV should not be used for driftdown and subsequent engine out cruise operation and flight planning with the following operating programs installed:

FMC OPERATING PROGRAM

PS4038178-103	PS4038178-130
PS4038178-122	PS4052520-121
PS4038178-124	PS4052520-122
PS4038178-126	PS4052520-130
PS4038178-128	PS4052520-131
PS4038178-129	

Incorporation of Boeing Service Bulletin 767-34-0079 will correct this problem for Pratt and Whitney powered airplanes.

Incorporation of Boeing Service Bulletin 767-34-0103 will correct this problem for General Electric powered airplanes.

Operating Instructions

Following completion of the Engine Failure/Shutdown checklist, perform the following procedure in lieu of engine inoperative VNAV descent:

THRUST LEVER (Operating engine) ----- SET

Adjust thrust lever to obtain maximum continuous thrust.

IAS/MACH SELECTOR -----.SET

Set airspeed to driftdown speed from QRH or other approved performance source.

ALTITUDE SELECTOR ----- SET

Set level off altitude using 1 Engine Inoperative Driftdown Speed/Level Off table, or the Altitude Capability LRC table in the QRH, or other approved performance source.

Allow the airspeed to bleed off to driftdown airspeed, then descend in FLCH at that speed until the rate of descent decreases to approximately 200 fpm. Use V/S to maintain this rate of descent to ensure altitude capture, then adjust thrust to maintain desired cruise speed. Do not use the FMC time or fuel predictions for flight planning. Use the Performance section of the Operations Manual, or other approved source for flight planning data.

Administrative Information

Insert this bulletin behind the Operations Manual Bulletin Record page in Volume 1 of your Operations Manual. Amend the Operations Manual Bulletin Record to show bulletin TBC-53 "In Effect" (IE).

This Operations Manual Bulletin will be canceled after Boeing is notified that all affected airplanes in the operators fleet have been modified by Boeing Service Bulletin 767-34-0079 or 767-34-0103. Refer to the individual Service Bulletin for applicability.

Please send all correspondence regarding Operations Manual Bulletins status to one of the following addresses:

Boeing Commercial Airplanes

Commercial Aviation Services

Attn: 767 Manager, Flight Technical Data

P.O. Box 3707, M/C 20-89

Seattle, Washington, 98124-2207 USA

Telephone: (206) 662-4000

The Boeing Company Seattle, Washington 98124-2207

Number: TBC-54

IssueDate: February 14, 2007

Airplane Effectivity: All Airplanes

Subject: EICAS Indication Of Impending Engine Fuel Filter Bypass

Reason: This bulletin informs flight crews of the requirement to check EICAS

status messages for indication of impending engine fuel filter bypass.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

Background Information

Fuel contamination can lead to fuel starvation and engine power loss. Each engine fuel system is equipped with a filter to remove contaminants, and a pressure relief valve to allow bypass of an obstructed filter element. A pressure differential switch provides EICAS indication of filter element obstruction prior to pressure relief valve actuation and filter bypass.

Impending fuel filter bypass is indicated only by the EICAS message L or R ENG FUEL FILT. On some airplanes, the EICAS message is an advisory level, however, on other airplanes it is only a status level message. A recent finding by the US Federal Aviation Administration (FAA) determined a status level message does not provide appropriate indication of this condition. Until the updated EICAS computers are installed in all airplanes, FAA Airworthiness Directive AD 96-07-09 requires flight crews to check EICAS for the status message L or R ENG FUEL FILT. If other status level messages are observed as a consequence of complying with this Airworthiness Directive, the flight crew may deal with them in accordance with the appropriate operator policy.

This bulletin contains instructions for checking status messages.

Operating Instructions

If the L or R ENG FUEL FILT advisory message is displayed, refer to the Fuel Filter non-normal procedure in the QRH.

If the EICAS status cue is displayed any time after engine start, check the status display for the status message L or R ENG FUEL FILT. If a L or R ENG FUEL FILT status message is displayed, refer to the existing Engine Fuel Filter non-normal procedure in the QRH. Specific crew action in response to single or multiple L or R ENG FUEL FILT messages is not established by Boeing or the FAA. Any crew action is left up to the individual operator policy.

This requirement will remain in effect until updated EICAS computers are installed in all airplanes.

Boeing policy on flight crew use of status messages has not changed. After engine start, any condition having adverse effect on safe continuation of the flight, requiring crew attention, will appear as an EICAS alert message (warning, caution or advisory). Operators are encouraged to upgrade the EICAS computers in existing fleet airplanes.

Administrative Information

Insert this bulletin behind the Operations Manual Bulletin Record page in Volume 1 of your Operations Manual. Amend the Operations Manual Bulletin Record to show bulletin TBC-54 "In Effect" (IE).

The updated EICAS computers are available with Boeing Service Bulletin SB 767-31-0086 or SB 767-31-0091 or SB 767-31-0099 or SB 767-31-0100. Refer to the individual Service Bulletin for applicability.

This Operations Manual Bulletin will be canceled after Boeing is notified that all affected airplanes in the operators fleet have been modified.

Please send all correspondence regarding Operations Manual Bulletins status to one of the following addresses:

Boeing Commercial Airplanes

Commercial Aviation Services

Attn: 767 Manager, Flight Technical Data

P.O. Box 3707, M/C 20-89

Seattle, Washington, 98124-2207 USA

Telephone: (206) 662-4000

The Boeing Company Seattle, Washington 98124-2207

Number: **TBC-55**

IssueDate: February 14, 2007

Airplane Effectivity: All Airplanes

Subject: FMC Display of ATS Datalink Messages From Previous Flights

Reason: To inform flight crews of an FMC anomaly in which old datalink

messages are displayed on the CDU.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

Background Information

An operator has reported occurrences of old Air Traffic Services (ATS) Datalink messages being displayed on the CDU. All reported events involve messages which were transmitted during the airplane's previous flight(s). For example, one crew reported being cleared to FL360 via an uplink "CLIMB TO AND MAINTAIN FL360, REPORT REACHING FL360." The flight crew left the xxxxZ ATC UPLINK page displayed on the CDU to report arrival at the new altitude. While approaching level-off, the crew noticed that the message text had changed to "CLIMB TO AND MAINTAIN FL350." They contacted ATC via HF and confirmed the original clearance. In another event, a crew noticed during preflight that all of the ATC messages on the previous flight were still displayed on the ATC LOG page.

The ATC log should automatically clear after each flight. This anomaly is allowing the old messages to remain in memory and to be displayed inappropriately.

This anomaly is only anticipated on airplanes that have:

Pegasus 2002 FMC software or earlier and

 Operational Program Configuration (OPC) option for ATS Datalink is enabled

Note: A Boeing Maintenance Tip 767 MT 34-051 will be released recommending opening both FMC circuit breakers sometime prior to each flight and then resetting them after approximately ten seconds.

Operating Instructions

The following should be performed:

- When each ATC uplink is received during flight, confirm that the uplink message text is similar to that expected and that the timestamp is within a few minutes of that expected. The timestamp is displayed in the respective uplink message page title (e.g. 1428Z ATC UPLINK). Timestamps can also be verified on the ATC LOG page.
- 2. If the message is left displayed on the CDU or re-displayed after the crew has responded to it, verify that the message and timestamp are unchanged and that the messages and timestamps displayed on the ATC LOG page are valid. If the message text or timestamps are incorrect, or any doubt exists regarding the integrity of the message, revert to voice procedures.

Example: ATC UPLINK page

Example: ATC LOG page

Administrative Information

Insert this bulletin behind the Operations Manual Bulletin Record page in Volume 1 of your Operations Manual. Amend the Operations Manual Bulletin Record to show bulletin TBC-55 "In Effect" (IE).

Pegasus 2003 FMC software will include a change to ensure that all ATS datalink messages from previous flights are erased. Boeing Service Bulletins 767-34-0389 and 767-34-0390 for upgrade to Pegasus 2003 FMC software are scheduled for release in February, 2004.

Please send all correspondence regarding Operations Manual Bulletins status to one of the following addresses:

Boeing Commercial Airplanes

Commercial Aviation Services

Attn: 767 Manager, Flight Technical Data

P.O. Box 3707, M/C 20-89

Seattle, Washington, 98124-2207 USA

Telephone: (206) 662-4000

Flight Crew Operations Manual Bulletin No. TBC-55, Dated February 14, 2007 (continued)

Intentionally Blank

The Boeing Company Seattle, Washington 98124-2207

Number: TBC-56

IssueDate: February 14, 2007

Airplane Effectivity: All Airplanes

Subject: Loss of Inertial Reference System (IRS) Input to RDMI/RMI During

Standby Power Operation

Reason: To inform affected operators of RDMI/RMI inability to automatically

select valid IRS heading data during standby power operation and provide temporary Quick Reference Handbook (QRH) replacement

pages.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

Background Information

Boeing has discovered some airplanes received an incorrect wiring configuration, which affects Radio Distance Magnetic Indicator (RDMI/RMI) operation on standby power. The incorrect wiring exists only on airplanes with production installation of Hydraulic Driven Generator (HDG) wiring provisions. This Operations Manual Bulletin is not effective for airplanes with an HDG installed.

On airplanes without an HDG installed, failure of both engine Integrated Drive Generators (IDG) combined with an Auxiliary Power Unit (APU) or APU electrical generator failure results in the main battery providing the sole source of electrical power. The standby busses are powered from the main battery and are certified to provide a minimum of 30-minutes of power to essential equipment. On some airplane configurations with the main battery and APU battery paralleled, a minimum of 90-minutes of standby electrical power is available.

Normally, the right IRU provides heading data to the captain's RDMI/RMI resulting in proper compass card and VOR-bearing pointer operation. On HDG-equipped airplanes during HDG operation, the right IRU de-powers after a 5-minute time delay with the left and center IRUs continuously remaining powered. In addition, the source input to the captain's RDMI/RMI automatically switches to the center IRU, to sustain normal operation of the RDMI/RMI during HDG operation.

On airplanes with only HDG wiring provisions and without an HDG installed, automatic IRU source switching to the captain's RDMI/RMI is not provided during standby power operation. As a result, the captain's RDMI/RMI compass card "HDG" flag and the left VOR-bearing pointer flag will display due to the loss of valid IRU heading data.

Boeing is in the process of issuing a Service Bulletin to all operators with the incorrect wiring configuration. With the Service Bulletin incorporated on the affected airplanes, the captain's RDMI/RMI will be capable of automatic selection of valid IRS heading data during operation on standby power. As an alternative to retrofitting this Service Bulletin, operators can elect to retrofit an HDG as the existing IRU wiring configuration on the affected airplanes addressed by this Operations Manual Bulletin is compatible with an HDG-equipped airplane.

Operating Instructions

Remove and replace the applicable AC BUS OFF checklist in the QRH with the checklist provided by this Operations Manual Bulletin. The revised checklist includes a step to push the first officer's IRS instrument source select switch to the ALTN position. By accomplishing this additional step during execution of the AC BUS OFF checklist, the captain's RDMI/RMI compass card and left VOR bearing pointer will continue to operate normally.

Administrative Information

Insert this bulletin behind the Operations Manual Bulletin Record page in Volume 1 of your Operations Manual. Amend the Operations Manual Bulletin Record to show bulletin TBC-56 "Incorporated" (INC).

This anomaly is corrected by Boeing Service Bulletin 767-34-0433. This Operations Manual Bulletin will be canceled after Boeing is notified that all affected airplanes in the operator's fleet have been modified.

Flight Crew Operations Manual Bulletin No. TBC-56, Dated February 14, 2007 (continued)

Please send all correspondence regarding Operations Manual Bulletins status to one of the following addresses:

Boeing Commercial Airplanes

Commercial Aviation Services

Attn: 767 Manager, Flight Technical Data

P.O. Box 3707, M/C 20-89

Seattle, Washington, 98124-2207 USA

Telephone: (206) 662-4000

Flight Crew Operations Manual Bulletin No. TBC-56, Dated February 14, 2007 (continued)

Intentionally Blank

The Boeing Company Seattle, Washington 98124-2207

Number: TBC-57

IssueDate: February 14, 2007

Airplane Effectivity: All Airplanes

Subject: Installation of Pratt & Whitney PW4000 Engines with Ring-Case

Compressor (RCC)

Reason: To inform flight crews of operational effects of PW4000 engines

equipped with Ring-Case Compressor (RCC) section.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

Background Information

Boeing and Pratt & Whitney are introducing the Ring-Case Compressor (RCC) modification to correct high power surge problems experienced with the PW4000 series engine. High power surging is the subject of Boeing Service Related Problem (SRP) 72-0024. The modification includes replacement of the basic segmented high-pressure compressor case with a new ring-style case designed to improve compressor blade tip clearance. Boeing estimates RCC-equipped engines will be intermixed with non-RCC engines in the 767 fleet for a period of four years.

Electronic Engine Control (EEC) software version SCN13 is required to optimize the engine operating characteristics of the new RCC design. The SCN13 EEC software incorporates new control logic that varies stator vane schedules and acceleration rates, but only when installed on an RCC-equipped engine. The new control logic will not be activated when SCN13 EEC software is installed on non-RCC engines and is not present in previous EEC software versions.

Due to the SCN13 EEC software control logic, noticeable differences in acceleration time between RCC and non-RCC engines can occur. Thrust asymmetry levels can be reached, which can create low airspeed directional control difficulties. However, the problem is only significant if engines are accelerated directly to the takeoff thrust setting from idle. Per the Boeing-recommended normal takeoff procedure, if engines are stabilized at approximately 1.10 EPR prior to setting takeoff thrust, asymmetry levels will be minimized and directional control problems avoided.

In addition, engines equipped with SCN13 EEC software installed exhibits reduced bleed air supply pressure. This reduction in bleed air pressure does not affect airplane systems operation with exception of responding to a forward or aft cargo compartment fire warning above 35,000 feet. If a cargo compartment fire warning occurs at airplane altitudes above 35,000 feet, the CARGO FIRE checklist contained in the QRH is revised by this Operations Manual Bulletin to include flight crew guidance to accomplish a descent to 35,000 feet or below. This will ensure sufficient bleed air supply to comply with cargo compartment smoke penetration requirements set forth under Federal Aviation Regulations.

Operating Instructions

Flight crews are reminded to follow the takeoff thrust setting practice contained in the normal Takeoff Procedure as published in Volume I of the Boeing 767 Operations Manual:

Advance thrust levers to approximately 1.10 EPR. Push EPR (THR, as installed) switch.

Stabilization at 1.10 EPR will minimize thrust asymmetry and directional control problems, which might occur during operation with an airplane intermix of RCC and non-RCC equipped engines.

Administrative Information

Insert this bulletin behind the Operations Manual Bulletin Record page in Volume 1 of your Operations Manual. Amend the Operations Manual Bulletin Record to show bulletin TBC-57 "Incorporated" (INC).

This Operations Manual Bulletin will be canceled upon operator notification of pure-fleet incorporation of Boeing Service Bulletin 767-71-0108.

Flight Crew Operations Manual Bulletin No. TBC-57, Dated February 14, 2007 (continued)

Please send all correspondence regarding Operations Manual Bulletins status to one of the following addresses:

Boeing Commercial Airplanes

Commercial Aviation Services

Attn: 767 Manager, Flight Technical Data

P.O. Box 3707, M/C 20-89

Seattle, Washington, 98124-2207 USA

Telephone: (206) 662-4000

Flight Crew Operations Manual Bulletin No. TBC-57, Dated February 14, 2007 (continued)

Intentionally Blank

Ø BOEING

Flight Crew Operations Manual Bulletin for The Boeing Company

The Boeing Company Seattle, Washington 98124-2207

Number: TBC-58

IssueDate: February 14, 2007

Airplane Effectivity: All Airplanes

Subject: Pegasus Flight Management Computer (FMC) Lock-Up Anomaly Due

to Data-Bus Communications Failure

Reason: To inform flight crews of a Pegasus-FMC anomaly resulting in the lock

up of one or both FMCs and to provide temporary operating instructions

for lock-up resolution.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

Background Information

Boeing has confirmed operator reports of in-service single and dual Pegasus-FMC lock-up events resulting from a data-bus communications anomaly. When the anomaly occurs, one or both FMCs may lock up preventing normal CDU access and control of the FMC(s). This lock-up anomaly and the information and recommended operating instructions contained in this Operations Manual Bulletin are <u>only</u> applicable to Pegasus-FMC software versions.

Operator reports indicate the most common lock-up event involves a single FMC; however, dual FMC lock-up events have also been reported. An FMC lock up is indicated by the continuous display of the "SINGLE FMC OPERATION" scratch-pad message with no response to CDU function or line-select keys and may be accompanied by display of the "L,R FMC FAIL" advisory-level EICAS alert message(s), illumination of the amber FAIL light on the CDU(s), and the amber "MAP" flag on the associated HSI display(s). In some cases, both FMCs may continue to operate normally, but no data communication or data comparison occurs between the master FMC and the spare FMC.

Honeywell is aware of this Pegasus-FMC anomaly. The planned fix to the problem is under investigation.

Operating Instructions

If the "SINGLE FMC OPERATION" scratch-pad message displays on the ground on either CDU, or both FMCs lock up as described above on the ground or inflight, a single attempt at cycling both FMC circuit breakers can be accomplished, flight conditions permitting, as follows:

Note: If in-flight, Boeing recommends the following procedure be accomplished with an autopilot and the autothrottle engaged due to the requirement of a flight crew member leaving his/her station to achieve access to the overhead circuit breaker panel.

Do not use LNAV or VNAV while attempting the following procedure.

L "FMCS CMPTR" circuit breaker (Location E9) - - - - . PULL R "FMCS CMPTR" circuit breaker (Location E30) - - - - - - PULL

Wait 20 seconds.

L "FMCS CMPTR" circuit breaker (Location E9) - - - - - PUSH

R "FMCS CMPTR" circuit breaker (Location E30) - - - - - PUSH

Wait until MENU page reappears with the "< FMC" prompt at line-select key 1L., then select the prompt by pushing line-select key 1L.

FMC ROUTE -----ENTER

Begin route entry by re-entering ORIGIN airport identifier to ensure previous route is initially deleted.

FMC PERFORMANCE DATA ------ENTER

If normal FMC operation is restored, LNAV and/or VNAV may be engaged, as needed.

The temporary procedural steps provided above should restore normal FMC operation; however, some FMC faults may preclude normal operation. If the above procedure does not restore normal FMC operation, <u>DO NOT</u> accomplish a second attempt as this may result in further systems' degradation.

If the "SINGLE FMC OPERATION" scratch-pad message <u>displays during flight</u>, accomplish the FMC FAIL checklist as published in the Boeing Quick Reference Handbook (QRH), or operator equivalent.

Accomplishing the checklist steps contained in the FMC FAIL checklist will configure the airplane systems for single FMC operation. For Pegasus-FMC equipped airplanes which interface with CDUs equipped with the "MENU" mode-select key, continued ETOPS operation should not be compromised due to the alternate navigation functionality.

Administrative Information

Insert this bulletin behind the Operations Manual Bulletin Record page in Volume 1 of your Operations Manual. Amend the Operations Manual Bulletin Record to show bulletin TBC-58 "In Effect" (IE).

This Operations Manual Bulletin will be revised to include service bulletin information when available.

Boeing Maintenance Tip 767 MT 34-047 is related to this Operations Manual Bulletin.

Please send all correspondence regarding Operations Manual Bulletins status to one of the following addresses:

Boeing Commercial Airplanes

Commercial Aviation Services

Attn: 767 Manager, Flight Technical Data

P.O. Box 3707, M/C 20-89

Seattle, Washington, 98124-2207 USA

Telephone: (206) 662-4000

Flight Crew Operations Manual Bulletin No. TBC-58, Dated February 14, 2007 (continued)

Intentionally Blank

BOEING

Flight Crew Operations Manual Bulletin for The Boeing Company

The Boeing Company Seattle, Washington 98124-2207

Number: TBC-59

IssueDate: February 14, 2007

Airplane Effectivity: All Airplanes

Subject: Incorrect Turn Direction During a Standard Instrument Departure (SID)

Reason: To inform pilots of a Pegasus Flight Management Computer System

anomaly.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

Background Information

An operator has reported cases of the Pegasus-FMC commanding a turn opposite to that expected and displayed on the map during a SID. Each of the reported occurrences involves a SID with a course reversal shortly after takeoff. In these cases, a right turn was correctly displayed on the map but the FMC commanded a left turn when certain criteria existed. Specifically, when the airplane has a steep initial climb, the airplane may reach an altitude constraint with the airplane in a position to immediately sequence the next leg. For example, many SIDs are coded with an initial "runway heading" leg (VA leg type) that climbs to a specified altitude. In some procedures, the SID also has a "heading to an intercept" leg (VI leg type) with an associated turn direction following the VA leg.

When this anomaly occurs, the airplane may reach the specified altitude in a position to immediately sequence the next (VI) leg. Should this simultaneous sequence occur, the VI leg with the turn direction is no longer in the route. Since the turn direction is no longer in the route, the FMC will revert to normal turn logic and command a turn in the shortest direction to the new course. The shortest turn direction may be in the opposite direction from that depicted for the departure. When this anomaly occurs, the map will continue to display the correct magenta path but the airplane may turn in the opposite direction.

The only reported occurrence of this anomaly has been on the RW34 departures at Fukuoka, Japan. However, the software anomaly could cause a similar problem at other airports.

The information and operating instructions contained in this Flight Crew Operations Manual Bulletin are only applicable to Pegasus-FMC software versions.

Operating Instructions

During a SID, should the FD or autopilot begin a turn opposite to that displayed on the map or described in the SID description, use HDG SEL to fly the correct chart course to complete the turn in the correct direction. Following completion of the turn, LNAV may be re-engaged and FD guidance may be followed or the autopilot may be engaged normally.

Administrative Information

Insert this bulletin behind the Operations Manual Bulletin Record page in Volume 1 of your Operations Manual. Amend the Operations Manual Bulletin Record to show bulletin TBC-59 "In Effect" (IE).

This anomaly is corrected by Boeing Service Bulletin 767-34-0471. This Flight Crew Operations Manual Bulletin will be canceled after Boeing is notified that all affected airplanes in the operator's fleet have been modified.

Please send all correspondence regarding Operations Manual Bulletins status to one of the following addresses:

Boeing Commercial Airplanes

Commercial Aviation Services

Attn: 767 Manager, Flight Technical Data

P.O. Box 3707, M/C 20-89

Seattle, Washington, 98124-2207 USA

Telephone: (206) 662-4000

Flight Crew Operations Manual Bulletin for The Boeing Company

The Boeing Company Seattle, Washington 98124-2207

Number: **TBC-61**

IssueDate: February 14, 2007

Airplane Effectivity: All Airplanes

Subject: Performance Predictions Anomaly in Flight Management Computer

(FMC) Product Improvement Package (PIP) and Pegasus Software

Versions

Reason: To inform flight crews of a performance prediction anomaly on FMC-

PIP and Pegasus-FMC software versions.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

Background Information

Boeing has confirmed operator reports regarding erroneous performance predictions following execution of the ABEAM PTS function on the LEGS page of the FMC-Product Improvement Package (PIP) and Pegasus-FMC software versions. When OAT values have been previously entered in the ALT/OAT field of line-select key 5R on a waypoint WIND page, and the ABEAM PTS function is subsequently selected after a "direct-to" flight plan modification, the OAT value on the WIND page erroneously changes to 0-degrees. After execution, fuel predictions are erroneously recalculated based upon 0-degrees instead of the previously entered value for the respective cruise altitude. Operators have reported display of the INSUFFICIENT FUEL alert-level scratch pad message with the fuel prediction values being much lower than originally planned. Additionally, there are no flight deck annunciations or alerts to indicate an OAT value on the WIND page has erroneously changed.

This Flight Crew Operations Manual Bulletin is only applicable to the FMC-Product Improvement Package (PIP) and Pegasus-FMC software versions. Previous FMC software versions do not include the ABEAM PTS function, the ALT/OAT field entry, or individual waypoint WIND pages, and therefore, are not affected.

Operating Instructions

Following selection and prior to executing the ABEAM PTS function, verify the OAT value on the respective WIND page. If necessary, enter the airplane altitude and the indicated Static Air Temperature (SAT) value from PROGRESS page 2 into the ALT/OAT field for the next route waypoint. This OAT entry will propagate to all down-track waypoints. Following entry of the SAT value into the ALT/OAT field and execution of the route modification, the FMC fuel predictions should be near those obtained from the flight plan.

Administrative Information

Insert this bulletin behind the Operations Manual Bulletin Record page in Volume 1 of your Operations Manual. Amend the Operations Manual Bulletin Record to show bulletin TBC-61 "In Effect" (IE).

The corrective action for the anomaly described in this Flight Crew Operations Manual Bulletin is still under investigation. This bulletin will be revised to include Service Bulletin information when available.

Please send all correspondence regarding Operations Manual Bulletins status to one of the following addresses:

Boeing Commercial Airplanes

Commercial Aviation Services

Attn: 767 Manager, Flight Technical Data

P.O. Box 3707, M/C 20-89

Seattle, Washington, 98124-2207 USA

Telephone: (206) 662-4000

Ø BOEING

Flight Crew Operations Manual Bulletin for The Boeing Company

The Boeing Company Seattle, Washington 98124-2207

Number: TBC-62

IssueDate: February 14, 2007

Airplane Effectivity: All Airplanes

Subject: Center Tank Fuel Pump Automatic Power Removal System

Reason: To provide information and operating instructions regarding installation

of the Center Tank Fuel Pump Automatic Power Removal System.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

Background Information

An automatic power removal system is installed on each center tank fuel pump. This system is being installed to preclude continued center tank fuel pump operation after center tank fuel is depleted. The system is intended to serve as a supplementary means to the flight crew procedural action of removing power from the fuel pumps by selecting the center tank fuel pump switches off when the EICAS advisory-level CTR L,R FUEL PUMP alert messages show. The automatic power removal system is installed to meet requirements contained in Special Federal Aviation Regulation (SFAR) 88.

Center tank fuel depletion at each center fuel pump is detected by a fuel pressure sensor located at each pump. Approximately 10-seconds after steady-state low fuel pump pressure is detected at a fuel pump, the respective advisory-level CTR L,R FUEL PUMP message shows on EICAS. Steady-state low fuel pump pressure is indicated by continuous illumination of the amber PRESS light in the respective center fuel pump switch located on the overhead panel. Several seconds after the respective EICAS message shows, power is automatically removed from the fuel pump. Therefore, operation of the automatic power removal system is transparent to the flight crew and is provided as a supplementary means to ensure continued center tank fuel pump operation is terminated.

On airplanes equipped with the fuel jettison system, the automatic power removal system is inhibited during fuel jettison operation. All center tank fuel pumps associated with fuel jettison operation will continue to operate whenever the Fuel Jettison selector is positioned ON.

Operating Instructions

The normal procedures contained in Volume I and the fuel pump system description contained in Volume II of the Flight Crew Operations Manual (FCOM) are slightly modified to accommodate the installation of the center tank fuel pump automatic power removal system. The specific Volume I normal procedures modifications include:

- Verifying that the amber PRESS light illuminates and the CTR L FUEL PUMP and CTR R FUEL PUMP messages show on EICAS after selecting each center tank fuel pump switch on during the Before Start procedure.
 - Verifying that both PRESS lights illuminate and the CTR L FUEL PUMP and CTR R FUEL PUMP messages show before engine start ensures the fuel pump pressure sensors are operating normally; and,
- 2. Selecting both center tank fuel pump switches off when either CTR L FUEL PUMP or CTR R FUEL PUMP message shows on EICAS and the center tank is empty. If center tank usable fuel is indicated when either message shows, the respective center fuel pump switch is selected off while the remaining center fuel pump switch stays on to allow for continued center tank fuel consumption. Also, during cruise flight with both center tank fuel pump switches off, whenever center tank usable fuel is indicated, both center tank fuel pump switches may be reselected on.

The center fuel tank totalizer is calibrated to indicate zero quantity when a CTR L,R FUEL PUMP message shows; however, at some airplane pitch attitudes, a center tank usable fuel quantity may be indicated, such as dispatch operations with a center tank fuel load which will deplete during the takeoff or initial climb flight phase.

As a reminder, if the flight crew observes either the CTR L FUEL PUMP or CTR R FUEL PUMP message showing on EICAS with an appreciable center tank fuel quantity indicated, a fuel pump failure should be assumed, and the FUEL PUMP non-normal checklist contained in the Quick Reference Handbook (QRH), or operator equivalent, should be accomplished.

The normal procedures provided in this FCOMB are also compatible with airplanes modified by Service Bulletin 767-28-0062 but not modified with the automatic power removal system. Therefore, operators with a fleet configuration of which all airplanes have been modified by Service Bulletin 767-28-0062 may desire to use the procedures provided by this FCOMB regardless of the installation status of the automatic power removal system.

IMPORTANT: Airplanes not modified by Service Bulletin 767-28-0062, or production equivalent, are subject to the operating mandates of FAA Airworthiness Directive (AD) 2001-15-08, which is the subject of Flight Crew Operations Manual Bulletin (FCOMB), Subject: "Center Tank Fuel Pumps." Boeing is currently in the process of requesting FAA Alternative Method of Compliance (AMOC) approval to allow consideration of the 767 Center Tank Fuel Pump Automatic Power Removal system as providing equivalent compliance to the operational restrictions published in AD 2001-15-08. If the Boeing-requested AMOC is approved, then the service bulletin retrofit installation of the automatic power removal system will allow affected operators to use the procedures contained in this FCOMB instead of those mandated under AD 2001-15-08. However until FAA response to this Boeing AMOC request is determined, airplanes not modified with Service Bulletin 767-28-0062, or production equivalent, must remain in compliance with AD 2001-15-08, or the airplane country of registry's regulatory equivalent. This FCOMB will be revised accordingly when FAA response to the Boeing AMOC request has been determined

For future planning purposes, operators are advised that Boeing is expecting eventual FAA AD issuance mandating the retrofit installation of the automatic power removal system.

Administrative Information

Insert this bulletin behind the Operations Manual Bulletin Record page in Volume 1 of your Operations Manual. Amend the Operations Manual Bulletin Record to show bulletin TBC-62 "Incorporated" (INC).

This Flight Crew Operations Manual Bulletin will remain in effect until the next FCOM scheduled revision to provide operators ample time to file the replacement FCOM pages contained herein.

Please send all correspondence regarding Operations Manual Bulletins status to one of the following addresses:

Boeing Commercial Airplanes

Commercial Aviation Services

Attn: 767 Manager, Flight Technical Data

P.O. Box 3707, M/C 20-89

Seattle, Washington, 98124-2207 USA

Telephone: (206) 662-4000

Flight Crew Operations Manual Bulletin No. TBC-62, Dated February 14, 2007 (continued)

Intentionally Blank

Flight Crew Operations Manual Bulletin for The Boeing Company

The Boeing Company Seattle, Washington 98124-2207

Number: TBC-63

IssueDate: February 14, 2007

Airplane Effectivity: All Airplanes

Subject: Pegasus Flight Management Computer (FMC) Departure Routing

Anomaly

Reason: To inform flight crews of a Pegasus-FMC anomaly regarding route

discontinuity removal between a selected departure and the active route.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

Background Information

Boeing has confirmed operator reports of a Pegasus-FMC anomaly related to removal of a route discontinuity between a selected departure and the active route. Boeing engineering has confirmed this software anomaly may occur if a route discontinuity is removed using the RTE page 2 instead of using the RTE LEGS page. Some operator reports indicate the waypoint identifier disappears from the scratch pad when line-selected into the discontinuity boxes, but the RTE page title never indicates the route modification, hence the entry attempt is not successful. And in some cases, a subsequent FMC lockup may result.

Honeywell is aware of this Pegasus-FMC anomaly. The planned fix to the problem is under investigation.

Operating Instructions

To prevent the occurrence of this anomaly, removal of route discontinuities between a selected departure and the active route using the RTE LEGS page instead of RTE page 2 is recommended.

Administrative Information

Insert this bulletin behind the Operations Manual Bulletin Record page in Volume 1 of your Operations Manual. Amend the Operations Manual Bulletin Record to show bulletin TBC-63 "In Effect" (IE).

This Flight Crew Operations Manual Bulletin will be revised to include service bulletin information when available.

Please send all correspondence regarding Operations Manual Bulletins status to one of the following addresses:

Boeing Commercial Airplanes

Commercial Aviation Services

Attn: 767 Manager, Flight Technical Data

P.O. Box 3707, M/C 20-89

Seattle, Washington, 98124-2207 USA

Telephone: (206) 662-4000

Flight Crew Operations Manual Bulletin for The Boeing Company

The Boeing Company Seattle, Washington 98124-2207

Number: TBC-64

IssueDate: February 14, 2007

Airplane Effectivity: All Airplanes

Subject: Uncommanded Auxiliary Power Unit (APU) Shutdown Prior to Engine

Start

Reason: To inform flight crews of an uncommanded APU shutdown fault prior

to engine start and provide temporary operating instructions.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

Background Information

Boeing has received operator reports of a fault pertaining to an uncommanded Auxiliary Power Unit (APU) shutdown on the ground prior to engine start. Boeing has confirmed the shutdown fault occurs randomly and is a result of pneumatic air reverse flow when either or both Pack Control Selectors are positioned OFF. The uncommanded APU shutdown occurs when the APU Electronic Control Unit (ECU) is unable to compensate for the pneumatic pressure pulse when either or both pack control valve(s) close. Boeing has confirmed the shutdown fault may occur under the following conditions:

- Both engines shutdown;
- APU running;
- APU Bleed Air switch ON; and,
- A Pack Control selector positioned OFF.

Therefore, flight crew recognition of this fault is primarily noticeable when accomplishing the normal "Before Engine Start" procedure after positioning the Pack Control Selectors OFF in preparation for the initial engine start. If the fault is active and an uncommanded APU shutdown occurs, the APU can be restarted without delay without any required time consideration for cool down.

Boeing has confirmed the fault can only occur upon positioning either or both Pack Control Selectors OFF with the APU as the sole source of pneumatic power. Therefore, exposure to the fault described above is isolated to ground operations and specific to APU bleed air supply for initial engine start.

Operating Instructions

For operators experiencing in-service interruption due to uncommanded APU shutdown prior to engine start, the following temporary operating instructions are recommended:

Prior to positioning the Pack Control Selectors OFF when accomplishing the "Before Start Procedure", select the APU Bleed Air switch OFF and allow the APU Bleed Air VALVE transition light to momentarily illuminate and extinguish. Then, position the left and right Pack Control Selectors OFF and allow the PACK OFF lights to illuminate. Finally, select the APU Bleed Air switch ON to restore pneumatic air to each engine's starter, and accomplish a normal engine start.

Administrative Information

Insert this bulletin behind the Operations Manual Bulletin Record page in Volume 1 of your Operations Manual. Amend the Operations Manual Bulletin Record to show bulletin TBC-64 "In Effect" (IE).

This Flight Crew Operations Manual Bulletin will be revised to include service bulletin information when available

Please send all correspondence regarding Operations Manual Bulletins status to one of the following addresses:

Boeing Commercial Airplanes

Commercial Aviation Services

Attn: 767 Manager, Flight Technical Data

P.O. Box 3707, M/C 20-89

Seattle, Washington, 98124-2207 USA

Telephone: (206) 662-4000

Flight Crew Operations Manual Bulletin for The Boeing Company

The Boeing Company Seattle, Washington 98124-2207

Number: TBC-65

IssueDate: February 14, 2007

Airplane Effectivity: All Airplanes

Subject: Pegasus-FMC Control and Display Unit (CDU) Anomaly

Reason: To inform flight crews of a Pegasus-FMC CDU anomaly and associated

corrective actions.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

Background Information

An anomaly has been discovered, which may cause a CDU keyboard to not respond to any CDU function and mode key selections with the exception of the "MENU" function and mode key. This CDU anomaly may cause a CDU to reset to a non-responsive state following one or multiple power transfers. This could occur during a normal engine start sequence or at any time power transfers from one generator source to another. This anomaly occurs only during CDU resets after power interrupts.

This anomaly appears on airplanes with the PEGASUS FMC installed. The PEGASUS FMC can be identified by a "VNAV" mode key on the CDU.

Operations Manual Information

There are two flight crew actions, either of which return the CDU to normal operation in the event a CDU does not respond to function and mode key selections. They are:

1. Push the "MENU" key on the affected CDU keyboard. This action will display the MENU page with the FMC prompt at line-select key 1L. Then, push line-select key 1L.

Or.

2. Rotate the Nav Instrument Source Selector on the affected side to the offside FMC detent, then return the selector to the respective FMC position.

Administrative Information

Insert this bulletin behind the Operations Manual Bulletin Record page in Volume 1 of your Operations Manual. Amend the Operations Manual Bulletin Record to show bulletin TBC-65 "In Effect" (IE).

This anomaly is corrected by Boeing Service Bulletin 767-34-0295.

Please send all correspondence regarding Operations Manual Bulletins status to one of the following addresses:

Boeing Commercial Airplanes

Commercial Aviation Services

Attn: 767 Manager, Flight Technical Data

P.O. Box 3707, M/C 20-89

Seattle, Washington, 98124-2207 USA

Telephone: (206) 662-4000

Flight Crew Operations Manual Bulletin for The Boeing Company

The Boeing Company Seattle, Washington 98124-2207

Number: TBC-66 **IssueDate:** May 1, 2007

Airplane Effectivity: All Airplanes

Subject: Auxiliary Power Unit (APU) Bleed Air Supply Fault

Reason: To advise flight crews of an APU bleed air supply fault and provide

temporary operating instructions.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

Background Information

Boeing has received operator reports of a fault pertaining to 767-400ER Auxiliary Power Unit (APU) bleed air supply. Boeing has confirmed the fault occurs randomly and may result in uncommanded closure of the APU bleed air valve due to incorrect signal-timing between the Cabin Temperature Controller (CTC) and the APU Electronic Control Unit (ECU) when either or both Pack Control Selectors are positioned OFF. The uncommanded APU bleed air valve closure results in a loss of pneumatic air to the using systems. Boeing has confirmed the signal-timing fault may occur under the following conditions:

- Both engines shutdown;
- APU running;
- APU Bleed Air switch ON; and,
- A Pack Control selector positioned OFF.

Therefore, flight crew recognition of this fault is primarily noticeable when accomplishing the normal "Before Engine Start" procedure after positioning the Pack Control Selectors OFF in preparation for the initial engine start. If the fault is active, bleed air supply will deplete resulting in inability to start engines and requiring a full APU shutdown and restart to restore normal APU bleed air valve operation.

Boeing has confirmed the fault can only occur upon positioning either or both Pack Control Selectors OFF with the APU as the sole source of pneumatic power. Therefore, exposure to the fault described above is isolated to ground operations and specific to APU bleed air supply for initial engine start.

In addition, Boeing has confirmed the fault cannot occur during an in-flight engine start attempt using the APU for pneumatic starter assist.

Operating Instructions

To preclude exposure to the fault described above, accomplish the following Before Start Procedure revision when attempting the initial engine start:

Prior to positioning the Pack Control Selectors OFF when accomplishing the "Before Start Procedure", select the APU Bleed Air switch OFF and allow the APU Bleed Air VALVE transition light to momentarily illuminate and extinguish. Then, position the left and right Pack Control Selectors OFF. Finally, select the APU Bleed Air switch ON to restore pneumatic air to each engine's starter, and accomplish a normal engine start.

Flight crews are reminded that with the APU running, if either or both Pack Control Selectors are positioned OFF with APU Bleed Air valve open, the APU bleed air supply fault described above may occur. Normal APU Bleed Air valve operation is only restored by accomplishing a full APU shutdown and restart.

Administrative Information

Insert this bulletin behind the Operations Manual Bulletin Record page in Volume 1 of your Operations Manual. Amend the Operations Manual Bulletin Record to show bulletin TBC-66 "In Effect" (IE).

This anomaly is corrected by Boeing Service Bulletin 767-21-0190. This Flight Crew Operations Manual Bulletin will be canceled after Boeing is notified that all affected airplanes in the operator's fleet have been modified.

Flight Crew Operations Manual Bulletin No. TBC-66, Dated May 1, 2007 (continued)

Please send all correspondence regarding Operations Manual Bulletins status to one of the following addresses:

Boeing Commercial Airplanes

Commercial Aviation Services

Attn: 767 Manager, Flight Technical Data

P.O. Box 3707, M/C 20-89

Seattle, Washington, 98124-2207 USA

Telephone: (206) 662-4000

Flight Crew Operations Manual Bulletin No. TBC-66, Dated May 1, 2007 (continued)

Intentionally Blank

Flight Crew Operations Manual Bulletin for The Boeing Company

The Boeing Company Seattle, Washington 98124-2207

Number: TBC-67

IssueDate: May 1, 2007

Airplane Effectivity: All Airplanes

Subject: B/E Aerospace 174660-N3 Crew Oxygen Mask

Reason: To inform flight crews of the proper donning and stowage procedures

for the B/E Aerospace 174660-N3 Crew Oxygen Mask.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

Background Information

During the certification test for the B/E Aerospace 174660-N3 Crew Oxygen Mask, it was determined that specific donning and stowage procedures were required.

Improper stowage of the mask could result in the harness not properly inflating during the subsequent use of the mask. Improper inflation could delay the donning of the mask, thereby, creating an unsafe condition.

It was determined that a stowage procedure for this specific mask was required to ensure the mask properly inflates when donned by flight crews.

Donning and stowage procedures will be incorporated into the Operations Manual at a future revision.

Operations Manual Information

Donning Procedure for the B/E Aerospace 174660-N3 Crew Oxygen Mask:

- 1. Grasp the regulator with the hand nearest the stowage box.
- 2. Pull upward to expose the entire regulator and inflation lever.

Flight Crew Operations Manual Bulletin No. TBC-67, Dated May 1, 2007 (continued)

- 3. Re-grip the regulator and squeeze the inflation lever while pulling the mask from the stowage box.
- 4. Pull the mask across in front of you, toward the center of the aircraft (to ensure ample hose extension) while rolling the mask face-up.
- 5. Leaning slightly toward the center of the aircraft, place your face into the mask. Bring the mask toward your face so that the lower portion of the mask contacts your chin first, then roll the top of the mask toward your forehead so the harness goes over and behind your head.
- 6. Release the inflation lever so the harness holds the mask in place.

Stowage Procedure for the B/E Aerospace 174660-N3 Crew Oxygen Mask:

- 1. Set the regulator to the 100% position.
- 2. Ensure that the cloth liner is secured at the top of the stowage box and is laying flat against all interior sides of the box.
- 3. Coil the supply hose into the bottom of the stowage box, making the largest diameter possible.
- 4. Ensure that the harness is completely deflated.
- 5. Hold the mask by the regulator with the face piece down and the inside of the mask toward you. Ensure the regulator inlet hose rotates freely.
- 6. Grasp the harness "cross"; pull it towards the top of the face piece (down) and tightly roll the mask around it. Allow the excess harness to hang down from the top of the rolled face piece.

CAUTION: Do not push the harness "cross" into or behind the nose piece. Doing this may cause the cross straps to hang up on the mask during inflation.

- 7. Position the supply hose along the side of the rolled face piece toward the aft-inboard corner of the Captain's mask stowage box and toward the aft-inboard corner of the First Officer's mask stowage box.
- 8. Insert the mask-regulator assembly into the stowage box, beginning with the harness (regulator up).
- 9. Press down on the mask-regulator until all but the regulator control knob is below the top surface of the stowage box.
- 10. Close the right-hand door, then close the left-hand door, using caution not to pinch the supply hose. The "OXY ON" flag will be visible on the door.
- 11. Depress the TEST/RESET lever on the right-hand door and release.
- 12. The "OXY ON" flag disappears when the TEST/RESET lever is released.

WARNING: Do not push the red Release Levers on the regulator.

Doing this will inflate the harness and prevent the correct stowage of the mask regulator.

Administrative Information

Insert this bulletin behind the Operations Manual Bulletin Record page in Volume 1 of your Operations Manual. Amend the Operations Manual Bulletin Record to show bulletin TBC-67 "In Effect" (IE).

This Operations Manual Bulletin will be cancelled in a future revision to the Operations Manual.

Please send all correspondence regarding Operations Manual Bulletins status to one of the following addresses:

Boeing Commercial Airplanes

Commercial Aviation Services

Attn: 767 Manager, Flight Technical Data

P.O. Box 3707, M/C 20-89

Seattle, Washington, 98124-2207 USA

Telephone: (206) 662-4000

Flight Crew Operations Manual Bulletin No. TBC-67, Dated May 1, 2007 (continued)

Intentionally Blank

DEING

Flight Crew Operations Manual Bulletin for The Boeing Company

The Boeing Company Seattle, Washington 98124-2207

Number: **TBC-68**

IssueDate: May 1, 2007

Airplane Effectivity: All Airplanes

Subject: B/E Aerospace 174692-N7 Crew Oxygen Mask

Reason: To inform flight crews of the proper donning and stowage procedures

for the B/E Aerospace 174692-N7 Crew Oxygen Mask.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

Background Information

During the certification test for the B/E Aerospace 174692-N7 Crew Oxygen Mask, it was determined that specific donning and stowage procedures were required.

Improper stowage of the mask could result in the harness not properly inflating during the subsequent use of the mask. Improper inflation could delay the donning of the mask, thereby, creating an unsafe condition.

It was determined that a stowage procedure for this specific mask was required to ensure the mask properly inflates when donned by flight crews.

Donning and stowage procedures will be incorporated into the Operations Manual at a future revision

Operations Manual Information

Donning Procedure for the B/E Aerospace 174692-N7 Crew Oxygen Mask:

- 1. Grasp the regulator with the hand nearest the stowage box.
- 2. Pull up and squeeze the inflation levers while pulling the mask from the stowage box.

Flight Crew Operations Manual Bulletin No. TBC-68, Dated May 1, 2007 (continued)

- 3. Pull the mask across in front of you, toward the center of the aircraft (to ensure ample hose extension) while rolling the mask face-up
- 4. Pull the mask across in front of you, toward the center of the aircraft (to ensure ample hose extension) while rolling the mask face-up.
- 5. Leaning slightly toward the center of the aircraft, place your face into the mask. Bring the mask toward your face so that the lower portion of the mask contacts your chin first, then roll the top of the mask toward your forehead so the harness goes over and behind your head.
- 6. Release the inflation lever so the harness holds the mask in place.

Stowage Procedure for the B/E Aerospace 174660-N3 Crew Oxygen Mask:

- 1. Set the regulator to the 100% position.
- 2. Ensure that the cloth liner is secured at the top of the stowage box and is laying flat against all interior sides of the box.
- 3. Coil the supply hose into the bottom of the stowage box, making the largest diameter possible.
- 4. Ensure that the harness is completely deflated.
- 5. Hold the mask by the regulator with the face piece down and the inside of the masktoward you. Ensure the regulator inlet hose rotates freely.

CAUTION: Do not push the harness "cross" into or behind the nose piece. Doing this may cause the cross straps to hang up on the mask during inflation.

- 6. Grasp the harness "cross"; pull it towards the top of the face piece (down) and tightly roll the mask around it. Allow the excess harness to hang down from the top of the rolled face piece.
- 7. Position the supply hose along the side of the rolled face piece toward the aft-inboard corner of the Captain's mask stowage box and toward the aft-inboard corner of the First Officer's mask stowage box.
- 8. Insert the mask-regulator assembly into the stowage box, beginning with the harness (regulator up).
- 9. Press down on the mask-regulator until all but the regulator control knob is below the top surface of the stowage box.
- 10. Close the right-hand door, then close the left-hand door, using caution not to pinch the supply hose. The "OXY ON" flag will be visible on the door.

WARNING: Do not push the red Release Levers on the regulator.

Doing this will inflate the harness and prevent the correct stowage of the mask regulator.

- 11. Depress the TEST/RESET lever on the right-hand door and release.
- 12. The "OXY ON" flag disappears when the TEST/RESET lever is released.

Administrative Information

Insert this bulletin behind the Operations Manual Bulletin Record page in Volume 1 of your Operations Manual. Amend the Operations Manual Bulletin Record to show bulletin TBC-68 "In Effect" (IE).

This Operations Manual Bulletin will be cancelled in a future revision to the Operations Manual.

Please send all correspondence regarding Operations Manual Bulletins status to one of the following addresses:

Boeing Commercial Airplanes

Commercial Aviation Services

Attn: 767 Manager, Flight Technical Data

P.O. Box 3707, M/C 20-89

Seattle, Washington, 98124-2207 USA

Telephone: (206) 662-4000

Flight Crew Operations Manual Bulletin No. TBC-68, Dated May 1, 2007 (continued)

Intentionally Blank

Ø BOEING

Flight Crew Operations Manual Bulletin for The Boeing Company

The Boeing Company Seattle, Washington 98124-2207

Number: TBC-70 IssueDate: May 1, 2007

Airplane Effectivity: All Airplanes

Subject: Integrated Standby Flight Display (ISFD) Initialization Anomaly

Reason: To inform flight crews of an ISFD initialization anomaly and provide

corrective action.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

Background Information

Boeing has received reports of incorrect attitude on the Integrated Standby Flight Display (ISFD). Subsequent investigation has found that improper initialization of the ISFD can cause attitude display anomalies. The display anomaly shows after takeoff as an obvious error in pitch and /or roll.

The Integrated Standby Flight Display (ISFD) performs a two-minute initialization immediately after the Battery switch has been positioned ON. Any change in airplane position during this initialization period may result in inaccurate attitude information. The anomaly is not detectable by ISFD internal monitoring and may not show an obvious error in roll and/or pitch indications when compared to the pilots' primary flight instruments during preflight. Gust effects or movement of cabin occupants during the ISFD initialization period will not cause the anomaly.

Re-initialization can only be accomplished by cycling electrical power to the ISFD while the airplane is on the ground. This can be accomplished by removing all airplane electrical power or by an approved maintenance procedure. The RST switch on the ISFD should only be pushed in response to the ATT:RST amber message.

Operating Instructions

An Airplane Flight Manual (AFM) Limitation will be published that states:

"INTEGRATED STANDBY FLIGHT DISPLAY (IF INSTALLED)

The Flight Crew must verify the airplane was not moved during Integrated Standby Flight Display alignment. If unable to verify, then the power up alignment process must be reinitialized and completed prior to flight."

To comply with the AFM limitation, the airline must have procedures in place to assure flight crews on the first flight of the day, crew change, or after any complete airplane power down, that ISFD alignment was completed before the airplane was moved.

The following note will be added to the Electrical Power Up Supplementary Procedure:

Battery Switch ON

Note: Do not move the airplane until ISFD initialization is complete.

The following is included in the Captain's Preflight Procedure:

Approach Mode Display - Blank

Set local altimeter setting.

Verify flight instrument indications are correct.

Verify no flags or messages displayed.

Administrative Information

Insert this bulletin behind the Operations Manual Bulletin Record page in Volume 1 of your Operations Manual. Amend the Operations Manual Bulletin Record to show bulletin TBC-70 "In Effect" (IE).

This anomaly is corrected by Boeing Service Bulletin 767-34-0405. This Flight Crew Operations Manual Bulletin will be canceled after Boeing is notified that all affected airplanes in the operator's fleet have been modified.

Flight Crew Operations Manual Bulletin No. TBC-70, Dated May 1, 2007 (continued)

Please send all correspondence regarding Operations Manual Bulletins status to one of the following addresses:

Boeing Commercial Airplanes

Commercial Aviation Services

Attn: 767 Manager, Flight Technical Data

P.O. Box 3707, M/C 20-89

Seattle, Washington, 98124-2207 USA

Telephone: (206) 662-4000

Flight Crew Operations Manual Bulletin No. TBC-70, Dated May 1, 2007 (continued)

Intentionally Blank

Flight Crew Operations Manual Bulletin for The Boeing Company

The Boeing Company Seattle, Washington 98124-2207

Number: TBC-72 R1

IssueDate: February 15, 2010

Airplane Effectivity: All Airplanes

Subject: Honeywell Flight Management Computer (FMC) Anomaly

Reason: To inform flight crews of a Honeywell FMC anomaly that incorrectly

deletes a speed constraint.

Revised to include Service Bulletin information.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

Background Information

Boeing has confirmed operator reports of a Honeywell FMC anomaly that incorrectly deletes a speed constraint. Some SIDs are designed to limit turn radius to maintain clearance with other traffic or restricted airspace. Some of these procedures also have an AT-OR-ABOVE altitude restriction in conjunction with the speed constraint. Typically, the airplane will be required to limit speed until passing the respective waypoint as well as climb above the altitude constraint. In these procedures, VNAV will incorrectly delete the speed constraint prior to reaching the waypoint if the altitude constraint has been satisfied. When this happens, VNAV will command speed to accelerate to ECON speed (or SEL speed) prior to reaching the constrained waypoint. This anomaly exists on all Boeing 747 / 757 / 767 / 777 airplanes equipped with the Honeywell FMC.

Operating Instructions

To prevent exceeding a speed restriction when accompanied by an AT-OR-ABOVE altitude constraint, use speed intervention (enter speed constraint in the MCP Speed Window) until the constrained waypoint is sequenced. After passing the waypoint, select VNAV as desired.

Administrative Information

Insert this bulletin behind the Operations Manual Bulletin Record page in Volume 1 of your Operations Manual. Amend the Operations Manual Bulletin Record to show bulletin TBC-72 R1 "In Effect" (IE).

This anomaly is corrected by Boeing Service Bulletin 767-34-0566.

Please send all correspondence regarding Operations Manual Bulletins status to one of the following addresses:

Boeing Commercial Airplanes

Commercial Aviation Services

Attn: 767 Manager, Flight Technical Data

P.O. Box 3707, M/C 20-89

Seattle, Washington, 98124-2207 USA

Telephone: (206) 662-4000

Fax: (206) 662-4743

Flight Crew Operations Manual Bulletin for The Boeing Company

The Boeing Company Seattle, Washington 98124-2207

Number: TBC-73 R1

IssueDate: February 15, 2010

Airplane Effectivity: All Airplanes

Subject: Missing Advisory-Level Message Logic in EICAS Computer P/N

S242N701-1001 Operating Program Software (OPS) Version 6

Reason: To inform flight crews of missing EICAS OPS Version 6 advisory-level

message logic and to provide temporary operating instructions with

OPS Version 6 installed.

Revised to include Service Bulletin information.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

Background Information

Boeing and Rockwell Collins have confirmed the EICAS advisory-level "L ENG FUEL FILT" alert message is not available on airplanes installed with EICAS computer P/N S242N701-1001 with Operating Program Software (OPS) Version 6. This software version is installed by incorporation of Boeing Service Bulletin 767-31-0236, or production equivalent.

Each engine fuel system is equipped with a filter to remove contaminants and a pressure relief valve to allow bypass of an obstructed filter element. A pressure differential switch provides EICAS alerting of filter element obstruction prior to pressure relief valve actuation and filter bypass. Contaminants in the fuel system may result in erratic engine operation and flameout.

The EICAS advisory-level "L ENG FUEL FILT" alert message indicates an impending fuel filter bypass condition exists on the left engine. In addition, a status-level "L ENG FUEL FILT" message shows on the EICAS Status page. The STATUS Cue indication appears anytime a new status message exists with the EICAS Status page not displayed.

Boeing has been notified by the Federal Aviation Administration (FAA) Aircraft Certification Office (ACO) that an Immediate Adopted Rule (IAR) is being drafted, which will result in imminent issuance of an Airworthiness Directive (AD) regarding this missing advisory-level message.

Operating Instructions

In the interim period with EICAS OPS Version 6 installed, the following temporary operating instructions are provided:

If the STATUS Cue shows anytime on the ground after engine start or during flight, select the Status Page on the secondary EICAS display, and verify the "L ENG FUEL FILT" message is not shown. If the "L ENG FUEL FILT" message is not shown on the Status Page, the secondary engine parameters may be reselected on the secondary EICAS display, or the display may be blanked. If the "L ENG FUEL FILT" message is shown on the Status Page, accomplish the ENGINE FUEL FILTER non-normal checklist as published in the Boeing Quick Reference Handbook (QRH). If on the ground, check the Dispatch Deviations Guide (DDG), or operator equivalent.

In the unlikely event the status-level "L ENG FUEL FILT" and advisory-level "R ENG FUEL FILT" messages are simultaneously shown, an impending fuel filter bypass condition exists on both engines. With both messages shown, airplane fuel system contamination may be present and may result in erratic engine operation and flameout.

Further flight crew action in response to either or both the "L ENG FUEL FILT" status-level message and the "R ENG FUEL FILT" advisory-level messages being shown are not established by Boeing or the FAA. Any further flight crew action should be determined by individual operator policy.

Boeing policy on flight crew use of status-level messages has not changed. After engine start, any condition having adverse effect on safe continuation of the flight appears as an EICAS alert message (Warning, Caution, or Advisory). If other status-level messages are shown as a consequence of complying with these temporary operating instructions, the flight crew should respond in accordance with the appropriate operator policy.

Administrative Information

Insert this bulletin behind the Operations Manual Bulletin Record page in Volume 1 of your Operations Manual. Amend the Operations Manual Bulletin Record to show bulletin TBC-73 R1 "In Effect" (IE).

On airplanes with EICAS OPS Version 6 installed, the effects of this Flight Crew Operations Manual Bulletin are immediately corrected by:

- Incorporation of EICAS OPS Version 5 by either of the following applicable actions:
 - On airplanes of cumulative line (C/L) number 881 or prior, installation of Boeing Service Bulletin 767-31-0180;

or

 On airplanes of C/L number 882 and greater, installation per Airplane Maintenance Manual (AMM) 31-41-02/201.

or

 Incorporation of EICAS OPS Version 7 by Boeing Service Bulletin 767-31-0267.

This Flight Crew Operations Manual Bulletin will be "Cancelled" (CANC) upon operator notification to Boeing that all affected airplanes covered in this Flight Crew Operations Manual have been modified replacing EICAS OPS Version 6.

Please send all correspondence regarding Operations Manual Bulletins status to one of the following addresses:

Boeing Commercial Airplanes

Commercial Aviation Services

Attn: 767 Manager, Flight Technical Data

P.O. Box 3707, M/C 20-89

Seattle, Washington, 98124-2207 USA

Telephone: (206) 662-4000

Fax: (206) 662-4743

Flight Crew Operations Manual Bulletin No. TBC-73 R1, Dated February 15, 2010 (continued)

Intentionally Blank

Flight Crew Operations Manual Bulletin for The Boeing Company

The Boeing Company Seattle, Washington 98124-2207

Number: TBC-74

IssueDate: September 5, 2008

Airplane Effectivity: All Airplanes

Subject: Hand microphone use with flight deck PC power outlets

Reason: To inform flight crews of a new restriction on using the flight deck PC

power outlets when the hand microphone is used.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

Background Information

Boeing has received customer complaints of interference when using hand held microphones both on the ground and in flight. Investigation has shown interference may be caused by items plugged into the PC power outlets on the flight deck. <u>Any</u> item plugged into a PC power outlet, whether turned on or not, can cause interference. AC 91-21.1B prohibits the use of items that cause interference with communications.

Boeing is issuing placards that state: "WHEN USING HAND MIC REMOVE PWR CORD FROM OUTLET."

Operating Instructions

Remove any power cord from the flight deck PC power outlet before using the hand microphone.

Administrative Information

Insert this bulletin behind the Operations Manual Bulletin Record page in Volume 1 of your Operations Manual. Amend the Operations Manual Bulletin Record to show bulletin TBC-74 "In Effect" (IE).

This condition is temporary until the system is modified. This bulletin will be revised to include Service Bulletin information when available.

This Operations Manual Bulletin will be cancelled after Boeing is notified that all affected airplanes in the operators fleet have been modified by Boeing Service Bulletin.

Please send all correspondence regarding Operations Manual Bulletins status to one of the following addresses:

Boeing Commercial Airplanes

Commercial Aviation Services

Attn: 767 Manager, Flight Technical Data

P.O. Box 3707, M/C 20-89

Seattle, Washington, 98124-2207 USA

Telephone: (206) 662-4000

Fax: (206) 662-4743

Flight Crew Operations Manual Bulletin for The Boeing Company

The Boeing Company Seattle, Washington 98124-2207

Number: TBC-75

IssueDate: February 20, 2009

Airplane Effectivity: All Airplanes

Subject: General Electric (GE) CF6-80C2 Engine Flameout Mitigation

Reason: To provide flight crews with updated background information on engine

flameout events in visible moisture with TAT at or below 10°C in the vicinity of convective weather systems; and to provide revised

operating instructions.

Information in this bulletin is recommended by The Boeing Company, but may not be FAA approved at the time of writing. In the event of conflict with the FAA approved Airplane Flight Manual (AFM), the AFM shall supersede. The Boeing Company regards the information or procedures described herein as having a direct or indirect bearing on the safe operation of this model airplane.

THE FOLLOWING PROCEDURE AND/OR INFORMATION IS EFFECTIVE UPON RECEIPT

Background Information

Boeing and General Electric (GE) are investigating several CF6-80C2 engine flameout events which have occurred on various airplane models since 1991. Investigation of weather, flight data, and pilot reports associated with these events suggest the flameout events have occurred at altitudes with Static Air Temperature (SAT) above 0°C in the vicinity of convective weather systems. Boeing and GE believe ice accumulated aft of the fan during a descent or deceleration may have been shed and ingested into the engine when the thrust levers were subsequently advanced

Boeing and GE investigations conclude the airplanes most likely encountered ice crystals lifted by convective activity prior to the engine flameout. At very cold temperatures near thunderstorms the airplane can encounter visible moisture made up of high concentrations of small ice crystals. These ice crystals do not cause weather radar returns. Flight crews have reported deviating around strong weather radar returns when the flameout events have occurred. Flight crews have also reported rain on the windshield when the outside air temperature was too cold for liquid water to exist. Boeing attributes this to ice crystals that melt upon impact with the heated windshield, giving the appearance of rain. These types of ice crystals do not accumulate on cold aircraft surfaces.

Flight crew reports and airplane data have shown the airplane TAT indication may often erroneously indicate 0°C for a period of time just prior to engine flameout events. This anomalous behavior is due to ice crystals partially blocking the probe and is not a cause for the engine flameout but is confirmation that ice crystals were present.

The Operating Instructions contained in this bulletin use engine anti-ice and wing anti-ice. Increased bleed air extraction from the engine causes the combustor to operate at a higher fuel-to-air ratio. This reduces the probability of flameout. In some engine flameout events, engine anti-ice was previously selected on. Boeing and GE understand that the Operating Instructions contained in this bulletin may not prevent all flameout events. However, increased engine bleed air extraction does provide a large increase in the margin to flameout.

These engine flameout events typically occur when the airplane is leveling off at an intermediate altitude. ATC permitting, make a continuous descent at idle thrust. This decreases the exposure time to the ice crystal condition and a potential engine flameout.

If an engine flameout occurs on an airplane equipped with Full Authority Digital Engine Control (FADEC) engines, the Electronic Engine Control (EEC) attempts to relight the engine when it detects N2 below 50% or a rapid decrease in N2. Engines accelerate to idle very slowly at high altitudes. In some of these events, it has taken 120 seconds or more to reach commanded thrust levels. This may be incorrectly interpreted by the flight crew as an engine that is still flamed out instead of an engine already in the process of relighting. If N2 is steadily increasing and EGT remains within limits, the start is progressing normally. In all events investigated, the affected engines successfully started, including some outside the in-flight start envelope. If N2 is steadily increasing and EGT remains within limits following a single engine flameout, the flight crew need not accomplish the ENGINE FAILURE OR SHUTDOWN followed by the ENGINE IN-FLIGHT START checklist. The DUAL ENGINE FAILURE checklist should be accomplished for dual engine flameout events.

Use of wing anti-ice at altitudes above 22,000 feet has not been included in the Operating Instructions to ensure no adverse impact on airplane systems which use engine bleed air.

Entering the TAI/ON ALT on the DESCENT FORECAST page of the FMC adjusts the VNAV path calculation for approach idle conditions with engine antiice ON.

Operating Instructions

When TAT is at or below 10°C in visible moisture with engine thrust reduced for a descent or a speed reduction even with SAT less than -40°C:

CAUTION: Do not use engine or wing anti-ice when TAT is above 10°C.
ENGINE ANTI–ICE switches / selectors
[Increases bleed air extraction to improve engine flameout margin.]
At or below 22,000 feet:
WING ANTI–ICE switch / selector ON
[Increases bleed air extraction to improve engine flameout margin.]

During flight in Instrument Meteorological Conditions (IMC), avoid flying directly over significant amber or red depicted map weather radar regions. Use of the weather radar gain and tilt functions are recommended to assess weather radar return reflectivity.

During airplane descent and ATC permitting, attempt a continuous descent at idle thrust to decrease exposure to ice crystal conditions.

Engine and wing anti-ice may be selected OFF (or AUTO, as installed) when the conditions described above no longer exist and are not required for existing flight conditions

Administrative Information

Insert this bulletin behind the Operations Manual Bulletin Record page in Volume 1 of your Operations Manual. Amend the Operations Manual Bulletin Record to show bulletin TBC-75 "In Effect" (IE).

This condition is under investigation. This Flight Crew Operations Manual bulletin remains in effect until further notice.

This bulletin supersedes the bulletin titled "Engine Flameout Protection GE CF6-80C2 Engines".

Please send all correspondence regarding Operations Manual Bulletins status to one of the following addresses:

Boeing Commercial Airplanes

Commercial Aviation Services

Attn: 767 Manager, Flight Technical Data

P.O. Box 3707, M/C 20-89

Seattle, Washington, 98124-2207 USA

Telephone: (206) 662-4000

Fax: (206) 662-4743

767 Flight Crew Operations Manual

Limitations	Chapter L
Table of Contents	Section 0
Operating Limitations	L.10
General	L.10.1
Airplane General	L.10.1
Operational Limitations	L.10.1
Non-AFM Operational Information	L.10.1
Weather Radar	L.10.2
Weight Limitations	L.10.2
Flight Deck Security Door	L.10.2
Door Mounted Escape Slides	L.10.3
Auto Flight	L.10.3
Aircraft Communications Addressing and Reporting	
System (ACARS)	L.10.3
Engine	L.10.4
Engine Fuel System	L.10.4
Reverse Thrust	
Flight Controls	L.10.4
Navigation	
Ground Proximity Warning System (GPWS)	
Look—Ahead Alerting	I. 10 4

767 Flight Crew Operations Manual

Intentionally Blank

767 Flight Crew Operations Manual

Limitations Operating Limitations

Chapter L Section 10

General

This chapter contains Airplane Flight Manual (AFM) limitations and Boeing recommended operating limitations. Limitations that are obvious, shown on displays or placards, or incorporated within an operating procedure are not contained in this chapter.

Airplane General

Operational Limitations

Runway slope	± 2%
Maximum Operating Altitude	43,100 feet pressure altitude
Maximum Takeoff and Landing Altitude	8,400 feet pressure altitude
Maximum Takeoff and Landing Tailwind Component	10 knots

Non-AFM Operational Information

Note: The following items are not AFM limitations, but are provided for flight crew information.

Turbulent air penetration speed is: 290 KIAS/.78 Mach, whichever is lower.

The navigation and display system does not support operations at latitudes greater than 87° North or South.

Do not operate HF radios during refueling operations.

767 Flight Crew Operations Manual

RVSM Altimeter Cross Check Limits

Standby altimeters do not meet altimeter accuracy requirements of RVSM.

The maximum allowable in-flight difference between Captain and First Officer altitude displays for RVSM operation is 200 feet.

The maximum allowable on-the-ground differences between Captain and First Officer altitude displays for RVSM operation are:

Field Elevation	Max Difference Between Captain & F/O	Max Difference Between Captain or F/O & Field Elevation
SEA LEVEL	40 feet	75 feet
5,000 feet	45 feet	75 feet
10,000 feet	50 feet	75 feet

Weather Radar

Do not operate the weather radar in a hanger or within 50 feet of any personnel or fuel spill.

Note: The hanger and personnel restrictions do not apply to the weather radar test mode.

Weight Limitations

Maximum Weight Limitations

Weights	Pounds
Maximum Taxi Weight (MTW)	413,000
Maximum Take Off Weight (MTOW)	412,000
Maximum Landing Weight (MLW)	320,000
Maximum Zero Fuel Weight (MZFW)	295,000

Other Weight Restrictions

Note: These weights may be further restricted by field length limits, climb limits, tire speed limits, brake energy limits, obstacle clearance, or enroute and landing requirements.

Flight Deck Security Door

Verify that an operational check of the Flight Deck Access System has been accomplished according to approved procedures once each flight day.

767 Flight Crew Operations Manual

Door Mounted Escape Slides

[Option – Passenger not Freighter Model]

Entry door evacuation slide systems must be armed and engagement of the girt bar with door sill verified prior to taxi, takeoff, or landing whenever passengers are carried.

Auto Flight

[Option – FAA certification]

After takeoff, the autopilot must not be engaged below 200 feet AGL.

Use of aileron trim with the autopilot engaged is prohibited.

Maximum allowable wind speeds when landing weather minima are predicated on autoland operations:

Headwind	25 knots
Crosswind	25 knots
Tailwind	10 knots

Aircraft Communications Addressing and Reporting System (ACARS)

The ACARS is limited to the transmission and receipt of messages which will not create an unsafe condition if the message is improperly received, such as the following conditions:

- the message or parts of the message are delayed or not received,
- the message is delivered to the wrong recipient, or
- the message content may be frequently corrupted.

However, Pre-Departure, Digital Automatic Terminal Information Service, Oceanic Clearances, Weight and Balance and Takeoff Data messages can be transmitted and received over ACARS if they are verified per approved operational procedures.

767 Flight Crew Operations Manual

Engine

Continuous ignition must be on (engine start selector in the CONT position) while operating in severe turbulence.

Note: Continuous ignition is automatically provided in icing conditions when engine anti–ice is on.

Flight crew shall not blank engine vibration display during takeoff.

Engine Fuel System

The minimum inflight fuel tank temperature is 3°C (5°F) above the freeze point of the fuel being used.

The maximum fuel temperature is 49°C (120°F) {Jet B/ JP-4: 43°C (109°F)}

The center tank may contain up to 22,050 pounds of fuel with less than full main tanks provided center tank fuel weight plus actual zero fuel weight does not exceed the maximum zero fuel weight, and center of gravity limits are observed.

Reverse Thrust

Reverse thrust is for ground use only.

Backing the airplane with use of reverse thrust is prohibited.

Flight Controls

The maximum altitude for flap extension is 20,000 ft.

Avoid rapid and large alternating control inputs, especially in combination with large changes in pitch, roll, or yaw (e.g. large side slip angles) as they may result in structural failure at any speed, including below VA.

Navigation

Do not operate under IFR or at night into airports north of 73° North or south of 60° South Latitude whose navigation aids are referenced to magnetic north.

Ground Proximity Warning System (GPWS) Look-Ahead Alerting

Do not use the terrain display for navigation.

The use of look-ahead terrain alerting and terrain display functions is prohibited within 15 NM of takeoff, approach or landing at an airport not contained in the GPWS terrain database. Refer to Honeywell Document 060-4267-000 for airports and runways contained in the installed GPWS terrain database.

767 Flight Crew Operations Manual

Normal Procedu	res	Chapter NP
Table of Contents		Section 0
Introduction		NP.11
General		NP.11.1
Scan Flow and Areas	of Responsibility	NP.11.1
Normal Procedures Ph Assumptions	nilosophy and	NP.11.2
•		
-		
	(CDU) Procedures	
Autopilot Flight Direc	` '	
	nt Scan Flow	
Areas of Responsibilit		
Areas of Responsibilit as Pilot Flying or Ta	ry - First Officer xiing	NP.11.8
Amplified Procedures		NP.21
Preliminary Preflight L Captain or First Offi	Procedure – cer	NP.21.1
CDU Preflight Proced	•	
_		
Preflight Procedure –	First Officer	NP.21.11
Preflight Procedure –	Captain	NP.21.20
Before Start Procedure	e	NP.21.24
Pushback or Towing I	Procedure	NP.21.27
Engine Start Procedur	e	NP.21.28
Engine Start Procedur	e	NP.21.29
Before Taxi Procedure	2	NP.21.30
Before Takeoff Proceed	dure	NP.21.32
Takeoff Procedure	ght © The Boeing Company. See title page for detail	NP.21.33
February 15, 2010	D632T001-300	NP.TOC.0.1

Normal Procedures -Table of Contents

DO NOT USE FOR FLIGHT

767 Flight Crew Operations Manual

Takeoff Flap Retraction Speed Schedule NP.21.36
Climb and Cruise Procedure
Descent Procedure
Approach Procedure
Flap Extension Schedule NP.21.39
Landing Procedure - ILS NP.21.40
Landing Procedure - Instrument Approach Using VNAV
Go–Around and Missed Approach Procedure NP.21.43
Landing Roll Procedure NP.21.44
After Landing Procedure NP.21.45
Shutdown Procedure
Secure Procedure NP 21 48

767 Flight Crew Operations Manual

Normal Procedures Introduction

Chapter NP Section 11

NP.11.1

General

This chapter gives:

- an introduction to the normal procedures philosophy and assumptions
- step by step normal procedures

Scan Flow and Areas of Responsibility

The scan flow and areas of responsibility diagrams shown are representative and may not match the configuration(s) of your airplanes.

The scan flow diagram provides general guidance on the order each flight crew member should follow when doing the preflight and postflight procedures. Specific guidance on the items to be checked are detailed in the amplified Normal Procedures. For example, preflight procedure details are in the Preflight Procedure - Captain and Preflight Procedure - First Officer.

767 Flight Crew Operations Manual

Normal Procedures Philosophy and Assumptions

Normal procedures verify for each phase of flight that:

- the airplane condition is satisfactory
- the flight deck configuration is correct

Normal procedures are done on each flight. Refer to the Supplementary Procedures (SP) chapter for procedures that are done as needed, for example the adverse weather procedures.

Normal procedures are used by a trained flight crew and assume:

- all systems operate normally
- the full use of all automated features (LNAV, VNAV, autoland, autopilot, and autothrottle)

Normal procedures also assume coordination with the ground crew before:

- hydraulic system pressurization, or
- · flight control surface movement, or
- airplane movement

Normal procedures do not include steps for flight deck lighting and crew comfort items.

Normal procedures are done by memory and scan flow. The panel illustration in this section shows the scan flow. The scan flow sequence may be changed as needed.

767 Flight Crew Operations Manual

Configuration Check

It is the crew member's responsibility to verify correct system response. Before engine start, use lights or indications to verify each system's condition or configuration.

If there is an incorrect configuration or response:

- verify that the system controls are set correctly
- check the respective circuit breaker as needed. Maintenance must first determine that it is safe to reset a tripped circuit breaker on the ground
- test the respective system light as needed

Before engine start, review the EICAS alert messages and status display. If there are unexpected messages:

- check the Dispatch Deviations Guide (DDG) or the operator equivalent to decide if the condition has a dispatch effect
- decide if maintenance is needed

If, during or after engine start, there is an alert message:

- do the respective non-normal checklist (NNC)
- on the ground, check the DDG or the operator equivalent

After engine start, EICAS alert messages are the primary means of alerting the flight crew to non-normal conditions or incorrect configurations.

After engine start, there is no need to check status messages. Any message that has an adverse affect on safe continuation of the flight appears as an EICAS alert message.

767 Flight Crew Operations Manual

Crew Duties

Preflight and postflight crew duties are divided between the captain and first officer. Phase of flight duties are divided between the Pilot Flying (PF) and the Pilot Monitoring (PM).

Each crewmember is responsible for moving the controls and switches in their area of responsibility:

- The phase of flight areas of responsibility for both normal and non-normal procedures are shown in the Area of Responsibility illustrations in this section. Typical panel locations are shown.
- The preflight and postflight areas of responsibility are defined by the "Preflight Procedure Captain" and "Preflight Procedure First Officer"

The captain may direct actions outside of the crewmember's area of responsibility.

The general PF phase of flight responsibilities are:

- taxiing
- flight path and airspeed control
- airplane configuration
- navigation

The general PM phase of flight responsibilities are:

- checklist reading
- communications
- tasks asked for by the PF
- monitoring taxiing, flight path, airspeed, airplane configuration, and navigation

PF and PM duties may change during a flight. For example, the captain could be the PF during taxi but be the PM during takeoff through landing.

Normal procedures show who does a step by crew position (C, F/O, PF, or PM):

- in the procedure title, or
- in the far right column, or
- in the column heading of a table

The mode control panel is the PF's responsibility. When flying manually, the PF directs the PM to make the changes on the mode control panel.

The captain is the final authority for all tasks directed and done.

767 Flight Crew Operations Manual

Control Display Unit (CDU) Procedures

Before taxi, the captain or first officer may make CDU entries. The other pilot must verify the entries.

Make CDU entries before taxi or when stopped, when possible. If CDU entries must be made during taxi, the PM makes the entries. The PF must verify the entries before they are executed.

In flight, the PM usually makes the CDU entries. The PF may also make simple, CDU entries when the workload allows. The pilot making the entries executes the change only after the other pilot verifies the entries.

During high workload times, for example departure or arrival, try to reduce the need for CDU entries. Do this by using the MCP heading, altitude, and speed control modes. The MCP can be easier to use than entering complex route modifications into the CDU.

Autopilot Flight Director System (AFDS) Procedures

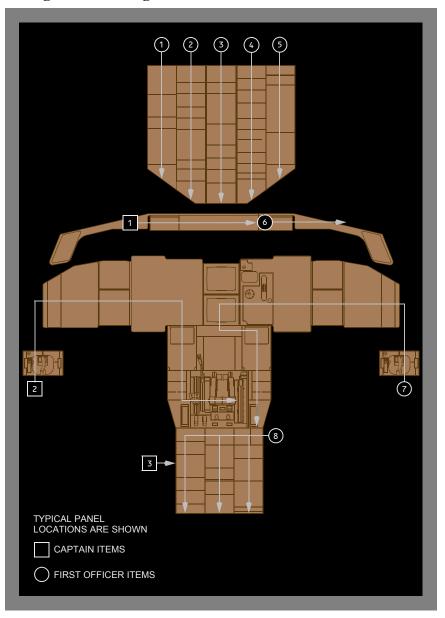
The crew must always monitor:

- airplane course
- vertical path
- speed

When selecting a value on the MCP, verify that the respective value changes on the flight instruments, as applicable.

The crew must verify manually selected or automatic AFDS changes. Use the FMA to verify mode changes for the:

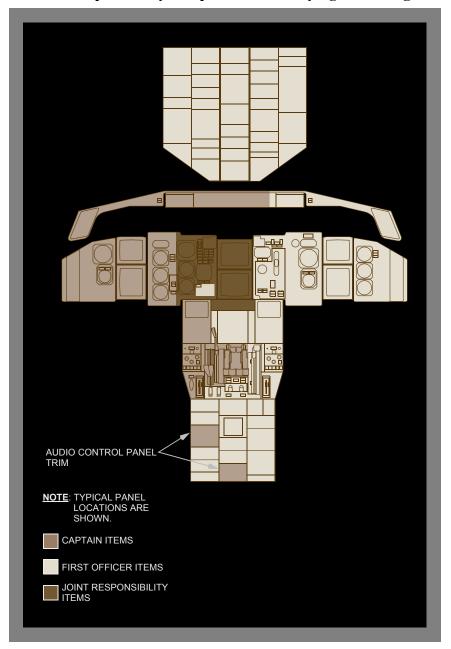
- autopilot
- · flight director
- autothrottle


During LNAV and VNAV operations, verify all changes to the airplane's:

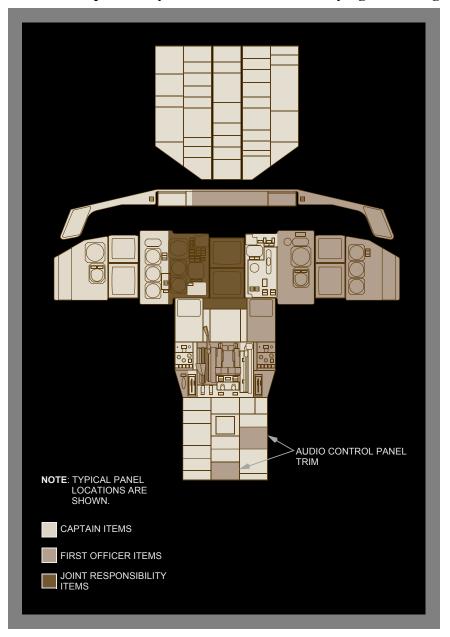
- course
- vertical path
- thrust
- speed

Announcing changes on the FMA and thrust mode display when they occur is a good CRM practice.

767 Flight Crew Operations Manual


Preflight and Postflight Scan Flow

NP.11.7


767 Flight Crew Operations Manual

Areas of Responsibility - Captain as Pilot Flying or Taxiing

767 Flight Crew Operations Manual

Areas of Responsibility - First Officer as Pilot Flying or Taxiing

767 Flight Crew Operations Manual

Normal Procedures <u>Amplified Procedures</u>

Chapter NP Section 21

Preliminary Preflight Procedure - Captain or First Officer

The Preliminary Preflight Procedure assumes that the Electrical Power Up supplementary procedure is complete.

Verify that the following are sufficient for flight:

- oxygen pressure
- hydraulic quantity
- engine oil quantity

Do

DO NOT USE FOR FLIGHT

767 Flight Crew Operations Manual

the remaining actions after a crew change or maintenance action.
Maintenance documents
FLIGHT DECK ACCESS SYSTEM switch Guard closed
[Option] BULK CARGO HEAT selectorNORM or VENT
[Option] BULK CARGO HEAT selectorCARGO or ANIMAL
FLIGHT RECORDER switchNORM
SERVICE INTERPHONE switch
RESERVE BRAKES and STEERING RESET/DISABLE switch
Verify that the ISLN light is extinguished.
Circuit breakers
Emergency equipment
Fire extinguisher – Checked and stowed
Crash axe – Stowed
Escape ropes – Stowed
Other needed equipment – Checked and stowed
Parking brake
Set the parking brake if brake wear indicators will be checked during the exterior inspection.

767 Flight Crew Operations Manual

CDU Preflight Procedure - Captain and First Officer

Start the CDU Preflight Procedure anytime after the Preliminary Preflight Procedure. The Initial Data and Navigation Data entries must be complete before the flight instrument check during the Preflight Procedure. The Performance Data entries must be complete before the Before Start Checklist

The captain or first officer may make CDU entries. The other pilot must verify the entries.

Enter data in all the boxed items on the following CDU pages.

Enter data in the dashed items or modify small font items that are listed in this procedure. Enter or modify other items at pilot's discretion.

Failure to enter enroute winds can result in flight plan time and fuel burn errors.

verify that the WODEL is correct.

Verify that the navigation data base ACTIVE date range is current.

POS INIT page:

Verify that the time is correct.

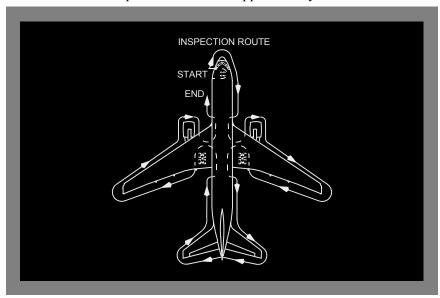
Enter the present position on the SET IRS POS line. Use the most accurate latitude and longitude.

767 Flight Crew Operations Manual

Navigation Data	e
RTE page:	
Enter the route.	
Enter the FLIGHT NUMBER.	
Activate and execute the route.	
DEPARTURES page:	
Select the runway and departure routing.	
Execute the runway and departure routing.	
POS REF page:	
Verify or enter the correct RNP for the departure.	
Verify that the route is correct on the RTE pages. Check the LEGS pages as needed to ensure compliance with the flight plan.	
Performance Data S	e
PERF INIT page:	
CAUTION: Do not enter the ZFW into the GR WT boxes. The FMC will calculate performance data with significant errors.	
Enter the ZFW.	
Verify that the FUEL on the CDU, the dispatch papers, and the fue quantity indicator agree.	el
Verify that the fuel is sufficient for flight.	
Verify that the GR WT on the CDU and the dispatch papers agre	e
TAKEOFF REF page:	
Enter the CG.	
Enter the takeoff V speeds.	

767 Flight Crew Operations Manual

Exterior Inspection


Before each flight the captain, first officer, or maintenance crew must verify that the airplane is satisfactory for flight.

Items at each location may be checked in any sequence.

Use the detailed inspection route below to check that:

- the surfaces and structures are clear, not damaged, not missing parts and there are no fluid leaks
- the tires are not too worn, not damaged, and there is no tread separation
- the gear struts are not fully compressed
- the engine inlets and tailpipes are clear, the access panels are secured, the exterior is not damaged, and the reversers are stowed
- the doors and access panels that are not in use are latched
- the probes, vents, and static ports are clear and not damaged
- the skin area adjacent to the pitot probes and static ports is not wrinkled
- the antennas are not damaged
- the light lenses are clean and not damaged

For cold weather operations see the Supplementary Procedures.

767 Flight Crew Operations Manual

Left Forward Fuselage	
Probes, sensors, ports, vents, and drains (as applicable)	Check
Doors and access panels (not in use)	Latched
Nose	
Radome	Check
Diverter strips - Secure	
Forward access door	Secure
E/E access door	Secure
Nose Wheel Well	
Tires and wheels	Check
Gear strut and doors	Check
Nose wheel steering assembly	Check
Nose gear steering lockout pin	As needed
Gear pin	As needed
Exterior lights	Check
Nose wheel spin brake (snubbers)	In place
Wheel well light switches	As needed
Right Forward Fuselage	
Probes, sensors, ports, vents, and drains (as applicable)	Check
Doors and access panels (not in use)	Latched
Oxygen pressure relief green disc	In place
Negative pressure relief doors	Closed

767 Flight Crew Operations Manual

Right Wing Root, Pack, and Lower Fuselage
Probes, sensors, ports, vents, and drains (as applicable) Check
Exterior lights
Pack inlet and pneumatic access doors
Leading edge slats
Fuel sticks
Right Engine
Access panelsLatched
Probes, sensors, ports, vents, and drains (as applicable) Check
Fan blades, probes, and spinner
Thrust reverser
Exhaust area and tailcone
Right Wing and Leading Edge
Access panelsLatched
Leading edge slats
Fuel sticks
Wing Surfaces
Fuel tank vent
Right Wing Tip and Trailing Edge
Position and anti-collision lights
Static discharge wicks
Fuel jettison nozzle
Ailerons and trailing edge flaps

767 Flight Crew Operations Manual

Right Main Gear

Tires, brakes and wheels	Check
Verify that the wheel chocks are in place as needed.	
If the parking brake is set, the brake wear indicator pins out of the guides.	s must extend
Gear strut, actuators, and doors	Check
Hydraulic lines	Secure
Gear pins	As needed
Right Main Wheel Well	
Wheel well	Check
Right Aft Fuselage	
Ram air turbine door	Check
Doors and access panels (not in use)	Latched
Probes, sensors, ports, vents, and drains (as applicable)	Check
Negative pressure relief doors	Closed
Tail	
Vertical stabilizer and rudder	Check
Tail skid	Check
Verify that the tail skid is not damaged.	
Horizontal stabilizer and elevator	Check
Static discharge wicks	Check
APU exhaust outlet	Check
Left Aft Fuselage	
Outflow valve	Check
Doors and access panels (not in use)	Latched
Probes, sensors, ports, vents, and drains (as applicable)	Check

Left Main Wheel Well	
Wheel well	Check
Left Main Gear	
Tires, brakes and wheels	Check
Verify that the wheel chocks are in place as needed.	
If the parking brake is set, the brake wear indicator pi out of the guides.	ns must extend
Gear strut, actuators and doors	Check
Hydraulic lines	Secure
Gear pins	As needed
Left Wing Tip and Trailing Edge	
Position and anti-collision lights	Check
Static discharge wicks	Check
Ailerons and trailing edge flaps	Check
Fuel jettison nozzle	Check
Left Wing and Leading Edge	
Wing Surfaces	Check
Fuel sticksF	lush and secure
Fuel tank vent	Check
Leading edge slats	Check
Access panels	Latched

767 Flight Crew Operations Manual

Left Engine

Exhaust area and tailcone
Thrust reverser
Fan blades, probes, and spinner
Probes, sensors, ports, vents, and drains (as applicable)
Access panels
Left Wing Root, Pack, and Lower Fuselage
Fuel sticks Flush and secure
Probes, sensors, ports, vents, and drains (as applicable)
Exterior lights
Pack inlet and pneumatic access doors
Negative and positive pressure relief doors
Leading edge slats

767 Flight Crew Operations Manual

Preflight Procedure – First Officer

The first officer normally does this procedure. The captain may do this procedure as needed.

YAW DAMPER switchesON
The INOP lights stay illuminated until IRS alignment is complete.
ELECTRONIC ENGINE CONTROL switchesNORM
HYDRAULIC panel
Verify that the SYS PRESS lights are illuminated.
Verify that the QTY lights are extinguished.
Left and Right ENGINE PRIMARY pump switches - ON
Verify that the PRESS lights are illuminated.
Center 1 and Center 2 ELECTRIC PRIMARY pump switches - Off
Verify that the PRESS lights are illuminated.
DEMAND pump selectors – OFF
Verify that the PRESS lights are illuminated.
[Ontion]

[Option]

Evacuation signal command switchGuard closed

BATTERY switch – ON

Verify that the DISCH light is extinguished.

STANDBY POWER selector - AUTO

Verify that the standby power bus OFF light is extinguished.

Electrical panel Set
APU GENERATOR switch – ON
BUS TIE switches – AUTO
Verify that the AC BUS OFF lights are extinguished.
UTILITY BUS switches – ON
Verify that the OFF lights are extinguished.
GENERATOR CONTROL switches – ON
Verify that the OFF lights are illuminated.
Verify that the DRIVE lights are illuminated.
APU selector (as needed)START, then ON
Do not allow the APU selector to spring back to the ON position.
Verify that the RUN light is illuminated.
Lighting panel
RUNWAY TURNOFF light switches - OFF
EMERGENCY LIGHTS switch
Verify that the UNARMED light is extinguished.
Note: Do not push PASSENGER OXYGEN switch. The switch causes deployment of the passenger oxygen masks.
PASSENGER OXYGEN ON lightVerify extinguished
WARNING: Do not push the RAM AIR TURBINE switch. The switch causes deployment of the ram air turbine.
Ram air turbine UNLKD lightVerify extinguished
Engine control panel
Engine ignition selector -1 or 2
Engine ignition selector – SINGLE
Engine start selectors – AUTO

Normal Procedures -Amplified Procedures

FUEL JETTISON panelSet
Fuel jettison NOZZLE switches – Off
Fuel jettison selector – OFF
FUEL panelSet
CROSSFEED switches – Off
Verify that the VALVE lights are extinguished.
FUEL PUMP switches – Off
Verify that the left forward pump PRESS light is extinguished if the APU is on or is illuminated if the APU is off.
Verify that the other left and right pump PRESS lights are illuminated.
Verify that both center pump PRESS lights are extinguished.
ANTI–ICE panel
WING anti-ice switch - Off
ENGINE anti-ice switches - Off
WIPER selector OFF
Lighting panel
POSITION light switch – As needed
ANTI-COLLISION light switches - Off
WING light switch – As needed
LANDING light switches – OFF
WINDOW HEAT switches ON
Verify that the INOP lights are extinguished.
Right HF radio Set
PASSENGER SIGNS panelSet
NO SMOKING selector – AUTO or ON
SEATBELTS selector – AUTO or ON

CABIN ALTITUDE CONTROL panel Set
AUTO RATE control – Index
LANDING ALTITUDE selector – Destination airport elevation
MODE SELECTOR – AUTO 1 or AUTO 2
EQUIPMENT COOLING mode selector
CARGO HEAT switchesON
Air conditioning panel
CABIN compartment temperature controls – AUTO
Set as needed.
The INOP lights stay illuminated until the trim air switch is ON.
TRIM AIR switch – ON
RECIRCULATION FAN switches – ON
Verify that the INOP lights are extinguished.
[Option] GASPER FAN switch – ON
FLIGHT DECK compartment temperature control – AUTO
Set as needed.
Verify that the INOP light is extinguished.
PACK CONTROL selectors – AUTO
The PACK OFF lights stay illuminated until bleed air or external air is supplied.
BLEED AIR panel
LEFT, CENTER and RIGHT ISOLATION switches - On
Verify that the VALVE lights are extinguished.
ENGINE bleed air switches – ON
Verify that the OFF lights are illuminated.

DO NOT USE FOR FLIGHT

767 Flight Crew Operations Manual

APU bleed air switch - ON

Verify that the VALVE light is extinguished.

FLIGHT DIRECTOR switch ON

VOR/DME switchAUTO

OxygenTest and set

Select the status display.

Oxygen mask - Stowed and doors closed

TEST AND RESET switch – Push and hold

Verify that the yellow cross shows momentarily in the flow indicator

EMERGENCY/TEST selector - Push and hold

Continue to hold the RESET/TEST switch and push the EMERGENCY/TEST selector for 10 seconds. Verify that the yellow cross shows continuously in the flow indicator.

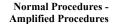
Verify that the crew oxygen pressure does not decrease more than 100 psig.

If the oxygen cylinder valve is not in the full open position, pressure can:

- decrease rapidly, or
- decrease more than 100 psig, or
- increase slowly back to normal

Release the TEST AND RESET switch and the EMERGENCY/TEST selector. Verify that the yellow cross does not show in the flow indicator.

Normal/100% selector - 100%


Crew oxygen pressure – Check EICAS

Verify that the pressure is sufficient for dispatch.

•
INSTRUMENT SOURCE SELECT panel Set
FLIGHT DIRECTOR source selector – R
NAVIGATION instrument source selector – FMC R
ELECTRONIC FLIGHT INSTRUMENT switch – Off
INERTIAL REFERENCE SYSTEM switch – Off
AIR DATA source switch – Off
Do the Initial Data and Navigation Data steps from the CDU Preflight Procedure and verify that the IRS alignment is complete before checking the flight instruments.
Flight instruments
Set the altimeter.
Verify that the flight instrument indications are correct.
Verify that only these flags are shown: • TCAS OFF
[Option - With speedtape only]V1 INOP until takeoff V-speeds are selectedexpected RDMI flags
Verify that the flight mode annunciations are correct: • autothrottle mode is blank • roll mode is TO • pitch mode is TO • AFDS status is FD
Select the map mode.
AUTOLAND STATUS annunciator
Verify that the indications are blank.
Landing gear panel Set
Landing gear lever – DN
ALTERNATE GEAR EXTEND switch - Guard closed
Ground proximity FLAP OVERRIDE switch

DO NOT USE FOR FLIGHT

EFIS control panel Set
Decision height selector – As needed
TERRAIN switch – As needed
HSI RANGE selector – As needed
HSI TRAFFIC switch – As needed
HSI mode selector – MAP
HSI CENTER switch – As needed
WEATHER RADAR switch - Off
Verify that weather radar indications are not shown on the HSI.
MAP switches – As needed
Weather radar panel
Left VHF communications panel
Center VHF communications panel
Engine fire panel
Verify that the ENG BTL 1 DISCH and ENG BTL 2 DISCH lights are extinguished.
Engine fire switches – In
Verify that the LEFT and RIGHT lights are extinguished.
ADF panel
Transponder panel
ILS panel
CARGO FIRE panel
CARGO FIRE ARM switches – Off Verify that the FWD and AFT lights are extinguished.
Verify that the DISCH light is extinguished.
APU fire panel Set
Verify that the APU BTL DISCH light is extinguished.

APU fire switch – Ir	APU	fire	switch	- In
----------------------	-----	------	--------	------

Verify that the APU light is extinguished.	
Right VHF communications panel	Set
First officer's audio control panel	ed
WARNING: Do not put objects between the seat and the aisle stand. Injury can occur when the seat is adjusted.	
Seat	ıst
Adjust the seat for optimum eye reference.	
[Option - manual seat operation] Verify a positive horizontal (fore and aft) seat lock.	
Rudder pedals	ıst
Adjust the rudder pedals to allow full rudder pedal and brake pedal movement.	ĺ
Seat belt and shoulder harness	ıst
Do the PREFLIGHT checklist on the captain's command.	

767 Flight Crew Operations Manual

Preflight Procedure - Captain

The captain normally does this procedure. The first officer may do this procedure if needed.

VOR/DME switch AUTO

FLIGHT DIRECTOR switch - ON

AUTOTHROTTLE ARM switch - ARM

BANK LIMIT selector - As needed

Autopilot DISENGAGE bar - UP

Oxygen Test and set

Select the status display.

Oxygen mask - Stowed and doors closed

TEST AND RESET switch – Push and hold

Verify that the yellow cross shows momentarily in the flow indicator

EMERGENCY/TEST selector – Push and hold

Continue to hold the RESET/TEST switch and push the EMERGENCY/TEST selector for 10 seconds. Verify that the yellow cross shows continuously in the flow indicator.

Verify that the crew oxygen pressure does not decrease more than 100 psig.

If the oxygen cylinder valve is not in the full open position, pressure can:

- decrease rapidly, or
- decrease more than 100 psig, or
- increase slowly back to normal

Release the TEST AND RESET switch and the EMERGENCY/TEST selector. Verify that the yellow cross does not show in the flow indicator.

Normal/100% selector - 100%

DO NOT USE FOR FLIGHT

767 Flight Crew Operations Manual

The second of th
Crew oxygen pressure – Check EICAS
Verify that the pressure is sufficient for dispatch.
INSTRUMENT SOURCE SELECT panel
FLIGHT DIRECTOR source selector – L
NAVIGATION instrument source selector – FMC L
ELECTRONIC FLIGHT INSTRUMENT switch – Off
INERTIAL REFERENCE SYSTEM switch – Off
AIR DATA source switch – Off
Do the Initial Data and Navigation Data steps from the CDU Preflight Procedure and verify that the IRS alignment is complete before checking the flight instruments.
Flight instruments
Set the altimeter.
Verify that the flight instrument indications are correct.
Verify that only these flags are shown: • TCAS OFF
[Option - with speedtape only]V1 INOP until takeoff V-speeds are selectedexpected RDMI flags
Verify that the flight mode annunciations are correct: • autothrottle mode is blank • roll mode is TO • pitch mode is TO • AFDS status is FD
Select the map mode.
AUTOLAND STATUS annunciator
Verify that the indications are blank.
RESERVE BRAKES AND STEERING switch Off

Verify that the VALVE light is extinguished.

Standby instruments
Attitude indicator caging control – Pull, then release
ILS selector – OFF
Set the altimeter.
Verify that the flight instrument indications are correct.
Verify that no flags are shown.
Standby engine indicator selector
AUTOBRAKES selector
EFIS control panel
Decision height selector – As needed
TERRAIN switch – As needed
HSI RANGE selector – As needed
HSI TRAFFIC switch – As needed
HSI mode selector – MAP
HSI CENTER switch – As needed
WEATHER RADAR switch – Off
Verify that weather radar indications are not shown on the HSI.
MAP switches – As needed
ALTERNATE STABILIZER TRIM switches
SPEEDBRAKE leverDOWN
Reverse thrust levers
Forward thrust levers
Flap lever Set
Set the flap lever to agree with the flap position.
Parking brake

O NOT USE FOR FLIGHT

767 Flight Crew Operations Manual

Verify that the PARK BRAKE light is illuminated.

Note: Do not assume that the parking brake will prevent airplane movement. Accumulator pressure can be insufficient.

STABILIZER TRIM cutout switches Guards closed FUEL CONTROL switch fire warning lights Verify extinguished WARNING: Do not put objects between the seat and the aisle stand. Injury can occur when the seat is adjusted. Seat Adjust Adjust the seat for optimum eye reference. [Option - manual seat operation] Verify a positive horizontal (fore and aft) seat lock. Adjust the rudder pedals to allow full rudder pedal and brake pedal movement.

Call "PREFLIGHT CHECKLIST"

767 Flight Crew Operations Manual

Before Start Procedure S

Before Start Procedure	
Start the Before Start Procedure after papers are on board.	
Flight deck door	F/O
Verify that the LOCK FAIL light is extinguished.	
Do the CDU Preflight Procedure – Performance Data steps before completing this procedure.	ore
CDU display Set	C, F/O
Normally the PF selects the TAKEOFF REF page.	
Normally the PM selects the LEGS page.	
Takeoff thrust reference	C, F/O
Verify that the thrust reference mode is correct.	
IAS bugs Set	C, F/O
Set the bugs at V1, VR, VREF 30 ± 40 , and VREF 30 ± 80 .	
MCP Set	C
IAS/MACH selector – Set V2	
IAS/MACH selector – Set V2 Arm LNAV as needed.	
Arm LNAV as needed.	
Arm LNAV as needed. Initial heading – Set	C, F/O
Arm LNAV as needed. Initial heading – Set Initial altitude – Set	
Arm LNAV as needed. Initial heading – Set Initial altitude – Set Taxi and Takeoff briefings	
Arm LNAV as needed. Initial heading – Set Initial altitude – Set Taxi and Takeoff briefings	riefings.
Arm LNAV as needed. Initial heading – Set Initial altitude – Set Taxi and Takeoff briefings	riefings.
Arm LNAV as needed. Initial heading – Set Initial altitude – Set Taxi and Takeoff briefings	riefings. F/O C, F/O

DO NOT USE FOR FLIGHT

767 Flight Crew Operations Manual

Obtain a clearance to pressurize the hydraulic systems. Obtain a clearance to start the engines. If pushback is needed: Verify that the nose gear steering is locked out. C, F/O HYDRAULIC panel Set F/O WARNING: If the tow bar is connected, do not pressurize the hydraulic systems until the nose gear steering is locked out. Unwanted tow bar movement can occur. **Note:** Pressurize the right system first to prevent fluid transfer between systems. Right ELECTRIC DEMAND pump selector – AUTO Verify that the PRESS light is extinguished. Center 1 and Center 2 ELECTRIC PRIMARY pump switches – ON Verify that the center 1 PRESS light is extinguished. The center 2 PRESS light stays illuminated until after the engine start due to load shedding. Left ELECTRIC DEMAND pump selector – AUTO Verify that the PRESS light is extinguished. Center AIR DEMAND pump selector – AUTO Verify that the PRESS light is extinguished.

Fuel panel Set F/O

LEFT and RIGHT FUEL PUMP switches - ON

Verify that the PRESS lights are extinguished.

If there is fuel in the center tank:

CENTER FUEL PUMP switches - ON

Verify both PRESS lights are illuminated and CTR L FUEL PUMP and CTR R FUEL PUMP messages are shown.

RED ANTI-COLLISION light switchON

F/O

DO NOT USE FOR FLIGHT

RECALL switch Push	F/O
	170
Verify that only the expected alert messages are shown.	
TrimSet	C
Stabilizer trim – UNITS	
Set the trim for takeoff.	
Verify that the trim is in the greenband.	
Aileron trim – 0 units	
Rudder trim – 0 units	
Call "BEFORE START CHECKLIST."	C
Do the BEFORE START checklist.	F/O

 \mathbf{C}

DO NOT USE FOR FLIGHT

767 Flight Crew Operations Manual

Pushback or Towing Procedure

The Engine Start procedure may be done during pushback or towing.

Establish communications with ground handling personnel.

CAUTION: Do not hold or turn the nose wheel tiller during pushback or towing. This can damage the nose gear or the tow bar.

CAUTION: Do not use airplane brakes to stop the airplane during pushback or towing. This can damage the nose gear or the tow bar.

At airports where ground tracking is not available, select STANDBY. At airports equipped to track airplanes on the ground, select an active transponder setting, but not a TCAS mode.

Set or release the parking brake as directed by ground handling personnel.

C or F/O

When pushback or towing is complete:

Verify that the tow bar is disconnected.

Verify that the nose gear steering is not locked out.

767 Flight Crew Operations Manual

Engine Start Procedure [Option - GE CF6-80 engines] Select the secondary engine indications. F/O PACK CONTROL selectorsOFF F/O Verify that the PACK OFF lights are illuminated. F/O Verify that the messages are cancelled. Start sequence Announce \mathbf{C} Call "START ENGINE" F/O Verify that the oil pressure increases. C. F/O When N2 is at 20%, or (if 20% N2 is not possible), at maximum motoring and a minimum of 15% N2: **Note:** Maximum motoring occurs when N2 acceleration is less than 1% in approximately 5 seconds. FUEL CONTROL switchRUN \mathbf{C} Verify that the EGT increases and stays below the EGT limit. C. F/O After the engine is stabilized at idle, start the other engine. Do the ABORTED ENGINE START checklist for one or more of the following abort start conditions:

- the EGT does not increase by 25 seconds after the fuel control switch is moved to RUN
- there is no N1 rotation by 30 seconds after N2 is stabilized at idle
- the EGT quickly nears or exceeds the start limit
- the oil pressure indication is not normal by the time that the engine is stabilized at idle

767 Flight Crew Operations Manual

Engine Start Procedure [Option - PW 4000 series engines] Select the secondary engine indications. F/O PACK CONTROL selectors OFF F/O Verify that the PACK OFF lights are illuminated. CANCEL switch Push F/O Verify that the messages are cancelled. C Call "START ENGINE" \mathbf{C} F/O Engine start selector GND Verify that the oil pressure increases. C, F/O Verify N2 rotation. C, F/O At maximum motoring and a minimum of 15% N2: **Note:** Maximum motoring occurs when N2 acceleration is less than 1% in approximately 5 seconds. FUEL CONTROL switchRUN \mathbf{C} Verify that the EGT increases and stays below the EGT limit. C, F/O Do not increase thrust above that needed to taxi until the oil temperature

is a minimum of 50° C.

After the engine is stabilized at idle, start the other engine.

Do the ABORTED ENGINE START checklist for one or more of the following abort start conditions:

- the EGT does not increase by 20 seconds after the fuel control switch is moved to RUN
- there is no N1 rotation when the EGT increases
- the EGT quickly nears or exceeds the start limit
- the N2 is not at idle by 2 minutes after the fuel control switch is moved to RUN
- the oil pressure indication is not normal by the time that the engine is stabilized at idle

Defens Tevi Due ee dum	
Before Taxi Procedure	
APU selectorOFF	F/C
ENGINE ANTI–ICE switches As needed	F/C
PACK selectorsAUTO	F/C
LEFT and RIGHT ISOLATION switches Off	F/O
Select the status display.	F/O
Verify that the ground equipment is clear.	C, F/O
Call "FLAPS" as needed for takeoff.	C
Flap lever Set takeoff flaps	F/C
Flight controls	C
Make slow and deliberate inputs, one direction at a time.	
Move the control wheel and the control column to full trave directions and verify: • freedom of movement • that the controls return to center • correct flight control movement on the EICAS display	I in both
Hold the nose wheel tiller during the rudder check to preven wheel movement.	nt nose
 Move the rudder pedals to full travel in both directions and freedom of movement that the rudder pedals return to center correct flight control movement on the EICAS display. 	verify:
Select the secondary engine indications.	F/C
Transponder As needed	F/O
At airports where ground tracking is not available, select STANDBY. At airports equipped to track airplanes on the ground, select an active transponder setting, but not a TCAS mode.	
Recall	C, F/O

Normal Procedures -**Amplified Procedures**

Update changes to the taxi briefing, as needed.	C or PF
Call "BEFORE TAXI CHECKLIST."	C
Do the BEFORE TAXI checklist.	F/O

767 Flight Crew Operations Manual

Before Takeoff Procedure

[Option - PW 4000 series engines]

Engine warm up requirements:

• engine oil temperature must be above the lower amber band before takeoff.

[Option - PW 4000 series engines]

Engine warm up recommendations (there is no need to delay the takeoff for these recommendations):

- when the engines have been shut down more than 2 hours:
 - run the engines for 5 minutes
 - when taxi time is expected to be less than 5 minutes, start the engines as early as feasible
 - use a thrust setting normally used for taxi operations.

[Option - GE CF6-80 engines]

Engine warm up requirements:

• engine oil temperature must be above the bottom of the temperature scale.

Engine warm up recommendations:

- run the engines for at least 3 minutes
- use a thrust setting normally used for taxi operations.

Pilot Flying	Pilot Monitoring	
	Notify the cabin crew to prepare for takeoff. Verify that the cabin is secure.	
The pilot who will do the takeoff updates changes to the takeoff briefing as needed.		
Set the weather radar display as needed. Set the terrain display as needed.		
Call "BEFORE TAKEOFF CHECKLIST."	Do the BEFORE TAKEOFF checklist.	

767 Flight Crew Operations Manual

Takeoff Procedure

Pilot Flying	Pilot Monitoring
Before entering the departure runway, verify that the runway and runway entry point are correct.	
	When entering the departure runway, set the WHITE ANTI COLLISION light switch to ON. Use other lights as needed.
	Set the transponder mode selector to TA/RA.
Verify that the brakes are released.	
Align the airplane with the runway.	
Verify that the airplane heading agrees with the assigned runway heading.	
	When cleared for takeoff, set the left and right WING LANDING light switches to ON.
Advance the thrust levers to approximately 70% N1.	
Advance the thrust levers to approximately 1.10 EPR.	
Allow the engines to stabilize	
Push the THR switch.	

Pilot Flying	Pilot Monitoring
Verify that the correct takeoff thrust is s	set.
	Monitor the engine instruments during the takeoff. Call out any abnormal indications.
	Adjust takeoff thrust before 80 knots as needed.
	During strong headwinds, if the thrust levers do not advance to the planned takeoff thrust by 80 knots, manually advance the thrust levers.
After takeoff thrust is set, the captain's hand must be on the thrust levers until V1.	
Monitor airspeed. Maintain light forward pressure on the control column.	Monitor airspeed and call out any abnormal indications.
Verify 80 knots and call "CHECK."	Call "80 KNOTS."
Verify V1 speed.	Call "V1."
At VR, rotate toward 15° pitch attitude. After liftoff, follow F/D commands.	At VR, call "ROTATE." Monitor airspeed and vertical speed.
Establish a positive rate of climb.	
	Verify a positive rate of climb on the altimeter and call "POSITIVE RATE."
Verify a positive rate of climb on the altimeter and call "GEAR UP."	
	Set the landing gear lever to UP.
Above 400 feet radio altitude, call for a roll mode as needed.	Select or verify the roll mode.
At thrust reduction height, call "VNAV."	
	Push the VNAV switch.
Verify that climb thrust is set.	

Pilot Flying	Pilot Monitoring
Verify acceleration.	
Call "FLAPS" according to the flap retraction schedule.	
	Set the flap lever as directed.
Engage the autopilot after a roll mode and VNAV are engaged.	
	After flap retraction is complete:
	Set the landing gear lever to OFF after landing gear retraction is complete
Call "AFTER TAKEOFF CHECKLIST."	
	Do the AFTER TAKEOFF checklist.

767 Flight Crew Operations Manual

Takeoff Flap Retraction Speed Schedule

Takeoff Flaps	At Speed (knots)	Select Flaps
	VREF 30 + 20	5
20 15	"F"	1
20 or 15	VREF 30 + 40	
	"F"	UP
	VREF 30 + 60	
	"F"	1
5	VREF 30 + 40	
	"F"	UP
	VREF 30 + 60	

[&]quot;F" = Minimum flap retraction speed for next flap setting on speed tape display (as installed)

767 Flight Crew Operations Manual

Climb and Cruise Procedure

Complete the After Takeoff Checklist before starting the Climb and Cruise Procedure.

Pilot Flying	Pilot Monitoring	
	At or above 10,000 feet MSL, set the LANDING light switches to OFF.	
	Set the passenger signs as needed.	
At transition altitude, set and crosscheck the altimeters to standard.		
	Refer to the Operating Instructions contained in Flight Crew Operations Manual Bulletin (FCOMB), Subject: "Center Tank Fuel Pumps."	
	Before the top of descent, modify the active route as needed for the arrival and approach.	
	Verify or enter the correct RNP for the arrival.	

NP.21.38

DO NOT USE FOR FLIGHT

767 Flight Crew Operations Manual

Descent Procedure

Start the Descent Procedure before the airplane descends below the cruise altitude for arrival at destination.

Complete the Descent Procedure by 10,000 feet MSL.

Pilot Flying	Pilot Monitoring	
	Verify that pressurization is set to landing altitude.	
Review all alert messages.	Recall and review all alert messages.	
Verify VREF on the APPROACH REF page.	Enter VREF on the APPROACH REF page.	
Set the bugs at VREF, VREF 30 + 40, and VREF 30 + 80.		
Set the RADIO/BARO minimums as needed for the approach.		
Set or verify the navigation radios and course for the approach.		
	Set the AUTOBRAKE selector to the needed brake setting.	
Do the approach briefing.		
Call "DESCENT CHECKLIST."	Do the DESCENT checklist.	

767 Flight Crew Operations Manual

Approach Procedure

The Approach Procedure is normally started at transition level.

Complete the Approach Procedure before:

- the initial approach fix, or
- the start of radar vectors to the final approach course, or
- the start of a visual approach

Pilot Flying	Pilot Monitoring
	Set the passenger signs as needed.
	At or above 10,000 feet MSL, set the LEFT and RIGHT WING LANDING light switches to ON.
At transition level, set and crosscheck the altimeters.	
Update the arrival and approach, as needed. Update the RNP as needed.	
Update the approach briefing as needed.	
Call "APPROACH CHECKLIST."	Do the APPROACH checklist.

Flap Extension Schedule

Current Flap Position	At "Display" or Speed (knots)	Select Flaps	Command Speed for Selected Flaps
UP	"Ref Bug" VREF30 + 80	1	VREF30 + 60
1	VREF30 + 60	5	"Ref Bug" VREF30 + 40
5	"Ref Bug" VREF30 + 40	20	VREF30 + 20
20	VREF30 + 20	25 or 30	(VREF25 or VREF30) + wind additives

767 Flight Crew Operations Manual

Landing Procedure - ILS

Pilot Flying	Pilot Monitoring
	[Passenger airplanes] Notify the cabin crew to prepare for landing. Verify that the cabin is secure.
Call "FLAPS" according to the flap extension schedule.	Set the flap lever as directed.
When on localizer intercept heading:	
 verify that the ILS is tuned and identified verify that the LOC and G/S pointers are shown 	
Arm the APP mode.	
WARNING: When using LNAV to intercept the final approach course, LNAV might parallel the localizer without capturing it. The airplane can then descend on the glide slope with the localizer not captured.	
Use HDG SEL or HDG HOLD to intercept the final approach course, as needed.	
Verify that the localizer is captured.	
	Call "GLIDE SLOPE ALIVE."
At glide slope alive, call:	Set the landing gear lever to DN.
• "GEAR DOWN" • "FLAPS 20"	Set the flap lever to 20.
Set the SPEEDBRAKE lever to ARMED.	
At glide slope capture, call "FLAPS" as needed for landing.	Set the flap lever as directed.
Set the missed approach altitude on the MCP.	
Call "LANDING CHECKLIST."	Do the LANDING checklist.
At the final approach fix or OM, verify the crossing altitude.	
Monitor the approach. Verify the autoland status at 500 feet radio altitude.	

767 Flight Crew Operations Manual

Landing Procedure - Instrument Approach Using VNAV

Use the autopilot during the approach to give:

- autopilot alerts and mode fail indications
- more accurate course and glide path tracking
- lower RNP limits.

This procedure is not authorized using QFE.

Pilot Flying	Pilot Monitoring
	[Passenger airplanes]
	Notify the cabin crew to prepare for landing. Verify that the cabin is secure.
Call "FLAPS" according to the flap extension schedule.	Set the flap lever as directed.
The recommended roll modes for the final approach are:	
 for a RNAV or GPS approach use LNAV for a LOC-BC approach use LNAV or B/CRS for a VOR or NDB approach use LNAV for a LOC, SDF, or LDA approach use LNAV or LOC 	
	Verify that the VNAV glide path angle is shown on the final approach segment of the LEGS page.
When on the final approach course intercept heading for LOC, LOC-BC, SDF, or LDA approaches:	
verify that the localizer is tuned and identifiedverify that the LOC pointer is shown	
Arm the LNAV or LOC mode.	
WARNING: When using LNAV to intercept the localizer, LNAV might parallel the localizer without capturing it. The airplane can then descend on the VNAV path with the localizer not captured.	

Verify that LNAV is engaged or that the localizer is captured.

as needed.

Use LNAV, HDG SEL or HDG HOLD to intercept the final approach course

Pilot Flying	Pilot Monitoring
Approximately 2 NM before the final approach fix and after ALT HOLD or VNAV PTH is annunciated:	Call "APPROACHING GLIDE PATH."
 verify that the autopilot is engaged set DA(H) or MDA(H) on the MCP select or verify VNAV select or verify speed intervention 	
Approaching glide path, call:	Set the landing gear lever to DN.
"GEAR DOWN" "FLAPS 20"	Set the flap lever to 20
Set the SPEEDBRAKE lever to ARMED.	
Beginning the final approach descent, call "FLAPS" as needed for landing.	Set the flap lever as directed.
Call "LANDING CHECKLIST."	Do the LANDING checklist.
When at least 300 feet below the missed approach altitude, set the missed approach altitude on the MCP.	
At the final approach fix, verify the crossing altitude and crosscheck the altimeters.	
Monitor the approach.	
If suitable visual reference is established at MDA(H), DA(H), or the missed approach point, disengage the autopilot and disconnect the autothrottle. Maintain the glide path to landing.	

767 Flight Crew Operations Manual

Go-Around and Missed Approach Procedure

Pilot Flying	Pilot Monitoring
At the same time:	Position the flap lever to 20.
• push the GA switch • call "FLAPS 20"	
Verify:	
• the rotation to go—around attitude • that the thrust increases	
	Verify that the thrust is sufficient for the go-around or adjust as needed.
Verify a positive rate of climb on the altimeter and call "GEAR UP."	Verify a positive rate of climb on the altimeter and call "POSITIVE RATE."
	Set the landing gear lever to UP.
Above 400 feet radio altitude, select a roll mode.	Verify that the missed approach altitude is set.
Verify that the missed approach route is tracked.	
At acceleration height, set speed to the maneuver speed for the planned flap setting.	Select CLB thrust.
Call "CLIMB THRUST."	
Call "FLAPS" according to the flap retraction schedule.	Set the flap lever as directed.
After flap retraction to the planned flap setting, select FLCH or VNAV as needed.	
Verify that climb thrust is set.	
Verify that the missed approach altitude is captured.	
	Set the landing gear lever to OFF after landing gear retraction is complete.
Call "AFTER TAKEOFF CHECKLIST."	Do the AFTER TAKEOFF checklist.

767 Flight Crew Operations Manual

Landing Roll Procedure

Pilot Flying	Pilot Monitoring
Verify that the thrust levers are closed. Verify that the SPEEDBRAKE lever	Verify that the SPEEDBRAKE lever is UP.
is UP.	Call "SPEEDBRAKES UP."
	If the SPEEDBRAKE lever is not UP, call "SPEEDBRAKES NOT UP."
Monitor the rollout progress.	
Verify correct autobrake operation.	
WARNING: After the reverse thrust levers are moved, a full stop landing must be made. If an engine stays in reverse, safe flight is not possible.	
Without delay, move the reverse thrust levers to the interlocks and hold light pressure until the interlocks release. Then apply reverse thrust as needed.	
By 60 knots, start movement of the reverse thrust levers to be at the reverse idle detent before taxi speed.	Call "60 KNOTS."
After the engines are at reverse idle, move the reverse thrust levers full down.	
Before taxi speed, disarm the autobrakes. Use manual braking as needed.	
Before turing off the runway, disconnect the autopilot.	

767 Flight Crew Operations Manual

After Landing Procedure

Start the After Landing Procedure when clear of the active runway.

[Option - PW 4000 series engines]

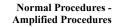
Engine cooldown requirement:

- Run the engines for at least 90 seconds
- Use a thrust setting no higher than that normally used for all engine taxi operations.

[Option - PW JT9D and 4000 series engines]

Engine cooldown recommendations:

- Run the engines for at least 5 minutes
- Use a thrust setting no higher than that normally used for all engine taxi operations.


[Option - GE CF6-80 engines]

Engine cooldown recommendations:

- Run the engines for at least 3 minutes
- Use a thrust setting normally used for taxi operations.

Pilot Flying	Pilot Monitoring
The captain moves or verifies that the SPEEDBRAKE lever is DOWN.	
	Set the APU selector to START, then ON, as needed.
	Do not allow the APU selector to spring back to the ON position.
	Set the exterior lights as needed.
Set the weather radar to off.	
	Set the AUTOBRAKE selector to OFF.
	Set the flap lever to UP.
	Set the transponder mode selector as needed. At airports where ground tracking is not available, select STANDBY. At airports equipped to track airplanes on the ground, select an active transponder setting, but not a TCAS mode.

Shutdown Procedure	
Start the Shutdown Procedure after taxi is complete.	
Parking brakeSet	C or F/O
Verify that the PARK BRAKE light is illuminated.	
Electrical powerSet	F/O
If APU power is needed:	
Verify that the APU RUN light is illuminated.	
If external power is needed:	
Verify that the EXTERNAL POWER AVAIL light is ill-	uminated.
EXTERNAL POWER switch – Push	
Verify that the ON light is illuminated.	
ENGINE ANTI-ICE switches Off	F/O
FUEL CONTROL switchesCUTOFF	C
If towing is needed:	
Establish communications with ground handling personnel	C
WARNING: If the nose gear steering is not locked out, change to hydraulic power with the tow ba connected may cause unwanted tow bar movement.	
Verify that the nose gear steering is locked out	C
CAUTION: Do not hold or turn the nose wheel tiller du pushback or towing. This can damage the r gear or the tow bar.	
CAUTION: Do not use airplane brakes to stop the airpl during pushback or towing. This can dama nose gear or the tow bar.	
Set or release the parking brake as directed by ground hand personnel	lling C or F/O
SEATBELTS selectorOFF	F/O

HYDRAULIC panel Set	F/O	
Note: Depressurize the right system last to prevent fluid transfer between systems.		
Center AIR DEMAND pump selector - OFF		
Left ELECTRIC DEMAND pump selector - OFF		
Center 1 and Center 2 ELECTRIC PRIMARY pump switc	hes – Off	
Right ELECTRIC DEMAND pump selector - OFF		
FUEL PUMP switchesOff	F/O	
RED ANTI-COLLISION light switchOff	F/O	
LEFT and RIGHT ISOLATION switchesOn	F/O	
FLIGHT DIRECTOR switches OFF	C, F/O	
Status messages	F/O	
Record shown status messages in maintenance log.		
TCAS mode selector STANDBY	F/O	
After wheel chocks are in place:		
Parking brake – Release	C or F/O	
APU selector	F/O	
Call "SHUTDOWN CHECKLIST."	C	
Do the SHUTDOWN checklist.	F/O	

Secure Procedure	
IRS mode selectorsOFF	F/O
EMERGENCY LIGHTS switchOFF	F/O
WINDOW HEAT switches Off	F/O
CARGO HEAT switches Off	F/O
PACK CONTROL selectorsOFF	F/O
Call "SECURE CHECKLIST."	C
Do the SECURE checklist.	F/O

Supplementary Procedures	Chapter SP
Table of Contents	Section 0
Introduction	SP.05
General	SP.05.1
Airplane General, Emer. Equip., Doors, Windows	SP.1
Doors	SP.1.1
Entry Door Closing	
Entry Door Opening	
Flight Deck Door Access System Test	
Windows	
Flight Deck Window Closing Flight Deck Window Opening	
Lights	
Indicator Lights Test.	SP 1 3
Emergency Equipment	
Oxygen Mask Microphone Test	
Air Systems	
Air Conditioning Packs	
Ground Conditioned Air Use	
Packs Off Takeoff	
Anti-Ice, Rain	SP.3
Ice Protection	SP.3.1
Anti–Ice Use	
Windshield Wiper Use	
•	
Automatic Flight	
AFDS	
AFDS Operation	
Heading Hold	
Altitude Hold	
Flight Level Change, Climb or Descent	
Vertical Speed, Climb or Descent.	
Intermediate Level Off	SP.4.4
Speed Intervention	
Copyright © The Boeing Company. See title page for details.	

Supplementary Procedures - DO NOT USE FOR FLIGHT Table of Contents

Autothrottle Operation	SP.4.5
Instrument Approach Using (V/S)	SP.4.6
Circling Approach	SP.4.7
Autoland Status Annunciator Test	SP.4.8
Autoland Status Annunciator Reset	SP.4.8
Communications	SP.5
Cockpit Voice Recorder Test	SP.5.1
Aircraft Communications Addressing and Reporting	
System (ACARS)	SP.5.2
Electrical	SP.6
Electrical Power Up	SP.6.1
Electrical Power Down	SP.6.2
Operation With Less Than 90 KVA External Power Source	SP.6.2
Before Start Procedure	
Before Taxi Procedure	
Shutdown Procedure	
Standby Power Test	
Transfer From External Power To APU Power	
Hydraulic Generator Test	SP.6.4
Engines, APU	SP.7
Engines	SP.7.1
Engine Crossbleed Start	
Engine Ground Pneumatic Start	
Reduced Thrust Selection Prior To Takeoff	
Reduced Climb Thrust Change or Cancellation	
Reduced Climb Thrust Selection In–flight	
Fire Protection	SP.8
Engine, APU and Cargo Fire/Overheat Test	
Wheel Well Fire Detection Test	
Flight Instruments, Displays	. SP.10
Flight Recorder Test	
i iight Recorder rest	51 .10.1

Supplementary Procedures -Table of Contents

DO NOT USE FOR FLIGHT

Heading Reference Switch Operation	SP.10.1
QFE Operation	
Flight Management, Navigation	SP.11
Transponder Test (TCAS equipped airplanes)	SP.11.1
Weather Radar Test	SP.11.1
IRS	SP.11.2
Align Lights Flashing	SP.11.2
Fast Realignment	
High Latitude Alignment	
Position Entry Using IRS Mode Selector Panel	SP.11.3
Lateral Navigation	
Alternate Route Entry/Activation	SP.11.4
Direct To A Waypoint Using Overwrite	
Estimate For Alternate	
Holding Pattern Entry	
Holding Pattern Exit	
Intercept A Leg Or Course To A Waypoint Using Over	
Lateral Offset	
Leg Modification	
Route Removal	
SID Change Or Runway Change	
STAR, Profile Descent Or Approach Change	
Vertical Navigation	
Climb, Cruise Or Descent Speed Schedule Change	
Climb Or Descent Direct To MCP Altitude	
Cruise Altitude Change	
Speed/Altitude Constraint At Waypoint	
Speed/Altitude Transition And Restriction	
Temporary Altitude Restriction	
1 2 1	
Performance Data Entries	
Descent Forecast.	
Step Climb Evaluation	
Waypoint Winds	
Additional CDU Functions	
Fix Page Entries	
HSI Plan Mode Control	SP.11.12

Supplementary Procedures - DO NOT USE FOR FLIGHT Table of Contents

Navaid Inhibit	SP.11.12
Update Active Navigation Database	SP.11.13
Fuel	SP.12
Fuel Balancing	
Fuel Quantity Test	
Warning Systems	
EICAS Test.	SP.15.1
Event Record	SP.15.1
Landing Configuration Warning Test	SP.15.1
Stall Warning Test	SP.15.2
Takeoff Configuration Warning Test	SP.15.2
Adverse Weather	SP.16
Introduction	
Takeoff - Wet or Contaminated Runway Conditions	
Cold Weather Operations	
Exterior Inspection	
Engine Start Procedure	
Engine Anti-ice Operation - On the Ground	
Before Taxi Procedure	SP.16.4
Taxi–Out	
De-icing / Anti-icing	
Before Takeoff Procedure	
Takeoff Procedure	
Engine Anti-ice Operation - In-flight	
Wing Anti-ice Operation - In-flight	
Cold Temperature Altitude Corrections	
After Landing Procedure	
Secure Procedure	
Hot Weather Operation	
Moderate to Heavy Rain, Hail or Sleet	SP.16.12
Turbulence	
Severe Turbulence	SP.16.13
Windshear	
Avoidance	SP.16.14

Supplementary Procedures -Table of Contents

767 Flight Crew Operations Manual

Copyright © The Boeing Company. See title page for details.

Supplementary Procedures - DO NOT USE FOR FLIGHT Table of Contents

767 Flight Crew Operations Manual

Intentionally Blank

767 Flight Crew Operations Manual

Supplementary Procedures Introduction

Chapter SP Section 05

General

This chapter contains procedures (adverse weather operation, engine crossbleed start, and so on) that are accomplished as required rather than routinely performed on each flight. System tests which the flight crew are likely to perform are also included.

Procedures accomplished in flight, or those that are an alternate means of accomplishing normal procedures (such as selecting reduced T.O. thrust), are usually accomplished by memory. Infrequently used procedures, not normally accomplished (such as engine crossbleed start) are usually accomplished by reference.

Supplementary procedures are provided by section. Section titles correspond to the respective chapter title for the system being addressed except for the Adverse Weather section.

Supplementary Procedures - DO NOT USE FOR FLIGHT Introduction

767 Flight Crew Operations Manual

Intentionally Blank

767 Flight Crew Operations Manual

Supplementary Procedures

Chapter SP

Airplane General, Emer. Equip., Doors, Windows

Section 1

Doors

Entry Door Closing

Door Lower

Raise door slightly, push and hold uplatch release button, then lower door approximately 2 inches (5 centimeters). Then, release button and continue to lower door until closed.

The left forward door may be lowered electrically using the main door switch.

While pushing arming lever release, position arming lever to SLIDE ARMED. Observe armed indicator in view and Direct Visual Indication of girt bar lockdown is completely yellow.

Entry Door Opening

Position arming lever to SLIDE DISARMED. Observe armed indicator out of view, arming lever release button extended and girt bar lockdown indications show blank.

Note: Slide disarms automatically when the door is opened from outside.

Raise the door until the uplatch is engaged.

The left forward door may be raised electrically using the main door switch.

Flight Deck Door Access System Test	
Flight Deck Access System switch	Norm
Flight Deck Door	Open
Flight Deck Door Lock selector	AUTO
Emergency access code	Enter
ENT key Verify alert sounds. Verify AUTO UNLK light illuminates.	Push
Flight Deck Door Lock selector	DENY
Flight Deck Door Lock selector	UNLKD
Flight Deck Access System switch	OFF
Flight Deck Access System switchNORM (Verify LOCK FAIL light extinguishes.	(guard down)
Windows	
Flight Deck Window Closing	
Window crank	
Window lock lever	
Flight Deck Window Opening	
Window lock lever	Rotate
Window crank	

Lights

Indicator Lights Test
INDICATOR LIGHTS TEST switch
INDICATOR LIGHTS TEST switch
Emergency Equipment
Oxygen Mask Microphone Test
BOOM/OXYGEN switch OXY
RESET/TEST switch Push and hold
EMERGENCY/TEST selector Push and hold
Push to talk switch
Push to talk switch
EMERGENCY/TEST selector
RESET/TEST switch

Copyright © The Boeing Company. See title page for details.

Intentionally Blank

767 Flight Crew Operations Manual

Supplementary Procedures Air Systems

Chapter SP Section 2

Air Conditioning Packs

Ground Conditioned Air Use

Ground	Conditioned	
Before	connecting ground	d conditioned air:

After disconnecting conditioned air:

control selector to AUTO

Packs Off Takeoff

Before takeoff:

CABIN AUTO INOP message will be displayed.

After takeoff:

Note: If engine failure occurs, pack control selectors should remain OFF until reaching 1,500 feet or until obstacle clearance height has been attained, whichever is higher.

Copyright © The Boeing Company. See title page for details.

Supplementary Procedures - DO NOT USE FOR FLIGHT

767 Flight Crew Operations Manual

Intentionally Blank

767 Flight Crew Operations Manual

Supplementary Procedures Anti-Ice, Rain

Chapter SP Section 3

Ice Protection

Ice protection is provided by the airplane anti–ice systems.

Anti-Ice Use

Requirements for use of anti-ice and operational procedures for engine and wing anti-ice are moved from SP.3 to Supplementary Procedures, Adverse Weather Section SP.16.

Windshield Wiper Use

CAUTION: Do not use windshield wipers on a dry window.

Windshield Wiper selector (as required)LOW/HIGH

Supplementary Procedures - DO NOT USE FOR FLIGHT Anti-Ice, Rain

767 Flight Crew Operations Manual

Intentionally Blank

767 Flight Crew Operations Manual

Supplementary Procedures Automatic Flight

Chapter SP Section 4

AFDS

AFDS Operation

Note: Command bars are not displayed if selected autopilot command mode and flight director source are the same.

AFDS Mode(s) Engage as desired Observe flight director command and selected AFDS mode(s) is displayed.

If the autopilot is desired:

Command switch Engage

Observe flight mode annunciations display V/S and HDG HOLD, or existing AFDS modes if flight director on and not in takeoff or go–around mode.

Heading Hold

Rolls wings level and maintains the heading that exists at the time the wings become level.

Heading Hold switch Engage

Observe HDG HOLD displayed in the roll mode annunciator.

Supplementary Procedures - DO NOT USE FOR FLIGHT

Heading Select
Heading selector
Heading selector switch
Bank Limit selector
Altitude Hold
Altitude Hold switch Engage Verify ALT HOLD is displayed in the pitch mode annunciator.
Flight Level Change, Climb or Descent
Altitude selector
Flight Level Change switch Engage Observe SPD in the pitch mode annunciator and FLCH displayed in the autothrottle mode annunciator.
IAS/MACH selector
Climb Thrust Reference Mode Select switch (if required) Select If climb initiated, select climb reference N1.
Climb Thrust Reference Mode Select switch (if required) Select If climb initiated, select climb reference EPR.

SP.4.3

DO NOT USE FOR FLIGHT

Vertical Speed, Climb or Descent
Altitude selector
Vertical Speed switch
Note: The vertical speed mode does not provide automatic low speed protection and permits flight away from selected altitude. For level–off protection, always select new level–off altitude prior to engaging vertical speed mode.
Vertical Speed selector
Climb Thrust Reference Mode Select switch (if required) Select If climb initiated, select climb reference N1.
Climb Thrust Reference Mode Select switch (if required) Select If climb initiated, select climb reference EPR.

Supplementary Procedures - DO NOT USE FOR FLIGHT

Intermediate Level Off	_
Altitude selector	ite
At MCP altitude:	
Verify pitch mode annunciation is ALT HOLD.	
To resume climb/descent:	
Altitude selector	ite
If using VNAV:	
VNAV switch Engage Verify pitch mode annunciation is VNAV SPD or VNAV PTH as appropriate.	ge
If using Flight Level Change:	
Flight Level Change switch Engage Verify pitch mode annunciation is SPD and autothrottle annunciation is FLCH.	ge
IAS/MACH selector	ite
Speed Intervention	
IAS/MACH selector	sh
IAS/MACH selector	ite
To resume FMC speed schedule:	
IAS/MACH selector Pu Verify IAS/MACH window blanks.	sh

Autothrottle Operation
Autothrottle switch
If EPR mode desired:
Thrust Reference Mode Select switch (As desired) Select Select desired reference EPR.
THR switch Engage Observe EPR displayed in the autothrottle mode annunciator.
If N1 mode desired:
Thrust Reference Mode Select switch (As desired) Select Select desired reference N1.
THR switch Engage Observe N1 displayed in the autothrottle mode annunciator.
If Speed mode desired:
Thrust Reference Mode Select switch (As desired)
Speed switch Engage Observe SPD displayed in the autothrottle mode annunciator.
IAS/MACH selector

Supplementary Procedures - DO NOT USE FOR FLIGHT Automatic Flight

767 Flight Crew Operations Manual

Instrument Approach Using (V/S)

Note: Autopilot use is recommended until suitable visual reference is established.

Note: If required to remain at or above the MDA(H) during the missed approach, missed approach must be initiated at least 50 feet above MDA(H).

Recommended roll modes for final approach:

- LOC-BC, VOR or NDB approach: LNAV or HDG SEL (B/CRS for LOC-BC approaches)
- LOC, SDF, or LDA approach: LOC or LNAV

Ensure appropriate navaids (VOR, LOC or NDB) are tuned and identified prior to commencing the approach.

Before descent to MDA(H):

Set the first intermediate altitude constraint or MDA(H). When the current constraint is assured, the next constraint may be set prior to ALT HOLD engaged to achieve continuous descent path.

If constraints or MDA(H) do not end in zero zero (00; for example, 1820), set MCP ALTITUDE window to the closest 100 foot increment below the constraint or MDA(H).

At descent point:

Set desired V/S to descend to MDA(H). Use a V/S that results in no level flight segment at MDA(H).

Approximately 300 feet above MDA(H):

MCP altitude selector.....Set Missed Approach Altitude

At MDA(H)/Missed Approach Point: If suitable visual reference is not established, execute missed approach. After suitable visual reference is established: A/P Disengage Switch		
approach. After suitable visual reference is established: A/P Disengage Switch	At MDA(H)/Miss	ed Approach Point:
A/P Disengage Switch		al reference is not established, execute missed
Disengage autopilot before descending below MDA(H)/DA(H) A/T Disconnect Switch	After suitable v	visual reference is established:
MDA(H)/DA(H) A/T Disconnect Switch	A/P Diseng	age SwitchPush
Disconnect autothrottle before descending below MDA(H)/DA(H) Circling Approach Note: Autopilot use is recommended until intercepting the landing profile. MCP Altitude Selector		
MDA(H)/DA(H) Circling Approach Note: Autopilot use is recommended until intercepting the landing profile. MCP Altitude Selector	A/T Discon	nect SwitchPush
Note: Autopilot use is recommended until intercepting the landing profile. MCP Altitude Selector		· · · · · · · · · · · · · · · · · · ·
profile. MCP Altitude Selector	Circling Approac	ch
If the MDA(H) does not end in zero zero (00; for example, 1820), set MCP ALTITUDE window to the closest 100 foot increment below the MDA(H) Accomplish an instrument approach and establish suitable visual reference. At MDA(H): ALT HOLD switch (if required)		se is recommended until intercepting the landing
reference. At MDA(H): ALT HOLD switch (if required)	If the MDA(H) set MCP ALTI	does not end in zero zero (00; for example, 1820), TUDE window to the closest 100 foot increment
ALT HOLD switch (if required) Push Enables level off at MDA(H). Verify ALT HOLD mode annunciates. MCP altitude selector Set Missed Approach Altitude HDG SEL Switch Push Verify HDG SEL mode annunciates. Intercepting the landing profile: Autopilot disengage switch Push		strument approach and establish suitable visual
Enables level off at MDA(H). Verify ALT HOLD mode annunciates. MCP altitude selector	At MDA(H):	
HDG SEL Switch	Enables lev	el off at MDA(H). Verify ALT HOLD mode
Verify HDG SEL mode annunciates. Intercepting the landing profile: Autopilot disengage switch	MCP altitude s	elector Set Missed Approach Altitude
Autopilot disengage switch		
	Intercepting the la	nding profile:
Autothrottle disconnect switch	Autopilot diser	ngage switchPush
	-	

Supplementary Procedures - DO NOT USE FOR FLIGHT

Autoland Status Annunciator Test	
AUTOLAND STATUS ANNUNCIATOR TEST switch 1 Observe LAND 3 and NO LAND 3 in view.	Push
AUTOLAND STATUS ANNUNCIATOR TEST switch 2 Observe LAND 2 and NO AUTOLND in view.	Push
Autoland Status Annunciator Reset	
AUTOLAND STATUS ANNUNCIATOR PUSH/RESET switch	Push

767 Flight Crew Operations Manual

Supplementary Procedures Communications

Chapter SP Section 5

Cockpit Voice Recorder Test

Voice Recorder Test switch Push

Push and observe monitor indicator needle to be in the green band. A tone may be heard with headset plugged into headset jack. Test will last approximately 5 seconds.

767 Flight Crew Operations Manual

Aircraft Communications Addressing and Reporting System (ACARS)

The following procedures are applicable to the noted ACARS functions from the company pages.

Pre-Departure Clearance

The flight crew shall manually verify (compare) the filed flight plan versus the digital pre-departure clearance and shall initiate voice contact with Air Traffic Control if any question/confusion exists between the filed flight plan and the digital pre-departure clearance.

Digital-Automatic Information Service (D-ATIS)

The flight crew shall verify that the D-ATIS altimeter setting numeric value and alpha value are identical. If the D-ATIS altimeter setting numeric and alpha values are different, the flight crew must not accept the D-ATIS altimeter setting.

Oceanic Clearances

The flight crew shall manually verify (compare) the filed flight plan versus the digital oceanic clearance and shall initiate voice contact with Air Traffic Control if any question/confusion exists between the filed flight plan and the digital oceanic clearance.

Weight and Balance

The flight crew shall verify the Weight and Balance numeric and alphabetical values are identical. If the Weight and Balance numeric and alphabetical values are different, the flight crew must not accept the Weight and Balance data.

Takeoff Data

The flight crew shall verify the Takeoff Data numeric and alphabetic values are identical. If the Takeoff Data numeric and alphabetic values are different, the flight crew must not accept the Takeoff Data message.

767 Flight Crew Operations Manual

Supplementary Procedures Electrical

Chapter SP Section 6

Electrical Power Up

The following procedure is accomplished to permit safe application of electrical power.

Battery switchON
Standby Power selector
Hydraulic Electric Primary Pump switches Off
Hydraulic Demand Pump switches Off
Landing Gear LeverDN
Alternate Flaps selectorNORM
Electrical Power Establish
Bus Tie switchesAUTO
If external power is desired:
If External Power AVAIL light is illuminated:
External Power switchPush
If APU power is desired:
APU Generator switch ON
APU selector
Position the APU selector back to the ON position. Do not allow the APU selector to spring back to the ON position.

Supplementary Procedures - DO NOT USE FOR FLIGHT Electrical

767 Flight Crew Operations Manual

Electrical Power Down

The following flight deck procedures are accomplished to permit removal of electrical power from the airplane.

APU selector/External Power switchOff
When APU RUN light extinguishes:
Standby Power selectorOFF
Battery switchOFF

Operation With Less Than 90 KVA External Power Source

When external power source is less than required (90 KVA), airplane electrical loads must be minimized by supplementing normal procedures as follows:

Before Start Procedure

Accomplish normal exterior Inspection, Preflight Procedure – First Officer, Preflight Procedure – Captain and Before Start Procedure through "Start Clearance......Obtain".

Confirm cargo loading complete.

Utility Bus switches	OFF
Hydraulic System	Set
Demand Pump selector (right)	AUTO
Fuel Pump switches (one left and one right main wing) Observe PRESS lights extinguished.	ON

Note: Delay activation of the remaining hydraulic and fuel pumps, setting trim and checking flight controls until after engines are started.

Complete the normal Before Start and Engine Start procedures.

767 Flight Crew Operations Manual

Before	Taxi	Procedure
DUIDIC	IUAI	1 I UCCUUIC

Hydraulic System	Set
Electric Primary Pump switches (both)	ON
Demand Pump selectors (remaining pumps)	AUTO
Utility Bus switches	ON
Fuel Pump switches (remaining pumps)	ON
Trim	Set
Flight controls	Check

Displace control wheel and control column to full travel in both directions and verify:

- freedom of movement
- · controls return to center
- proper flight control movement on EICAS status display.

Hold the nose wheel steering tiller during rudder check to prevent undesired nose wheel movement.

Displace rudder pedals to full travel in both directions and verify:

- freedom of movement
- rudder pedals return to center
- proper flight control movement on EICAS status display.

Complete normal Before Taxi procedure.

Shutdown Procedure

After park brake is set and prior to establishing external power:

Hydraulic System	Set
Electric Primary Pump switches (both)	OFF
Demand Pump selectors (All)	OFF
Fuel Pump switches	OFF

Accomplish normal Shutdown procedure.

Supplementary Procedures - DO NOT USE FOR FLIGHT

767 Flight Crew Operations Manual

Standby Power Tes	Star	ıdby	Power	Tes
--------------------------	------	------	-------	-----

Airplane must be on ground with all busses powered.
Standby Power SelectorBAT
Observe battery DISCH light illuminates and standby power OFF light remains extinguished.
Standby Power SelectorAUTC
Observe battery DISCH light extinguishes and standby power OFF light remains extinguished.

Transfer From External Power To APU Power

Prior to disconnecting external power:

Hydraulic Generator Test

Electrical and pneumatic power must be established on the airplane.

Center 1/2 Electric Primary Pump Switches	OFF
Center Air Demand Pump Selector	AUTO
EICAS Status Display	ON
Hydraulic Generator Test Switch	HYD GEN

While holding the test switch in the HYD GEN position, verify the HYD GEN ON and HYD GEN VAL Status messages appear on EICAS, and Captain ADI and HSI are powered with no flags displayed. The HYD GEN ON and HYD GEN VAL messages should no longer be displayed when the test switch is released.

767 Flight Crew Operations Manual			
Supplementary Procedures	Chapter SP		
Engines, APU	Section 7		
Engines			
Engine Crossbleed Start			
The APU must be shut down or the APU bleed a	air switch must be OFF		
Check that the area behind the airplane is clear			
Engine Bleed Air switch (operating engine)	ON		
Advance thrust on operating engine to approximaccomplish normal Engine Start procedure	nately 70% N2 and		
Engine Ground Pneumatic Start			
Check duct pressure 30 psi or greater			
Start engine using normal Engine Start procedur	re		
Reduced Thrust Selection Prior To Takeoff	f		
If reduced takeoff thrust desired:			

Rotate assumed temperature selector clockwise and set desired temperature value or enter required temperature on Takeoff Reference page Observe D-TO displayed in green on the EICAS

If reduced climb thrust desired:

Select desired climb thrust reference; 1 or 2

Observe TO 1 or TO 2 (D-TO 1 or D-TO 2 for an assumed temperature derated takeoff) displayed on the EICAS in green for the TO or D-TO and in white for the numerals 1 or 2

767 Flight Crew Operations Manual

Reduced Takeoff Thrust Change or Cancellation

If ahanga dagirad	
If change desired:	
Assumed Temperature	Set
If cancellation desired:	
Thrust Reference Mode Select switch	ed
Observe associated mode displayed	
Note: If full takeoff thrust desired during takeoff following 80 knots (autothrottle in THR HOLD mode) thrust levers must be adjusted manually.	
Reduced Climb Thrust Change or Cancellation	
If change desired:	
Thrust Reference Mode Select switch	
If cancellation desired:	
Thrust Reference Mode Select switch	r 2
Note: If preselected reduced climb thrust is changed or cancelled and reduced takeoff thrust is still desired, reduced takeoff thrust must be reselected.	
Reduced Climb Thrust Selection In-flight	
Thrust Reference Mode Select switch	LΒ
Thrust Reference Mode Select switch	r 2

767 Flight Crew Operations Manual

Supplementary Procedures Fire Protection

Chapter SP Section 8

Engine, APU and Cargo Fire/Overheat Test

Engine/APU/Cargo Fire/Overheat Test switch Push

Observe the fire bell ring intermittently

Observe the following lights illuminate:

Discrete FIRE warning

Fuel control switches

L and R ENG OVHT

LEFT, RIGHT and APU fire switches

FWD and AFT cargo fire

Master Warning

Observe the following EICAS messages:

APU FIRE warning

FWD and AFT CARGO FIRE warning

L and R ENGINE FIRE warning

L and R ENG OVHT caution

Wheel Well Fire Detection Test

Observe the fire bell ring intermittently

Observe the following lights illuminate:

Discrete FIRE warning

WHL WELL FIRE

Master Warning

Observe the following EICAS message:

WHEEL WELL FIRE warning

Supplementary Procedures - DO NOT USE FOR FLIGHT Fire Protection

767 Flight Crew Operations Manual

Intentionally Blank

767 Flight Crew Operations Manual	
Supplementary Procedures	Chapter SP
Flight Instruments, Displays	Section 10
Flight Recorder Test	
Flight Recorder switch	Test
Heading Reference Switch Operation	
Use TRUE when flying in regions where true reference NORM at other times.	ing is required. Use
Heading Reference switch	NORM or TRUE
Note: The following information applies when using Reference switch:	g the Heading
 If the AFDS is in the HDG SEL mode and the Hea switch position is changed, the AFDS mode chan HOLD; HDG SEL may be reselected. 	
 If making an ILS approach using true referencing course referenced to true north must be set on the panel. 	
 VOR bearings are not available when the Headin switch is in TRUE. 	g Reference
QFE Operation	
Use this procedure when ATC altitude assignments are altimeter settings, and QNH settings are not available.	_
Note: Do not use LNAV or VNAV below transition Altitudes in the navigation data base are not re Use only raw data for navigation.	
Altimeters	Set
Set primary and standby altimeters to QFE below altitude/level.	transition
Note: If the QFE altimeter setting is beyond the rang altimeters, QNH procedures must be used with altimeters	

Landing Altitude Indicator Set at Zero

Supplementary Procedures - DO NOT USE FOR FLIGHT Flight Instruments, Displays

767 Flight Crew Operations Manual

Intentionally Blank

767 Flight Crew Operations Manual

Supplementary Procedures Flight Management, Navigation

Chapter SP Section 11

Transponder Test (TCAS equipped airplanes)This procedure requires the IRSs to be aligned and in NAV mode.

Weather Radar Test

Weather Radar Mode	TEST
HSI Mode selector	. MAP
Weather Radar switch	ON
Observe radar test pattern on HSI.	

Note: If the airplane is on the ground and the thrust levers are not advanced for takeoff, the WXR tests the predictive windshear system (PWS) indications. These include the WINDSHEAR SYS EICAS advisory, the PWS caution, and PWS warning. Deactivating WXR on the EFIS control panel will not discontinue the test and can result in automatic WXR activation on both pilot displays. The PWS test lasts approximately 15 seconds

Note: If the airplane is on the ground and the thrust levers are not advanced for takeoff, the WXR tests the predictive windshear system (PWS) indications. These include the WINDSHEAR SYS EICAS advisory, the PWS caution, and PWS warning. Deactivating WXR on the EFIS control panel will discontinue the test. The PWS test lasts approximately 15 seconds.

Weather Radar switch OFF Select captain's and first officer's weather radar displays off.

IRS

Align Lights Flashing

Do not move IRS Mode selector to OFF except where called for in procedure.
POS INIT page
Set IRS Position Enter Present Position Enter present position using most accurate latitude and longitude available. If a position is already displayed on the SET IRS POS line, enter new position over displayed position.
If ALIGN light continues to flash:
Set IRS Position Enter Present Position Re–enter same present position.
If ALIGN light continues to flash after re-entry:
IRSOFF
Rotate IRS Mode selector to OFF and verify ALIGN light extinguished.
Note: Light must be extinguished before continuing with procedure (approximately 30 seconds).
IRSNAV
Rotate IRS Mode selector to NAV and verify ALIGN light illuminated.
Set IRS PositionEnter
Enter present position in boxes. If ALIGN light flashes, re-enter same present position over displayed position.
Note: Approximately ten minutes is required for realignment.
If ALIGN light continues to flash, maintenance action is required.

Fast Realignment

IDC M 1

If the combined operating time from the last full IRS alignment to the expected next destination arrival time does not exceed 18 hours, a fast realignment may be accomplished.

IRS Mode selectors
CDUSet
Enter present position on SET IRS POSITION line of Position Initialization page.
IRS Mode selectorsNAV
High Latitude Alignment
This procedure applies to alignment at latitudes greater than $70^{\circ}12.0'$ and less than $78^{\circ}15.0'$.
IRS Mode selectors OFF, then ALIGN
POS INIT page Set

Enter present position on SET IRS POS line using the most accurate

Position Entry Using IRS Mode Selector Panel

latitude and longitude available.

Latitude Ente	er
Begin with N or S, followed by latitude including trailing zeros, i.e.,	
N003°30.0' entered as N3300.	

Longitude Enter

Begin with E or W, followed by longitude including trailing zeros, i.e., E001°11.0' entered as E1110.

SP.11.3

Supplementary Procedures - NOT USE FOR FLIGHT Flight Management, Navigation NOT USE FOR FLIGHT

767 Flight Crew Operations Manual

Lateral Navigation

Alternate Route Entry/Activation	

Desired RTE page 1	t
Route (if required) Enter Enter route using preflight procedure.	r
ACTIVATE Selection Selecti	et
If in–flight, use DIRECT TO or INTC LEG TO boxes to enter desired course from present position to new route.	
EXEC key Push	h
Direct To A Waypoint Using Overwrite	
RTE LEGS page	et
Desired Waypoint Enter the desired waypoint over the active waypoint.	r
Waypoint Sequence	k
EXEC key Push	h
Estimate For Alternate	
PROGRESS page 1 Select	et
Desired Destination Ente	r
Note: Estimates displayed are for present position direct.	

Holding Pattern Entry

Holding Pattern Exit

To exit holding accomplish the following procedure or refer to one of the "Direct to a Waypoint" procedures.

EXEC key Push

EXIT HOLD Select
EXEC key Push

Supplementary Procedures - NOT USE FOR FLIGHT Flight Management, Navigation NOT USE FOR FLIGHT

767 Flight Crew Operations Manual

707 Fight Crew Operations Manual
Intercept A Leg Or Course To A Waypoint Using Overwrite
RTE LEGS page Select
Desired Waypoint Enter Enter the desired waypoint over the active waypoint.
Note: If waypoint not previously in route, a discontinuity occurs.
If waypoint was previously in route, the inbound course is set to same inbound great circle course. For airways, displayed course may not be identical to charted value.
If inbound course not correct:
Intercept Course
EXEC key
Waypoint Sequence
EXEC keyPush
If necessary, use Heading Select mode to change intercept heading. Then, arm LNAV mode.
Lateral Offset
RTE page
Offset
EXEC keyPush
To remove offset, accomplish Direct To procedure or enter "0" in OFFSET line.

Leg Modification

To modify active waypoint or leg, accomplish one of the Direct To or Intercept A Leg Or Course procedures except when entering along track waypoints.

waypoints.
RTE LEGS page
To change waypoint sequence:
Desired Waypoint Sequence Enter
Note: If waypoint not previously in route a discontinuity occurs except when entering along track waypoints.
EXEC keyPush
To delete a waypoint at end of route:
DEL keyPush
Waypoint
EXEC keyPush
To enter along track waypoints:
Along Track Displacement Enter Select reference waypoint to scratch pad and modify for desired displacement.
Reference Waypoint
EXEC keyPush
Route Removal
RTE page 1 Select
Origin Enter
If EXEC key illuminates:

EXEC keyPush

February 14, 2007

SID Change Or Runway Change

This entire procedure must be accomplished when a SID is used and the runway or SID is changed. This will prevent the possibility of incorrect routing or inadequate obstacle clearance.

DEPARTURES page	Select
Runway	Reselect
SID	Reselect
Transition (if required)	Reselect
RTE LEGS page	Select
Waypoint Sequence and Altitudes	Check
EXEC key	Push
STAR, Profile Descent Or Approach Change	
Associated airport must be entered as route origin or de	estination.
ARRIVALS page	Select
STAR or Profile Descent (if required)	Select
Transition (if required)	Select
Approach	Select
Approach Transition (if required)	Select
RTE LEGS page	Select
Waypoint Sequence and Altitudes	Check
EXEC key	Puch

Vertical Navigation

Climb, Cruise Or Descent Speed Schedule Char	nge
CLB or CRZ or DES page	Select
To change schedule:	
Desired Schedule	Select
To enter fixed speed schedule:	
Desired Speed Enter speed on ECON/SEL SPD line (line 2L)	
EXEC key	Push
Climb Or Descent Direct To MCP Altitude	
This procedure deletes all waypoint altitude constrain airplane altitude and altitude set in MCP.	ts between current
Altitude Window	Set
CLB or DES page	Select
CLB DIR or DES DIR	Select
EXEC key	Push
Cruise Altitude Change	
Altitude Window	Set
CRZ page	Select
Cruise Altitude	Enter
EXEC key	Push

Supplementary Procedures - NOT USE FOR FLIGHT Flight Management, Navigation NOT USE FOR FLIGHT

767 Flight Crew Operations Manual

Speed/Altitude Constraint At Waypoint
RTE LEGS page Select
To enter or modify constraint:
Speed/AltitudeEnter
Note: Speed entry requires "/" mark and altitude.
EXEC key Push
To delete constraint:
DEL key Push
Speed/Altitude
EXEC key Push
Speed/Altitude Transition And Restriction
CLB or DES page
To enter speed/altitude restriction:
Speed/Altitude
EXEC key Push
To delete speed/altitude restriction or transition:
DEL key Push
Speed/Altitude
EXEC key Push
Temporary Altitude Restriction
Altitude Window
To resume climb or descent:
Altitude Window
VNAV Engage

Temporary Speed Restriction	
IAS/MACH selector	Push
Speed Window	Set
To resume FMC speed schedule:	
IAS/MACH selector	Push
Performance Data Entries	
Descent Forecast	
DES page	Select
DESCENT FORECAST page	Select
Transition Level	Check
Thermal Anti-ice On Altitude (if required)	Enter
Wind Altitude Enter altitude over dashes on left.	Enter
Wind Direction/Speed	Enter
Step Climb Evaluation	
CRZ page	Select
Step to Altitude	Enter
Savings	Check
Waypoint Winds	
RTE LEGS page	Select
RTE DATA page	Select
WINDS page	Select
Altitude and Wind	Enter
EXEC key	Push

Additional CDU Functions

Fix Page Entries
FIX page Select
Fix Identifier Enter
Bearing or Distance From Fix Enter Enter desired bearing or distance or select ABEAM.
Note: Bearing/distance from fix may be used as route waypoint.
HSI Plan Mode Control
HSI ModePLAN
RTE LEGS page Select
Map Center Step Select
Navaid Inhibit
To inhibit use of radio navigation aids from position updating:
INIT REF page Select
INDEX page Select
NAV DATA page
Navaid Identifier Enter
To inhibit use of a VOR and DME:
NAVAID line Enter
To inhibit use of a VOR only:
VOR ONLY line Enter
To inhibit use of all VORs:
VOR/DME NAV OFF/ON prompt Select ALL is displayed in the VOR ONLY inhibit line and OFF is

displayed in large font.

Update Active Navigation Database

The navigation database can be changed only on the ground. Changing the database removes all previously entered route data.

INIT REF	Select
IDENT page	. Enter
Inactive Date line	. Enter
Active Date line Transfers inactive database line to active database line. Transfer	
active database line to the inactive database line.	

Intentionally Blank

767 Flight Crew Operations Manual

Supplementary Procedures Fuel

Chapter SP Section 12

Fuel Balancing

If an engine fuel leak is suspected:

Accomplish the ENGINE FUEL LEAK checklist

Note: Fuel pump pressure should be supplied to the engines at all times. At high altitude, without fuel pump pressure, thrust deterioration or engine flameout may occur.

When the fuel quantities in left main and right main tanks differ by an appreciable amount:

Fuel Quantity Test

Fuel Quantity Test switch FUEL QTY

Observe FUEL CONFIG light illuminate and LOW FUEL message display

Observe fuel quantity indicators display all eights (8) except initial digit in total fuel quantity indicator which displays one (1). Observe fuel temperature indicator display -188 degrees Centigrade.

Intentionally Blank

767 Flight Crew Operations Manual

Supplementary Procedures Warning Systems

Chapter SP Section 15

EICAS Test

Note: Standby engine indications will be displayed during test and siren aural will sound.

EICAS Test switchPush

Event Record

Event Record switch Push

Use as directed by Flight Operations for maintenance analysis or at the discretion of the captain to manually record parameters for a suspect condition.

Landing Configuration Warning Test

Configuration Test switch LDG

Observe CONFIG light illuminate and GEAR NOT DOWN message display.

Supplementary Procedures - DO NOT USE FOR FLIGHT Warning Systems

Establish appropriate configuration.

767 Flight Crew Operations Manual

8
Stall Warning Test
L Stall Warning Test switch
R Stall Warning Test switch
L and R Stall Warning Test switches
Note: A minimum of one hydraulic system must be pressurized for proper verification of the control column nudger.
Takeoff Configuration Warning Test
Establish one or more of the following conditions: Flaps not in takeoff position Speedbrakes not down Stabilizer units set greater than green band Park brake set
Configuration Test switch

767 Flight Crew Operations Manual

Supplementary Procedures Adverse Weather

Chapter SP Section 16

Introduction

Airplane operation in adverse weather conditions may require additional considerations due to the effects of extreme temperatures, precipitation, turbulence, and windshear. Procedures in this section supplement normal procedures and should be observed when applicable.

Takeoff - Wet or Contaminated Runway Conditions

The following information applies to takeoffs on wet or contaminated runways:

- For wet runways, reduced thrust (assumed temperature method) is allowed provided suitable takeoff performance accountability is made for the increased stopping distance on a wet surface.
- For runways contaminated by slush, snow, standing water or ice, reduced thrust (assumed temperature method) is not allowed.
- V1 may be reduced to minimum V1 to provide increased stopping margin provided the field length required for a continued takeoff from the minimum V1 and obstacle clearance meet the regulatory requirements. The determination of such minimum V1 may require a real-time performance calculation tool or other performance information supplied by dispatch.
- Takeoffs are not recommended when slush, wet snow, or standing water depth is more than 1/2 inch (13 mm) or dry snow depth is more than 4 inches (102 mm).

Supplementary Procedures -Adverse Weather

767 Flight Crew Operations Manual

Cold Weather Operations

Considerations associated with cold weather operation are primarily concerned with low temperatures and with ice, snow, slush and standing water on the airplane, ramps, taxiways, and runways.

Icing conditions exist when OAT (on the ground) or TAT (in-flight) is 10°C or below and any of the following exist:

- visible moisture (clouds, fog with visibility of one statute mile (1600 m) or less, due to metrological conditions such as rain, snow, sleet, ice crystals), or
- ice, snow, slush or standing water is present on the ramps, taxiways, or runways.

CAUTION: Do not use engine anti-ice when OAT (on the ground) is above 10°C. Do not use engine or wing anti-ice when TAT (in-flight) is above 10°C.

Exterior Inspection

Although removal of surface snow, ice and frost is normally a maintenance function, during preflight procedures, the captain or first officer should carefully inspect areas where surface snow, ice or frost could change or affect normal system operations.

Do the normal Exterior Inspection with the following additional steps:

Takeoff with light coatings of frost, up to 1/8 inch (3mm) in thickness, on lower wing surfaces due to cold fuel is allowable; however, all leading edge devices, all control surfaces, and upper wing surfaces must be free of snow, ice and frost.

Thin hoarfrost is acceptable on the upper surface of the fuselage provided all vents and ports are clear. Thin hoarfrost is a uniform white deposit of fine crystalline texture, which usually occurs on exposed surfaces on a cold and cloudless night, and which is thin enough to distinguish surface features underneath, such as paint lines, markings or lettering.

Verify that all pitot/static probes and static ports are free of snow and ice. Water rundown after snow removal may freeze immediately forward of static ports and cause an ice buildup which disturbs airflow over the static ports resulting in erroneous static readings even when static ports are clear.

Supplementary Procedures Adverse Weather

767 Flight Crew Operations Manual

•	
Air conditioning inlets and exits	
Engine inlets	Check
Fuel tank vents	Check
Landing gear doors Landing gear doors should be free of snow and ice.	Check
APU air inlets	
E., -! C44 D J	

Engine Start Procedure

Do the normal Engine Start Procedure with the following considerations:

- Oil pressure may be slow to rise
- Initial oil pressure rise may be higher than normal
- Additional warm-up time may be needed to allow oil temperature to reach the normal range

Engine Anti-ice Operation - On the Ground

Engine anti-ice must be selected ON immediately after both engines are started and remain on during all ground operations when icing conditions exist or are anticipated, except when the temperature is below –40°C OAT

WARNING: Do not rely on airframe visual icing cues before activating engine anti-ice. Use the temperature and visible moisture criteria because late activation of engine anti-ice may allow excessive ingestion of ice and result in engine damage or failure.

CAUTION: Do not use engine anti-ice when OAT is above 10°C.

When engine anti-ice is needed:

ENGINE ANTI-ICE switchesON F/O

When engine anti-ice is no longer needed:

ENGINE ANTI-ICE switches OFF F/O

SP.16.3

Supplementary Procedures - DO NOT USE FOR FLIGHT

767 Flight Crew Operations Manual

Before Taxi Procedure

Do the normal Before Taxi Procedure with the following modifications:

If taxi route is through ice, snow, slush or standing water in low temperatures or if precipitation is falling with temperatures below freezing, taxi out with the flaps up. Taxiing with the flaps extended subjects the flaps and flap drives to contamination. Leading edge devices are also susceptible to slush accumulations.

Call "FLAPS _	" as needed.	(
Flap lever	Set flaps, as needed	d F/C

Taxi-Out

CAUTION: Taxi at a reduced speed. Use smaller tiller and rudder inputs, and apply minimum thrust evenly and smoothly. Taxiing on slippery taxiways or runways at excessive speed or with high crosswinds may start a skid.

When engine anti-ice is required and the OAT is 3°C or below, do an engine run up, as needed, to minimize ice build-up. Use the following procedure:

Check that the area behind the airplane is clear.

When the aircraft is equipped with GE 802C engines.

Run-up to a minimum of 60% N1 for approximately 30 seconds duration at intervals no greater than 30 minutes.

When the aircraft is equipped with PW4000 engines.

Run-up to a minimum of 50% N1 for approximately 1 second duration at intervals no greater than 15 minutes.

Adverse Weather

767 Flight Crew Operations Manual

De-icing / Anti-icing

Testing of undiluted de-icing/anti-icing fluids has shown that some of the fluid remains on the wing during takeoff rotation and initial climb. The residual fluid causes a temporary decrease in lift and increase in drag, however, the effects are temporary. Use the normal takeoff rotation rate.

If de-icing / anti-icing is needed:

Call "FLAPS UP".	C
FlapsUP	F/O
Prevents ice and slush from accumulating in flap cavities during de-icing.	ng
Thrust levers	C
Reduces the possibility of injury to personnel at inlet or exhau areas.	ist
Engine BLEED air switches OFF	F/O
Reduces the possibility of fumes entering the air conditioning s	system.
APU BLEED air switchOFF	F/O
Reduces the possibility of fumes entering the air conditioning s	system.
After de-icing / anti-icing is completed:	
Wait approximately one minute after de-icing is completed to BLEED air switches on to ensure all de-icing fluid has been c	
Engine BLEED air switchesON	F/O
APU BLEED air switchON	F/O
Before Takeoff Procedure	
Do the normal Before Takeoff Procedure with the following modifi	cation:
Call "FLAPS" as needed for takeoff.	PF
Flap lever	PM been

Supplementary Procedures - DO NOT USE FOR FLIGHT Adverse Weather

767 Flight Crew Operations Manual

Takeoff Procedure

Do the normal Takeoff Procedure with the following modification:

When engine anti-ice is required and the OAT is 3°C or below, the takeoff must be preceded by a static engine run-up.

Use the following procedure:

PF

When the aircraft is equipped with GE 80C2 engines.

Run-up to a minimum of 60% N1 for approximately 30 seconds duration and confirm stable engine operation before the start of the takeoff roll.

When the aircraft is equipped with PW4000 engines.

Run-up to a minimum of 50% N1 and confirm stable engine operation before the start of the takeoff roll.

Engine Anti-ice Operation - In-flight

Engine anti-ice must be ON during all flight operations when icing conditions exist or are anticipated, except when the temperature is below -40°C SAT.

WARNING: Do not rely on airframe visual icing cues before activating engine anti-ice. Use the temperature and visible moisture criteria because late activation of engine anti-ice may allow excessive ingestion of ice and result in engine damage or failure.

CAUTION: Do not use engine anti-ice when TAT is above 10°C.

When engine anti-ice is needed:

ENGINE ANTI-ICE switches ON PM

When engine anti-ice is no longer needed:

ENGINE ANTI-ICE switchesOFF PM

Fan Ice Removal

When the aircraft is equipped with GE 80C2 engines.

CAUTION: Avoid prolonged operation in moderate to severe icing conditions.

If moderate to severe icing conditions are encountered:

During flight in moderate to severe icing conditions for prolonged periods with N1 settings at or below 70%, or if fan icing is suspected due to high engine vibration, increase thrust on one engine at a time to a minimum of 70% N1 for 10 to 30 seconds every 10 minutes.

Wing Anti-ice Operation - In-flight

Ice accumulation on the flight deck window frames, windshield center post, or windshield wiper arm, or side windows may be used as an indication of structural icing conditions and the need to turn on wing anti–ice

The wing anti-ice system may be used as a de-icer or anti-icer in flight only. The primary method is to use it as a de-icer by allowing ice to accumulate before turning wing anti-ice on. This procedure provides the cleanest airfoil surface, the least possible runback ice formation, and the least thrust and fuel penalty. Normally it is not necessary to shed ice periodically unless extended flight through icing conditions is necessary (holding).

The secondary method is to select the WING ANTI-ICE switch ON when wing icing is possible and use the system as an anti-icer.

CAUTION: Do not use wing anti-ice when TAT is above 10°C.

When wing anti–ice is needed:

WING ANTI-ICE switch	ON	PM
When wing anti–ice is no longer needed:		

WING ANTI-ICE switch OFF PM

Cold Temperature Altitude Corrections

Extremely low temperatures create significant altimeter errors and greater potential for reduced terrain clearance. When the temperature is colder than ISA, true altitude will be lower than indicated altitude. Altimeter errors become significantly larger when the surface temperature approaches -30°C or colder, and also become larger with increasing height above the altimeter reference source.

Apply the altitude correction table when needed:

- no corrections are needed for reported temperatures above 0°C or if the airport temperature is at or above the minimum published temperature for the procedure being flown
- do not correct altimeter barometric reference settings
- ATC assigned altitudes or flight levels should not be adjusted for temperature when under radar control
- corrections apply to QNH and QFE operations
- apply corrections to all published minimum departure, en route and approach altitudes, including missed approach altitudes, according to the table below. Advise ATC of the corrections
- MDA/DA settings should be set at the corrected minimum altitudes for the approach
- subtract the elevation of the altimeter barometric reference setting source (normally the departure or destination airport elevation) from the published minimum altitude to be flown to determine "height above altimeter reference source"
- enter the table with Airport Temperature and with "height above altimeter reference source." Read the correction where these two entries intersect. Add the correction to the published minimum altitude to be flown to determine the corrected indicated altitude to be flown. To correct an altitude above the altitude in the last column, use linear extrapolation (e.g., to correct 6000 feet or 1800 meters, use twice the correction for 3000 feet or 900 meters, respectively) The corrected altitude must always be greater than the published minimum altitude
- if the corrected indicated altitude to be flown is between 100 foot increments, set the MCP altitude to the closest 100 foot increment above the corrected indicated altitude to be flown.

Altitude Correction Table - Heights and Altitudes in Feet

Airport	Height Above Altimeter Source											
Temp °C	200 feet	300 feet	400 feet	500 feet	600 feet	700 feet	800 feet	900 feet	1000 feet	1500 feet	2000 feet	3000 feet
0°	20	20	30	30	40	40	50	50	60	90	120	170
-10°	20	30	40	50	60	70	80	90	100	150	200	290
-20°	30	50	60	70	90	100	120	130	140	210	280	420
-30°	40	60	80	100	120	140	150	170	190	280	380	570
-40°	50	80	100	120	150	170	190	220	240	360	480	720
-50°	60	90	120	150	180	210	240	270	300	450	590	890

Altitude Correction Table - Heights and Altitudes in Meters

Airport	Height Above Altimeter Source											
Temp °C	60	90	120	150	180	210	240	270	300	450	600	900
	MTRS	MTRS	MTRS	MTRS	MTRS	MTRS	MTRS	MTRS	MTRS	MTRS	MTRS	MTRS
0°	5	5	10	10	10	15	15	15	20	25	35	50
-10°	10	10	15	15	20	20	25	30	30	45	60	90
-20°	10	15	20	25	25	30	35	40	45	65	85	130
-30°	15	20	25	30	35	40	45	55	60	85	115	170
-40°	15	25	30	40	45	50	60	65	75	110	145	220
-50°	20	30	40	45	55	65	75	80	90	135	180	270

After Landing Procedure

CAUTION: Taxi at a reduced speed. Use smaller tiller and rudder inputs, and apply minimum thrust evenly and smoothly. Taxiing on slippery taxiways or runways at excessive speed or with high crosswinds may start a skid.

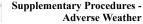
Do the normal After Landing Procedure with the following modifications:

After prolonged operation in icing conditions with the flaps extended, or when an accumulation of airframe ice is observed, or when operating on a runway or taxiway contaminated with ice, snow, slush or standing water.

Do not retract the flaps to less than flaps 20 until the flap areas have been checked to be free of contaminants.

Engine anti-ice must be selected ON and remain on during all ground operations when icing conditions exist or are anticipated, except when the temperature is below -40°C OAT.

WARNING: Do not rely on airframe visual icing cues before activating engine anti-ice. Use the temperature and visible moisture criteria because late activation of engine anti-ice may allow excessive ingestion of ice and result in engine damage or failure.


CAUTION: Do not use engine anti-ice when OAT is above 10°C.

Supplementary Procedures - DO NOT USE FOR FLIGHT Adverse Weather

767 Flight Crew Operations Manual

When the aircraft is equipped with GE 80C2 engines. Run-up to a minimum of 60% N1 for approximately 30 seconds duration at intervals no greater than 30 minutes.

When the aircraft is equipped with PW4000 engines. Run-up to a minimum of 50% N1 for approximately 1 second duration at intervals no greater than 15 minutes.

767 Flight Crew Operations Manual

Secure Procedure

Do the following steps after completing the normal Secure Procedure:

If the airplane will be attended, do the normal Secure Procedure with the following modification:

PACK CONTROL selectors AUTO F/O

If the airplane will not be attended, or if staying overnight at off-line stations or at airports where normal support is not available, the flight crew must arrange for or verify that the following steps are done:

Position the outflow valve fully closed to inhibit the intake of snow or ice

Reduces the possibility of frozen brakes.

Cold weather maintenance procedures for securing the airplane may be required. These procedures are found in the approved Aircraft Maintenance Manual

Supplementary Procedures -Adverse Weather

767 Flight Crew Operations Manual

Hot Weather Operation

During ground operation the following considerations will help keep the airplane as cool as possible:

- If a ground source of conditioned air is available, the supply should be plugged in immediately after engine shutdown and should not be removed until either the APU or the engines are started.
- If a ground source of conditioned air is not available, use both air conditioning packs and recirculation fans.
- Keep all doors and windows, including cargo doors, closed as much as possible.
- Electronic components which contribute to a high temperature level in the flight deck should be turned off while not in use.
- Open all passenger cabin gasper outlets and close all window shades on the sun–exposed side of the passenger cabin.
- Open all flight deck air outlets.

Note: If only a ground source of conditioned air is supplied (no bleed air from the APU or ground external air), then TAT probes are not aspirated. Because of high TAT probe temperatures, the FMCs or TMSP may not accept an assumed temperature derate. Delay selecting an assumed temperature derate until after bleed air is available.

Moderate to Heavy Rain, Hail or Sleet

Flight should be conducted to avoid thunderstorms, hail activity or visible moisture over storm cells. To the maximum extent possible, moderate to heavy rain, hail or sleet should also be avoided.

When flight in or near heavy rain or hail is encountered or anticipated, accomplish the following:

[This selection maintains a minimum thrust setting of approach idle and provides continuous ignition.]

Supplementary Procedures -

Adverse Weather

767 Flight Crew Operations Manual

Turbulence

During flight in light to moderate turbulence, the autopilot may remain engaged unless airspeed, altitude or attitude deviations require use of manual control. The turbulent air penetration speed is 290 knots/.78 Mach. Below 10,000 feet a speed between 240 and 250 knots provides adequate buffet margin.

Passenger SignsON

Advise passengers to fasten seat belts prior to entering areas of reported or anticipated turbulence. Instruct flight attendants to check all passengers' seat belts are fastened.

Severe Turbulence

Severe turbulence should be avoided if at all possible. If severe turbulence cannot be avoided, an increased buffet margin is recommended. This can be obtained by descending approximately 4,000 feet below optimum altitude. The autothrottle should be off in severe turbulence.

Windshear

Windshear is a change of wind speed and/or direction over a short distance along the flight path. Indications of windshear are listed in the Windshear non-normal maneuver in this manual

Avoidance

The flight crew should search for any clues to the presence of windshear along the intended flight path. Presence of windshear may be indicated by:

- Thunderstorm activity
- Virga (rain that evaporates before reaching the ground)
- Pilot reports
- Low level windshear alerting system (LLWAS) warnings.

Stay clear of thunderstorm cells and heavy precipitation and areas of known windshear. If presence of windshear is confirmed, delay takeoff or do not continue an approach.

767 Flight Crew Operations Manual

Precautions

If windshear is suspected, be especially alert to any of the danger signals and be prepared for the possibility of an inadvertent encounter. The following precautionary actions are recommended if windshear is suspected:

Takeoff

- Use maximum takeoff thrust instead of reduced thrust.
- For optimum takeoff performance, use Flaps 20 for takeoff unless limited by obstacle clearance and/or climb gradient. Flaps 15 may also be used as a precautionary setting and will provide nearly equivalent performance to Flaps 20.
- Use the longest suitable runway provided it is clear of areas of known windshear.
- Use the flight director after takeoff.
- Consider increasing Vr speed to the performance limited gross weight rotations speed, not to exceed actual gross weight Vr+20 knots. Set V speeds for the actual gross weight. Rotate at the adjusted (higher) rotation speed. This increased rotation speed results in an increased stall margin, and meets takeoff performance requirements. If windshear is encountered at or beyond the actual gross weight Vr, do not attempt to accelerate to the increased Vr, but rotate without hesitation.
- Be alert for any airspeed fluctuations during takeoff and initial climb. Such fluctuations may be the first indication of windshear.
- Know the all-engine initial climb pitch attitude. Rotate at the normal rate to this attitude for all non-engine failure takeoffs. Minimize reductions from the initial climb pitch attitude until terrain and obstruction clearance is assured, unless stick shaker activates.
- Crew coordination and awareness are very important. Develop an awareness of normal values of airspeed, attitude, vertical speed and airspeed build—up. Closely monitor vertical flight path instruments such as vertical speed and altimeters. The pilot monitoring should be especially aware of vertical path instruments and call out any deviations from normal.
- Should airspeed fall below the trim airspeed, unusual control column forces may be required to maintain the desired pitch attitude. Stick shaker must be respected at all times.

767 Flight Crew Operations Manual

Approach and Landing

- Use either Flaps 25 or 30 for landing.
- Establish a stabilized approach no lower than 1000 feet above the airport to improve windshear recognition capability.
- Use the most suitable runway that avoids the areas of suspected windshear and is compatible with crosswind or tailwind limitations. Use ILS G/S, VNAV path or VASI/PAPI indications to detect flight path deviations and help with timely detection of windshear
- If the autothrottle is disengaged, or is planned to be disengaged prior to landing, add an appropriate airspeed correction (correction applied in the same manner as gust), up to a maximum of 20 knots.
- Avoid large thrust reductions or trim changes in response to sudden airspeed increases as these may be followed by airspeed decreases.
- Crosscheck flight director commands using vertical flight path instruments.
- Crew coordination and awareness are very important, particularly at night or in marginal weather conditions. Closely monitor the vertical flight path instruments such as vertical speed, altimeters and glide slope displacement. The pilot monitoring should call out any deviations from normal. Use of the autopilot and autothrottle for the approach may provide more monitoring and recognition time.

Recovery

Accomplish the WINDSHEAR maneuver found in the Non–Normal Maneuvers section of this manual

767 Flight Crew Operations Manual

Performance Inflight	Chapter PI
Table of Contents	
767-300 CF6-80C2B6F LB FAA CATC CATD TO2-20%	
767-300 PW4060 LB FAA CATC CATD	PI.20.1

767 Flight Crew Operations Manual

Intentionally Blank

767 Flight Crew Operations Manual

Performance Inflight Chapter PI Table of Contents Section 10

767-300 CF6-80C2B6F LB FAA CATC CATD TO1-10% TO2-20%

General	PI.10.1
Takeoff Speeds	PI.10.1
V1(MCG)	
Clearway and Stopway V1 Adjustments	
Stab Trim Setting	PI.10.3
VREF (KIAS)	
Flap Maneuver Speeds	
Slush/Standing Water Takeoff	
Slippery Runway Takeoff	
Takeoff %N1	
Assumed Temperature Reduced Thrust	
TO1 Takeoff Speeds	PI.10.17
TO1 V1(MCG)	PI.10.18
TO1 Takeoff %N1	
TO1 Stab Trim Setting	
TO2 Takeoff Speeds	PI.10.19
TO2 V1(MCG)	PI.10.19
TO2 Takeoff %N1	
TO2 Stab Trim Setting	
Max Climb %N1	PI.10.21
Go-around %N1	PI.10.22
Flight With Unreliable Airspeed /	
Turbulent Air Penetration	PI.10.23
All Engine	PI.11.1
Long Range Cruise Maximum Operating Altitude	PI.11.1
Long Range Cruise Control	
Long Range Cruise Enroute Fuel and Time - Low Altitudes	PI.11.3
Long Range Cruise Enroute Fuel and Time - High Altitudes	PI 11 4

Performance Inflight -Table of Contents

DO NOT USE FOR FLIGHT

767 Flight Crew Operations Manual

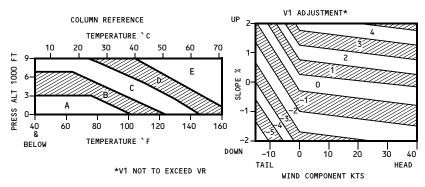
Long Range Cruise Wind-Altitude Trade	PI.11.5
Descent at .78/290/250	PI.11.5
Holding	PI.11.6
Advisory Information	PI.12.1
Normal Configuration Landing Distance	PI.12.1
Non-Normal Configuration Landing Distance	PI.12.3
Recommended Brake Cooling Schedule	PI.12.11
Engine Inoperative	PI.13.1
Initial Max Continuous %N1	PI.13.1
Max Continuous %N1	PI.13.2
Driftdown Speed/Level Off Altitude	PI.13.5
Driftdown/LRC Cruise Range Capability	PI.13.5
Long Range Cruise Altitude Capability	PI.13.6
Long Range Cruise Control	PI.13.7
Long Range Cruise Diversion Fuel and Time	PI.13.8
Holding	PI.13.9
Gear Down	PI.14.1
200 KIAS Max Climb %N1	PI.14.1
Long Range Cruise Altitude Capability	PI.14.1
Long Range Cruise Control	PI.14.2
Long Range Cruise Enroute Fuel and Time	PI.14.3
Descent at VREF30 + 70	PI.14.3
Holding	PI.14.4
Gear Down, Engine Inoperative	PI.15.1
Driftdown Speed/Level Off Altitude	PI.15.1
Long Range Cruise Altitude Capability	PI.15.1
Long Range Cruise Control	PI.15.2
Long Range Cruise Diversion Fuel and Time	PI.15.3
Holding	PI.15.4
Text	PI.16.1
Introduction	PI.16.1
Takeoff Speeds	PI.16.1
All Engines	PI.16.6
Advisory Information	PI.16.7

Performance Inflight -Table of Contents

767 Flight Crew Operations Manual

Engine Inoperative		PI.16.9
Gear Down	P	I.16.11

767 Flight Crew Operations Manual


Intentionally Blank

767 Flight Crew Operations Manual

Performance Inflight - General

Chapter PI Section 10

Takeoff Speeds Max Takeoff Thrust

PS	WT		Α			В			С			D			Ε	
FLAPS	1000 LB	۷ 1	V _R	٧ 2	۷ 1	V _R	٧ 2	۷ 1	V _R	٧ 2	۷ 1	V _R	٧ 2	۷ 1	V _R	٧ 2
5	420 400 380 360 340 320 320 280 240 240 220	166 161 155 150 144 138 132 126 120	170 166 161 156 151 145 140 134 127 121	175 171 167 163 158 153 148 143 138 133	168 163 158 153 147 141 135 129 122 115	172 167 162 157 152 147 141 135 129 123 115	176 171 167 162 158 153 148 143 138 133	161 155 150 144 138 132 125 118 112	164 159 154 148 143 137 131 125 118	168 163 158 153 148 143 138 133 128	147 141 135 128 122 115	150 144 139 133 126 120	153 148 143 138 133 127	145 139 132 125 118	146 140 134 128 122	149 143 138 133 127
15	420 480 380 340 320 300 280 280 240	160 155 150 145 139 134 128 122 116	163 158 154 149 144 139 133 128 122 116	169 164 160 156 151 147 142 133 127 122	152 147 142 136 131 125 119 110	155 151 146 140 135 129 123 117	160 156 151 147 142 138 133 127	144 139 133 127 121 115 108	147 142 137 131 125 119 113	152 147 142 137 132 127 122	137 131 125 117 112	138 133 127 121 115	142 137 132 127 122	122 115	123 117	127 122
20	420 400 380 360 340 320 300 280 260 240 220	159 153 147 142 137 130 125 119 112 106 99	159 154 149 144 140 134 129 123 117 112 105	165 160 155 150 146 142 137 133 128 123 118	156 150 144 139 134 128 122 115 109	156 150 145 140 135 130 125 119 113 107	160 156 151 146 142 137 133 128 123 118	141 136 130 124 118 112 105	142 137 132 126 121 115 109	147 142 137 133 128 123 118	133 128 122 116 109	133 128 123 117 111	138 133 128 123 118	124 119 113	124 119 113	128 123 118

CHECK V1(MCG) IN BOXED AREA

767-300/CF6-80C2B6F FAA Category C & D Brake

767 Flight Crew Operations Manual

V1(MCG)

Max Takeoff Thrust

ACTUAL OAT		PRESSURE ALTITUDE (FT)						
°F	°C	-1000	0	2000	4000	6000	8000	9000
122	50	103	101	97				
104	40	108	106	101	97	93	90	
86	30	111	109	105	101	97	94	92
68	20	111	110	107	104	100	96	95
50	10	111	110	107	104	101	98	96
-58	-50	113	111	108	105	102	98	97

Maximum Allowable Clearway

FIELD LENGTH (FT)	MAX ALLOWABLE CLEARWAY FOR V1 REDUCTION (FT)
4000	350
6000	500
8000	600
10000	700
12000	800
14000	900

Clearway and Stopway V1 Adjustments

	ι υ						
CLEARWAY MINUS	NORMAL V1 (KIAS)						
STOPWAY (FT)	120	140	160				
800	-5	-3	-2				
600	-3	-2	-2				
400	-2	-1	-1				
200	-1	-1	-1				
0	0	0	0				
-200	1	1	1				
-400	2	1	1				
-600	3	2	2				
-800	5	3	2				

Performance Inflight -General

767 Flight Crew Operations Manual

Stab Trim Setting Max Takeoff Thrust

WEIGHT	C.G. %MAC									
(1000 LB)	12	16	20	24	28	32	36			
420	7	7	6	4 1/2	3 1/2	3	2			
400	7	6	5 1/2	4 1/2	3 1/2	3	2			
380	7	6	5	4 1/2	3 1/2	2 1/2	1 1/2			
360	6 1/2	5 1/2	5	4	3	2 1/2	1 1/2			
340	6	5 1/2	4 1/2	3 1/2	3	2	1 1/2			
320	6	5	4	3 1/2	2 1/2	2	1			
300	5	4 1/2	3 1/2	3	2	1 1/2	1/2			
280	4 1/2	4	3	2 1/2	1 1/2	1	1/2			
260	4	3 1/2	2 1/2	2	1	1/2	1/2			
240	3 1/2	3	2	1 1/2	1	1/2	1/2			
220	3	2 1/2	2	1	1 1	1/2	1/2			

767-300/CF6-80C2B6F FAA Category C & D Brake

767 Flight Crew Operations Manual

VREF (KIAS)

WEIGHT	FLAPS							
(1000 LB)	30	25	20					
420	179	171	179					
400	172	166	174					
380	166	162	169					
360	159	158	164					
340	151	153	159					
320	145	149	154					
300	140	144	149					
280	135	139	144					
260	130	134	139					
240	124	129	134					
220	119	123	128					

Performance Inflight -General

767 Flight Crew Operations Manual

Flap Maneuver Speeds

FLAP POSITION	MANEUVER SPEED
UP	VREF30 + 80
1	VREF30 + 60
5	VREF30 + 40
15	VREF30 + 20
20	VREF30 + 20
25	VREF25
30	VREF30

767 Flight Crew Operations Manual

767-300/CF6-80C2B6F FAA Category C & D Brake

ADVISORY INFORMATION

Slush/Standing Water Takeoff Maximum Reverse Thrust Weight Adjustment (1000 LB)

···-g((()										
	SLUSH/STANDING WATER DEPTH									
FIELD/OBSTACLE LIMIT WEIGHT	0.12 I	NCHES (3	mm)	0.25 I	NCHES (6	6 mm)	0.50 II	NCHES (1	3 mm)	
(1000 LB)	PRI	ESS ALT (FT)	PRI	ESS ALT (FT)	PRI	ESS ALT (FT)	
(1000 EB)	S.L.	4000	8000	S.L.	4000	8000	S.L.	4000	8000	
420	-42.1	-51.3	-60.5	-49.2	-58.4	-67.6	-66.3	-75.5	-84.7	
400	-40.8	-50.0	-59.2	-47.5	-56.7	-65.9	-62.6	-71.8	-81.0	
380	-38.9	-48.1	-57.3	-44.9	-54.1	-63.3	-58.3	-67.5	-76.7	
360	-36.4	-45.6	-54.8	-41.7	-50.9	-60.1	-53.5	-62.7	-71.9	
340	-33.5	-42.7	-51.9	-37.9	-47.1	-56.3	-48.1	-57.3	-66.5	
320	-30.1	-39.3	-48.5	-33.7	-42.9	-52.1	-42.3	-51.5	-60.7	
300	-26.2	-35.4	-44.6	-29.3	-38.5	-47.7	-36.2	-45.4	-54.6	
280	-22.1	-31.3	-40.5	-24.8	-34.0	-43.2	-29.8	-39.0	-48.2	
260	-17.6	-26.8	-36.0	-20.3	-29.5	-38.7	-23.2	-32.4	-41.6	
240	-12.8	-22.0	-31.2	-16.0	-25.2	-34.4	-16.6	-25.8	-35.0	
220	-7.8	-17.0	-26.2	-11.9	-21.1	-30.3	-9.8	-19.0	-28.2	

V1(MCG) Limit Weight (1000 LB)

` ,		,							
ADJUSTED			SLU	JSH/STAN	NDING W	ATER DEI	TH		
FIELD	0.12 I	NCHES (3	3 mm)	0.25 I	NCHES (6	mm)	0.50 INCHES (13 mm)		
LENGTH	PRI	PRESS ALT (FT)			ESS ALT (FT)	PRESS ALT (FT)		
(FT)	S.L.	4000	8000	S.L.	4000	8000	S.L.	4000	8000
4600							193.2		
5000	189.4			206.2			237.1	182.2	
5400	233.4			251.0	195.1		282.2	226.2	
5800	280.2	222.2		298.4	239.6	184.0	330.1	270.8	215.2
6200	330.3	268.1	211.3	348.8	286.2	228.4	380.3	318.0	259.4
6600	382.9	317.5	256.3	401.7	335.9	274.2	432.1	367.5	305.9
7000	438.4	369.4	304.9	455.8	388.4	323.3		419.0	354.9
7400		424.2	356.2		442.2	375.1			406.0
7800			410.3			428.6			458.7

- 1. Enter Weight Adjustment table with slush/standing water depth and field/obstacle limit weight to obtain slush/standing water weight adjustment.
- 2. Adjust field length available by -120 ft/ + 120 ft for every 10°F above/below 40°F.
- 3. Find V1(MCG) limit weight for adjusted field length and pressure altitude.
- 4. Max allowable slush/standing water limited weight is lesser of weights from 1 and 3.

Performance Inflight -General

767 Flight Crew Operations Manual

ADVISORY INFORMATION

Slush/Standing Water Takeoff Maximum Reverse Thrust V1 Adjustment (KIAS)

			SLU	USH/STAN	NDING W	ATER DEI	PTH			
WEIGHT	0.12	NCHES (3 mm)	0.25 1	NCHES (6	6 mm)	0.50 INCHES (13 mm)			
(1000 LB)	PR	ESS ALT ((FT)	PR	ESS ALT (FT)	PRESS ALT (FT)			
	S.L.	4000	8000	S.L.	4000	8000	S.L.	4000	8000	
420	-21	-21	-21	-16	-16	-16	-7	-7	-7	
400	-21	-21	-21	-16	-16	-16	-6	-6	-6	
380	-22	-22	-22	-17	-17	-17	-6	-6	-6	
360	-22	-22	-22	-17	-17	-17	-6	-6	-6	
340	-23	-23	-23	-18	-18	-18	-7	-7	-7	
320	-23	-23	-23	-18	-18	-18	-7	-7	-7	
300	-24	-24	-24	-19	-19	-19	-9	-9	-9	
280	-25	-25	-25	-20	-20	-20	-10	-10	-10	
260	-25	-25	-25	-21	-21	-21	-12	-12	-12	
240	-26	-26	-26	-23	-23	-23	-14	-14	-14	
220	-27	-27	-27	-24	-24	-24	-16	-16	-16	

^{1.} Obtain V1, VR and V2 for the actual weight.

^{2.} If V1(MCG) limited, set V1 = V1(MCG). If not V1(MCG) limited, enter V1 Adjustment table with the actual weight to obtain V1 speed adjustment. If adjusted V1 is less than V1(MCG), set V1 = V1(MCG).

767 Flight Crew Operations Manual

767-300/CF6-80C2B6F FAA Category C & D Brake

ADVISORY INFORMATION

Slush/Standing Water Takeoff No Reverse Thrust Weight Adjustment (1000 LB)

	,	,								
			SLU	JSH/STAN	NDING W	ATER DEI	TΗ			
FIELD/OBSTACLE	0.12 I	NCHES (3	mm)	0.25 I	NCHES (6	mm)	0.50 INCHES (13 mm)			
LIMIT WEIGHT (1000 LB)	PRI	PRESS ALT (FT)			ESS ALT (FT)	PRESS ALT (FT)			
(1000 LB)	S.L.	4000	8000	S.L.	4000	8000	S.L.	4000	8000	
420	-54.9	-64.9	-74.9	-63.0	-73.0	-83.0	-81.9	-91.9	-101.9	
400	-51.9	-61.9	-71.9	-59.1	-69.1	-79.1	-75.5	-85.5	-95.5	
380	-48.7	-58.7	-68.7	-55.0	-65.0	-75.0	-69.2	-79.2	-89.2	
360	-45.2	-55.2	-65.2	-50.7	-60.7	-70.7	-62.8	-72.8	-82.8	
340	-41.6	-51.6	-61.6	-46.2	-56.2	-66.2	-56.5	-66.5	-76.5	
320	-37.7	-47.7	-57.7	-41.6	-51.6	-61.6	-50.2	-60.2	-70.2	
300	-33.5	-43.5	-53.5	-36.8	-46.8	-56.8	-44.0	-54.0	-64.0	
280	-29.2	-39.2	-49.2	-31.9	-41.9	-51.9	-37.8	-47.8	-57.8	
260	-24.6	-34.6	-44.6	-26.8	-36.8	-46.8	-31.6	-41.6	-51.6	
240	-19.8	-29.8	-39.8	-21.5	-31.5	-41.5	-25.4	-35.4	-45.4	
220	-14.8	-24.8	-34.8	-16.0	-26.0	-36.0	-19.3	-29.3	-39.3	

V1(MCG) Limit Weight (1000 LB)

ADJUSTED		SLUSH/STANDING WATER DEPTH								
FIELD	0.12 I	NCHES (3	3 mm)	0.25 I	NCHES (6	mm)	0.50 INCHES (13 mm)			
LENGTH	PRI	PRESS ALT (FT)			PRESS ALT (FT)			PRESS ALT (FT)		
(FT)	S.L.	4000	8000	S.L.	4000	8000	S.L.	4000	8000	
6200							217.9			
6600				193.8			269.6	200.4		
7000	199.7			251.2			323.9	251.2	182.9	
7400	261.7			311.5	230.8		381.4	304.6	233.2	
7800	327.3	239.6		375.3	290.0	210.7	442.7	360.9	285.6	
8200	397.6	303.8	218.1	443.3	352.5	268.9		420.8	340.8	
8600		372.4	280.9		418.9	330.2			399.4	
9000		446.2	347.8			395.2				
9400			419.8							

- 1. Enter Weight Adjustment table with slush/standing water depth and field/obstacle limit weight to obtain slush/standing water weight adjustment.
- 2. Adjust field length available by -155 ft/+155 ft for every 10°F above/below 40°F.
- 3. Find V1(MCG) limit weight for adjusted field length and pressure altitude.
- 4. Max allowable slush/standing water limited weight is lesser of weights from 1 and 3.

Performance Inflight -General

767 Flight Crew Operations Manual

ADVISORY INFORMATION

Slush/Standing Water Takeoff No Reverse Thrust V1 Adjustment (KIAS)

			SLU	USH/STAN	NDING W	ATER DEI	PTH			
WEIGHT	0.12 I	NCHES (3 mm)	0.25 I	NCHES (6 mm)	0.50 INCHES (13 mm)			
(1000 LB)	PR	ESS ALT ((FT)	PR	ESS ALT (FT)	PRESS ALT (FT)			
	S.L.	4000	8000	S.L.	4000	8000	S.L.	4000	8000	
420	-30	-30	-30	-23	-23	-23	-11	-11	-11	
400	-30	-30	-30	-24	-24	-24	-11	-11	-11	
380	-31	-31	-31	-25	-25	-25	-12	-12	-12	
360	-31	-31	-31	-26	-26	-26	-13	-13	-13	
340	-32	-32	-32	-27	-27	-27	-14	-14	-14	
320	-32	-32	-32	-28	-28	-28	-16	-16	-16	
300	-33	-33	-33	-28	-28	-28	-18	-18	-18	
280	-33	-33	-33	-29	-29	-29	-20	-20	-20	
260	-33	-33	-33	-30	-30	-30	-22	-22	-22	
240	-33	-33	-33	-31	-31	-31	-25	-25	-25	
220	-33	-33	-33	-31	-31	-31	-28	-28	-28	

^{1.} Obtain V1, VR and V2 for the actual weight.

^{2.} If V1(MCG) limited, set V1 = V1(MCG). If not V1(MCG) limited, enter V1 Adjustment table with the actual weight to obtain V1 speed adjustment. If adjusted V1 is less than V1(MCG), set V1 = V1(MCG).

767 Flight Crew Operations Manual

767-300/CF6-80C2B6F FAA Category C & D Brake

Slippery Runway Takeoff Maximum Reverse Thrust Weight Adjustment (1000 LB)

- J	,									
			R	EPORTEI) BRAKIN	IG ACTIO	N			
FIELD/OBSTACLE		GOOD			MEDIUM		POOR			
LIMIT WEIGHT (1000 LB)	PRI	ESS ALT (FT)	PRI	PRESS ALT (FT)			PRESS ALT (FT)		
(1000 LL)	S.L.	4000	8000	S.L.	4000	8000	S.L.	4000	8000	
420	-2.4	-2.4	-2.4	-23.8	-23.8	-23.8	-44.0	-44.0	-44.0	
400	-4.4	-4.4	-4.4	-24.7	-24.7	-24.7	-43.3	-43.3	-43.3	
380	-5.8	-5.8	-5.8	-25.0	-25.0	-25.0	-42.1	-42.1	-42.1	
360	-6.6	-6.6	-6.6	-24.7	-24.7	-24.7	-40.5	-40.5	-40.5	
340	-6.8	-6.8	-6.8	-23.7	-23.7	-23.7	-38.3	-38.3	-38.3	
320	-6.5	-6.5	-6.5	-22.2	-22.2	-22.2	-35.7	-35.7	-35.7	
300	-5.6	-5.6	-5.6	-20.0	-20.0	-20.0	-32.6	-32.6	-32.6	
280	-4.3	-4.3	-4.3	-17.2	-17.2	-17.2	-29.1	-29.1	-29.1	
260	-2.5	-2.5	-2.5	-13.7	-13.7	-13.7	-25.0	-25.0	-25.0	
240	-0.3	-0.3	-0.3	-9.6	-9.6	-9.6	-20.5	-20.5	-20.5	
220	0.0	0.0	0.0	-4.9	-4.9	-4.9	-15.5	-15.5	-15.5	

V1(MCG) Limit Weight (1000 LB)

ADJUSTED			R	EPORTEI) BRAKIN	IG ACTIO	N		
FIELD		GOOD			MEDIUM		POOR		
LENGTH	PRI	ESS ALT (FT)	PR	ESS ALT (FT)	PRESS ALT (FT)		
(FT)	S.L.	4000	8000	S.L.	4000	8000	S.L.	4000	8000
3800	218.5								
4200	304.5								
4600	389.6	253.0							
5000		338.7	201.2	206.8					
5400		423.3	287.4	265.4					
5800			372.6	327.0	229.9				
6200			456.9	392.0	289.6	195.3	182.5	182.5	182.5
6600					352.5	253.5	217.0	217.0	217.0
7000					419.2	314.4	252.6	252.6	252.6
7400						378.7	289.9	289.9	289.9
7800						447.1	329.2	329.2	329.2
8200							370.7	370.7	370.7
8600							414.9	414.9	414.9

- Enter Weight Adjustment table with reported braking action and field/obstacle limit weight to obtain slippery runway weight adjustment.
- Adjust "Good" field length available by -90 ft/+90 ft for every 10°F above/below 40°F.
 Adjust "Medium" field length available by -90 ft/+90 ft for every 10°F above/below 40°F.
 Adjust "Poor" field length available by -140 ft/+140 ft for every 10°F above/below 40°F.
- 3. Find V1(MCG) limit weight for adjusted field length and pressure altitude.
- 4. Max allowable slippery runway limited weight is lesser of weights from 1 and 3.

767 Flight Crew Operations Manual

Slippery Runway Takeoff Maximum Reverse Thrust V1 Adjustment (KIAS)

			R	EPORTE) BRAKIN	IG ACTIO	ON			
WEIGHT		GOOD			MEDIUM		POOR			
(1000 LB)	PRI	PRESS ALT (FT)		PRI	ESS ALT (FT)	PRESS ALT (FT)			
	S.L.	4000	8000	S.L.	4000	8000	S.L.	4000	8000	
420	-7	-7	-7	-17	-17	-17	-29	-29	-29	
400	-8	-8	-8	-18	-18	-18	-30	-30	-30	
380	-9	-9	-9	-19	-19	-19	-31	-31	-31	
360	-9	-9	-9	-20	-20	-20	-33	-33	-33	
340	-10	-10	-10	-21	-21	-21	-34	-34	-34	
320	-11	-11	-11	-22	-22	-22	-36	-36	-36	
300	-11	-11	-11	-23	-23	-23	-37	-37	-37	
280	-12	-12	-12	-24	-24	-24	-38	-38	-38	
260	-12	-12	-12	-25	-25	-25	-40	-40	-40	
240	-12	-12	-12	-26	-26	-26	-42	-42	-42	
220	-12	-12	-12	-27	-27	-27	-43	-43	-43	

^{1.} Obtain V1, VR and V2 for the actual weight.

^{2.} If V1(MCG) limited, set V1 = V1(MCG). If not V1(MCG) limited, enter V1 Adjustment table with the actual weight to obtain V1 speed adjustment. If adjusted V1 is less than V1(MCG), set V1 = V1(MCG).

FAA

67 Flight Crew Operations Manual Category C & D Brake

767-300/CF6-80C2B6F

767 Flight Crew Operations Manual

Slippery Runway Takeoff No Reverse Thrust Weight Adjustment (1000 LB)

			R	EPORTEI	BRAKIN	IG ACTIO)N				
FIELD/OBSTACLE LIMIT WEIGHT		GOOD			MEDIUM		POOR				
(1000 LB)	PRI	PRESS ALT (FT)			PRESS ALT (FT)			PRESS ALT (FT)			
(1000 EB)	S.L.	4000	8000	S.L.	4000	8000	S.L.	4000	8000		
420	-9.3	-10.3	-11.2	-35.3	-36.2	-37.1	-56.4	-57.4	-58.3		
400	-10.8	-11.7	-12.6	-35.5	-36.4	-37.3	-55.3	-56.2	-57.1		
380	-11.8	-12.7	-13.6	-35.2	-36.1	-37.1	-53.5	-54.4	-55.4		
360	-12.3	-13.2	-14.2	-34.4	-35.4	-36.3	-51.2	-52.1	-53.0		
340	-12.4	-13.3	-14.2	-33.1	-34.1	-35.0	-48.2	-49.1	-50.1		
320	-12.0	-13.0	-13.9	-31.3	-32.2	-33.2	-44.7	-45.6	-46.5		
300	-11.2	-12.1	-13.1	-29.0	-29.9	-30.8	-40.5	-41.5	-42.4		
280	-10.0	-10.9	-11.8	-26.1	-27.1	-28.0	-35.8	-36.8	-37.7		
260	-8.2	-9.2	-10.1	-22.8	-23.7	-24.6	-30.5	-31.4	-32.4		
240	-6.1	-7.0	-7.9	-18.9	-19.8	-20.7	-24.6	-25.5	-26.5		
220	-3.4	-4.4	-5.3	-14.5	-15.4	-16.4	-18.1	-19.0	-20.0		

V1(MCG) Limit Weight (1000 LB)

			R	EPORTEI	BRAKIN	IG ACTIO	N		
ADJUSTED FIELD		GOOD			MEDIUM			POOR	
LENGTH (FT)	PRESSUI	RE ALTIT	UDE (FT)	PRESSUI	RE ALTIT	UDE (FT)	PRESSU	RE ALTIT	UDE (FT)
	S.L.	4000	8000	S.L.	4000	8000	S.L.	4000	8000
4200	185.3								
4600	311.7								
5000	414.0	246.1							
5400		359.9							
5800		455.1	300.3						
6200			404.5						
6600				270.4					
7000				368.5	212.6				
7400				459.3	315.6				
7800					410.1	260.1			
8200						359.0			
8600						450.5			
9400							185.3		
9800							240.2		
10200							298.3	185.3	
10600							360.5	240.2	
11000							427.8	298.3	185.3
11400								360.5	240.2
11800								427.8	298.3
12200									360.5
12600									427.8

- Enter Weight Adjustment table with reported braking action and dry field/obstacle limit weight to obtain slippery runway weight adjustment.
- 2. Adjust "Good" field length available by -100 ft/+100 ft for every 10°F above/below 40°F. Adjust "Medium" field length available by -100 ft/+100 ft for every 10°F above/below 40°F. Adjust "Poor" field length available by -175 ft/+175 ft for every 10°F above/below 40°F.
- 3. Find V1(MCG) limit weight for available field length and pressure altitude.
- 4. Max allowable slippery runway limited weight is lesser of weights from 1 and 3.

Performance Inflight -General

767 Flight Crew Operations Manual

Slippery Runway Takeoff No Reverse Thrust V1 Adjustment (KIAS)

-	•									
			R	EPORTEI	BRAKIN	IG ACTIO	N			
WEIGHT		GOOD			MEDIUM		POOR			
(1000 LB)	PR	ESS ALT (FT)	PRI	ESS ALT (FT)	PRESS ALT (FT)			
	S.L.	4000	8000	S.L.	4000	8000	S.L.	4000	8000	
420	-9	-9	-9	-23	-23	-23	-42	-42	-42	
400	-10	-10	-10	-24	-24	-24	-43	-43	-43	
380	-11	-11	-11	-25	-25	-25	-45	-45	-45	
360	-12	-12	-12	-27	-27	-27	-47	-47	-47	
340	-13	-13	-13	-28	-28	-28	-48	-48	-48	
320	-14	-14	-14	-30	-30	-30	-50	-50	-50	
300	-15	-15	-15	-31	-31	-31	-51	-51	-51	
280	-15	-15	-15	-32	-32	-32	-53	-53	-53	
260	-16	-16	-16	-33	-33	-33	-54	-54	-54	
240	-17	-17	-17	-34	-34	-34	-54	-54	-54	
220	-18	-18	-18	-35	-35	-35	-54	-54	-54	

^{1.} Obtain V1, VR and V2 for the actual weight.

^{2.} If V1(MCG) limited, set V1 = V1(MCG). If not V1(MCG) limited, enter V1 Adjustment table with the actual weight to obtain V1 speed adjustment. If adjusted V1 is less than V1(MCG), set V1 = V1(MCG).

767 Flight Crew Operations Manual

767-300/CF6-80C2B6F FAA Category C & D Brake

Takeoff %N1 Max Takeoff Thrust

Based on engine bleed for packs on, EEC NORM or ALTN and anti-ice on or off

AIRPO	RT OAT	TAT		A	IRPORT PR	ESSURE AI	TITUDE (F	T)	
°F	°C	(°C)	-1000	0	2000	4000	6000	8000	9000
131	55	58	106.1	106.1	105.9	105.5	105.1	104.9	104.7
122	50	53	106.8	106.9	106.8	106.5	106.1	105.9	105.7
113	45	48	107.5	107.5	107.5	107.3	107.0	106.9	106.6
104	40	43	108.2	108.2	108.2	108.0	107.9	107.8	107.7
95	35	38	109.0	108.9	109.0	108.8	108.7	108.7	108.6
86	30	33	109.1	109.8	109.8	109.7	109.6	109.7	109.6
77	25	28	108.2	108.9	110.3	110.6	110.5	110.6	110.6
68	20	23	107.3	108.0	109.4	110.6	111.3	111.4	111.3
59	15	18	106.4	107.1	108.5	109.7	111.0	112.0	112.1
50	10	13	105.5	106.2	107.5	108.8	110.0	111.3	112.1
32	0	3	103.6	104.3	105.7	106.9	108.1	109.4	110.1
14	-10	-7	101.7	102.4	103.8	104.9	106.1	107.4	108.1
-4	-20	-17	99.8	100.4	101.8	103.0	104.2	105.4	106.1
-22	-30	-27	97.9	98.5	99.8	101.0	102.2	103.4	104.0
-40	-40	-37	95.9	96.4	97.8	99.0	100.1	101.3	102.0
-58	-50	-47	93.8	94.4	95.8	96.9	98.0	99.2	99.8

%N1 Adjustments for Engine Bleeds

BLEED		AIRPORT PRESSURE ALTITUDE (FT)										
CONFIGURATION	-1000	0	2000	4000	6000	8000	9000					
PACKS OFF	0.3	0.3	0.3	0.4	0.5	0.5	0.5					

Performance Inflight -General

767 Flight Crew Operations Manual

Assumed Temperature Reduced Thrust

Minimum Assumed Temperature

Ī	MINIMUM		PRESSURE ALTITUDE (FT)										
	ASSUMED TEMP	-1000	1000 0 1000 2000 3000 4000 5000 6000 7000 8000										
Τ	°F	90	86	83	79	76	72	69	65	62	58		
T	°C	32	30	28	26	24	22	20	18	16	14		

Assumed Temperature Limit %N1 Based on engine bleed for packs on

ACTUAL					ASSUMI	ED TEM	PERATI	IRE (°C	7			
OAT (°C)	15	20	25	30	35	40	45	50	55	60	65	70
55										104.3	102.5	100.9
50									105.3	103.5	101.8	100.1
45								106.0	104.5	102.7	101.0	99.4
40							106.6	105.2	103.7	101.9	100.2	98.6
35						107.3	105.8	104.3	102.8	101.1	99.4	97.8
30					108.0	106.5	104.9	103.5	102.0	100.3	98.6	97.0
25				108.9	107.1	105.6	104.1	102.7	101.2	99.5	97.8	96.2
20			109.7	108.0	106.2	104.7	103.2	101.8	100.3	98.7	97.0	95.5
15		110.6	108.8	107.1	105.4	103.9	102.4	101.0	99.5	97.9	96.2	94.7
10	111.2	109.6	107.9	106.1	104.4	103.0	101.5	100.1	98.6	97.0	95.4	93.8
5	110.2	108.6	106.9	105.2	103.5	102.1	100.6	99.2	97.8	96.2	94.5	93.0
0	109.2	107.7	106.0	104.3	102.6	101.2	99.7	98.3	96.9	95.3	93.7	
-10	107.2	105.7	104.0	102.4	100.7	99.3	97.9	96.5	95.2	93.6	92.0	
-20	105.2	103.7	102.1	100.4	98.8	97.4	96.0	94.7	93.4	91.8		
-30	103.2	101.7	100.1	98.5	96.9	95.5	94.2	92.9	91.5			
-40	101.0	99.6	98.0	96.5	94.9	93.6	92.2					
-50	98.9	97.5	95.9	94.4	92.9	91.6						
-60	96.7	95.3	93.8	92.3								

%N1 Adjustment for Engine Bleeds

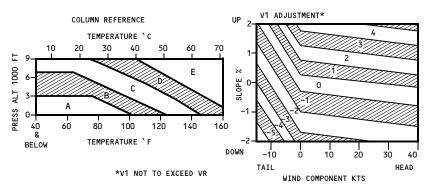
1	DIFED	1			A ID DOI	T DDEC	CLIDE	AITITI	DE (FT)			
	BLEED				AIRPOI	CIPKES	SURE A	ALITIU	DE (FI)			
	CONFIGURATION	-2000	-1000	0	1000	2000	3000	4000	5000	6000	7000	8000
ľ	PACKS OFF	0.3	0.3	0.3	0.3	0.3	0.3	0.4	0.5	0.5	0.5	0.5

%N1 Altitude Adjustment

ASSUMED				P	RESSUR	E ALTIT	UDE (F1	Γ)			
TEMP (°C)	-2000	-1000	0	1000	2000	3000	4000	5000	6000	7000	8000
70	0.2	0.1	0.0	-0.2	-0.3	-0.5	-0.6	-0.8	-1.0	-1.2	-1.3
60	0.1	0.1	0.0	-0.2	-0.3	-0.5	-0.6	-0.8	-1.0	-1.2	-1.3
50	0.0	0.0	0.0	0.0	0.0	-0.1	-0.2	-0.5	-0.7	-0.9	-1.0
40	0.0	0.0	0.0	0.0	0.0	-0.1	-0.2	-0.3	-0.4	-0.4	-0.4
32 & BELOW	0.0	0.0	0.0	0.0	0.0	-0.1	-0.1	-0.2	-0.2	-0.2	-0.2

767 Flight Crew Operations Manual

767-300/CF6-80C2B6F FAA Category C & D Brake


Assumed Temperature Reduced Thrust Assumed Temperature Minimum %N1 Based on 25% takeoff thrust reduction

ACTUAL				P	RESSUR	E ALTIT	UDE (F	Γ)			
OAT (°C)	-2000	-1000	0	1000	2000	3000	4000	5000	6000	7000	8000
55	96.9	96.9	96.9	96.8	96.6	96.5	96.4	96.2	96.0	95.9	95.9
50	97.4	97.4	97.4	97.4	97.3	97.2	97.1	97.0	96.8	96.7	96.6
45	97.8	97.8	97.8	97.8	97.8	97.8	97.7	97.5	97.4	97.4	97.3
40	98.3	98.3	98.2	98.2	98.2	98.1	98.1	98.0	97.9	97.9	97.9
35	98.6	98.6	98.5	98.5	98.5	98.5	98.5	98.4	98.4	98.4	98.4
30	98.0	98.5	98.9	98.9	98.9	98.9	98.8	98.8	98.8	98.8	98.8
25	97.2	97.7	98.1	98.5	98.9	98.9	99.1	99.1	99.0	99.1	99.1
20	96.4	96.9	97.3	97.7	98.1	98.4	98.8	99.0	99.2	99.2	99.2
15	95.6	96.0	96.5	96.9	97.2	97.6	98.0	98.3	98.6	98.9	99.1
10	94.8	95.2	95.6	96.0	96.4	96.8	97.1	97.5	97.8	98.1	98.4
0 & BELOW	93.1	93.6	94.0	94.3	94.7	95.1	95.4	95.8	96.1	96.4	96.7

- Enter Minimum Assumed Temperature table with airport pressure altitude to determine minimum assumed temperature.
- 2. Enter Assumed Temperature Limit %N1 table with actual airport temperature and assumed temperature to determine assumed temperature limit %N1. If operating with packs off, apply the bleed adjustment shown in the %N1 Adjustment for Engine Bleeds table.
- 3. Enter %N1 Altitude Adjustment table with assumed temperature and airport pressure altitude to determine altitude adjustment to %N1 found in step 2.
- 4. Ensure Takeoff %N1 from step 3 is greater than or equal to minimum %N1 allowed for airport conditions from Assumed Temperature Minimum %N1 table.

767 Flight Crew Operations Manual

TO1 Takeoff Speeds 10% Thrust Reduction

တ္	WT		Α			В			С			D			Е	
FLAPS	1000 LB	۷ 1	V _R	٧ 2	۷ 1	V _R	٧ 2	۷ 1	V _R	٧ 2	۷ 1	V _R	٧ 2	۷ 1	V _R	٧ 2
5	420 400 380 360 340 320 300 280 260 240 220	169 164 158 153 147 141 134 128 122 115 108	172 168 163 158 153 147 142 136 129 125 116	175 171 167 163 158 153 148 143 138 133 127	171 166 161 156 150 144 137 131 124 117	174 169 164 159 154 149 143 137 131 125 117	176 171 167 162 158 153 148 143 138 133 127	164 158 153 146 140 134 127 120 114	166 161 156 150 145 139 133 127 120	168 163 158 153 148 143 138 133 128	149 143 137 130 124 117	152 146 141 135 128 122	153 148 143 138 133 127	147 141 134 127 120	148 142 136 130 124	149 143 138 133 127
15	420 400 380 360 340 320 300 280 260 240 220	163 158 153 147 141 136 130 124 118	165 160 156 151 146 141 135 130 124 118	169 164 160 156 151 147 142 138 133 127	155 150 144 138 133 127 121 112 108	157 153 148 142 137 131 125 119	160 156 151 147 142 138 133 127	146 141 135 129 123 117 110	149 144 139 133 127 121 115	152 147 142 137 132 127 122	139 133 127 119 114	140 135 129 123 117	142 137 132 127 122	124 117	125 119	127 122
20	420 400 380 360 340 320 300 280 260 240 220	161 155 149 144 139 132 127 121 114	161 156 151 146 142 136 131 125 119 114 107	165 160 155 150 146 142 137 133 128 123 118	158 152 146 141 136 130 124 117 111	158 152 147 142 137 132 127 121 115 109	160 156 151 146 142 137 133 128 123 118	143 138 132 126 120 114 107	144 139 134 128 123 117 111	147 142 137 133 128 123 118	135 130 124 118 111	135 130 125 119 113	138 133 128 123 118	126 121 115	126 121 115	128 123 118

CHECK V1(MCG) IN BOXED AREA

767 Flight Crew Operations Manual

767-300/CF6-80C2B6F FAA Category C & D Brake

TO1 V1(MCG)

10% Thrust Reduction

ACTUA	AL OAT			PRESSURE ALTITUDE (FT)					
°F	°C	-1000	0	2000	4000	6000	8000		
120	49	99	97	93					
100	38	104	102	98	94	90	87		
80	27	106	105	102	98	94	91		
60	16	107	105	103	100	97	94		
-60	-51	108	107	104	101	98	95		

TO1 Takeoff %N1

10% Thrust Reduction

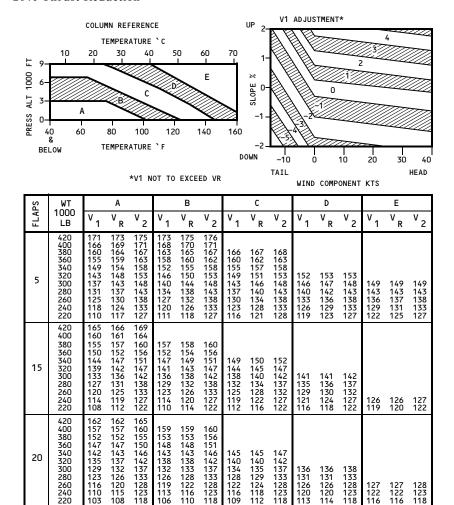
Based on engine bleed for packs on, EEC NORM or ALTN and anti-ice on or off

011							
AIRPO	RT OAT		AIR	PORT PRESSU	RE ALTITUDE	(FT)	
°F	°C	-1000	0	2000	4000	6000	8000
131	55	103.6	103.6	103.4	103.0	102.7	102.5
122	50	104.4	104.4	104.4	104.0	103.6	103.4
113	45	105.0	105.0	105.0	104.8	104.6	104.4
104	40	105.5	105.4	105.5	105.3	105.2	105.1
95	35	105.8	105.8	105.8	105.7	105.6	105.6
86	30	105.7	106.2	106.2	106.1	106.1	106.1
77	25	104.8	105.3	106.4	106.6	106.5	106.6
68	20	103.9	104.4	105.5	106.4	106.9	106.9
59	15	103.1	103.6	104.6	105.5	106.4	107.1
50	10	102.2	102.7	103.7	104.6	105.5	106.4
32	0	100.4	100.9	101.9	102.8	103.7	104.5
14	-10	98.6	99.0	100.1	100.9	101.8	102.6
-4	-20	96.7	97.2	98.2	99.1	99.9	100.7
-22	-30	94.8	95.3	96.3	97.1	98.0	98.8
-40	-40	92.9	93.3	94.3	95.2	96.0	96.8
-58	-50	90.9	91.3	92.3	93.2	94.0	94.7

%N1 Adjustments for Engine Bleeds

BLEED		AIRPORT PRESSURE ALTITUDE (FT)								
CONFIGURATION	-1000	0	2000	4000	6000	8000				
PACKS OFF	0.3	0.3	0.3	0.4	0.5	0.5				

TO1 Stab Trim Setting


10% Thrust Reduction

WEIGHT				C.G. %MAC			
(1000 LB)	12	16	20	24	28	32	36
420	7	7	6 1/2	5	4	3 1/2	2 1/2
400	7	6 1/2	6	5	4	3 1/2	2 1/2
380	7	6 1/2	5 1/2	5	4	3	2
360	7	6	5 1/2	4 1/2	3 1/2	3	2
340	6 1/2	6	5	4	3 1/2	2 1/2	2
320	6 1/2	5 1/2	4 1/2	4	3	2 1/2	1 1/2
300	5 1/2	5	4	3 1/2	2 1/2	2	1
280	5	4 1/2	3 1/2	3	2	1 1/2	1
260	4 1/2	4	3	2 1/2	1 1/2	1	1
240	4	3 1/2	2 1/2	2	1 1/2	1	1
220	3 1/2	3	2 1/2	1 1/2	1 1/2	1	1

Performance Inflight -General

767 Flight Crew Operations Manual

TO2 Takeoff Speeds 20% Thrust Reduction

TO2 V1(MCG) 20% Thrust Reduction

ACTUA	AL OAT			PRESSURE A	LTITUDE (FT)		
°F	°C	-1000	0	2000	4000	6000	8000
120	49	94	92	89			
100	38	99	97	93	89	86	83
80	27	101	99	95	91	88	85
60	16	101	100	97	95	92	89
-60	-51	103	101	98	96	93	90

767 Flight Crew Operations Manual

767-300/CF6-80C2B6F FAA Category C & D Brake

TO2 Takeoff %N1 20% Thrust Reduction

Based on engine bleed for packs on, EEC NORM or ALTN and anti-ice on or off

AIRPO	RT OAT		AIR	PORT PRESSU	RE ALTITUDE	(FT)	
°F	°C	-1000	0	2000	4000	6000	8000
131	55	99.8	99.7	99.5	99.1	98.8	98.6
122	50	100.5	100.5	100.4	100.1	99.7	99.6
113	45	101.1	101.1	101.1	100.9	100.7	100.5
104	40	101.7	101.7	101.7	101.5	101.4	101.3
95	35	101.8	101.8	101.8	101.7	101.7	101.7
86	30	101.6	102.0	102.0	101.9	101.8	101.9
77	25	100.7	101.1	102.0	102.2	102.2	102.2
68	20	99.9	100.3	101.2	101.9	102.3	102.3
59	15	99.0	99.4	100.3	101.1	101.7	102.2
50	10	98.2	98.6	99.5	100.2	100.9	101.5
32	0	96.5	96.9	97.7	98.4	99.1	99.7
14	-10	94.7	95.1	96.0	96.7	97.3	97.9
-4	-20	92.9	93.3	94.2	94.9	95.5	96.0
-22	-30	91.1	91.5	92.4	93.0	93.6	94.2
-40	-40	89.2	89.6	90.5	91.1	91.7	92.3
-58	-50	87.3	87.7	88.6	89.2	89.8	90.3

%N1 Adjustments for Engine Bleeds

BLEED	AIRPORT PRESSURE ALTITUDE (FT)							
CONFIGURATION	-1000	6000	8000					
PACKS OFF	0.3	0.3	0.3	0.4	0.5	0.5		

TO2 Stab Trim Setting 20% Thrust Reduction

WEIGHT				C.G. %MAC			
(1000 LB)	12	16	20	24	28	32	36
420	7	7	7	5 1/2	4 1/2	4	3
400	7	7	6 1/2	5 1/2	4 1/2	4	3
380	7	7	6	5 1/2	4 1/2	3 1/2	2 1/2
360	7	6 1/2	6	5	4	3 1/2	2 1/2
340	7	6 1/2	5 1/2	4 1/2	4	3	2 1/2
320	7	6	5	4 1/2	3 1/2	3	2
300	6	5 1/2	4 1/2	4	3	2 1/2	1 1/2
280	5 1/2	5	4	3 1/2	2 1/2	2	1 1/2
260	5	4 1/2	3 1/2	3	2	1 1/2	1 1/2
240	4 1/2	4	3	2 1/2	2	1 1/2	1 1/2
220	4	3 1/2	3	2	2	1 1/2	1 1/2

767 Flight Crew Operations Manual

Max Climb %N1 Based on engine bleed for packs on and anti-ice off

TAT		PR	ESSURE A	LTITUDE (1000 FT)/S	PEED (KIA	S OR MAC	CH)	
TAT (°C)	0	5	10	15	20	25	30	35	40
(0)	250	250	250	290	290	290	290	.78	.78
60	96.5	97.2	97.0	97.4	96.7	95.1	96.1	95.1	94.7
50	97.6	98.7	99.0	99.6	98.9	97.3	98.2	95.0	93.8
40	98.8	99.8	100.4	101.2	101.0	99.3	100.1	97.0	95.8
30	99.1	101.1	101.6	102.4	102.5	101.2	101.9	98.8	97.7
20	97.5	101.3	103.3	103.8	104.1	102.8	103.4	100.5	99.4
10	95.8	99.6	102.9	104.4	105.6	104.6	104.7	102.6	100.9
0	94.2	97.8	101.1	102.6	105.0	106.9	106.5	104.3	102.4
-10	92.5	96.1	99.4	100.8	103.2	105.3	107.1	106.3	104.3
-20	90.8	94.3	97.6	99.0	101.5	103.4	105.1	106.5	106.4
-30	89.1	92.4	95.7	97.1	99.7	101.5	103.2	104.4	104.4
-40	87.3	90.5	93.9	95.2	97.8	99.5	101.2	102.2	102.2
-50	85.5	88.6	91.9	93.3	95.8	97.5	99.1	100.1	100.1

%N1 Adjustments for Engine Bleeds

	_								
BLEED	PRESSURE ALTITUDE (1000 FT)								
CONFIGURATION	0	5	10	15	20	25	30	35	40
PACKS OFF	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ENGINE ANTI-ICE ON	-0.6	-0.6	-0.6	-0.6	-0.8	-0.9	-1.1	-1.4	-1.9
ENGINE & WING ANTI-ICE ON	-0.9	-0.9	-1.0	-1.1	-1.3	-1.4	-1.7	-2.2	-2.4

767 Flight Crew Operations Manual

767-300/CF6-80C2B6F FAA Category C & D Brake

Go-around %N1

Based on engine bleed for packs on, EEC NORM or ALTN and anti-ice on or off

AIRPO	RT OAT	TAT		A	IRPORT PR	ESSURE AI	TITUDE (F	T)	
°F	°C	(°C)	-1000	0	2000	4000	6000	8000	9000
131	55	58	106.1	106.1	105.9	105.5	105.1	104.9	104.7
122	50	53	106.8	106.9	106.8	106.5	106.1	105.9	105.7
113	45	48	107.5	107.5	107.5	107.3	107.0	106.9	106.6
104	40	43	108.2	108.2	108.2	108.0	107.9	107.8	107.7
95	35	38	109.0	108.9	109.0	108.8	108.7	108.7	108.6
86	30	33	109.1	109.8	109.8	109.7	109.6	109.7	109.6
77	25	28	108.2	108.9	110.3	110.6	110.5	110.6	110.6
68	20	23	107.3	108.0	109.4	110.6	111.3	111.4	111.3
59	15	18	106.4	107.1	108.5	109.7	111.0	112.0	112.1
50	10	13	105.5	106.2	107.5	108.8	110.0	111.3	112.1
32	0	3	103.6	104.3	105.7	106.9	108.1	109.4	110.1
14	-10	-7	101.7	102.4	103.8	104.9	106.1	107.4	108.1
-4	-20	-17	99.8	100.4	101.8	103.0	104.2	105.4	106.1
-22	-30	-27	97.9	98.5	99.8	101.0	102.2	103.4	104.0
-40	-40	-37	95.9	96.4	97.8	99.0	100.1	101.3	102.0
-58	-50	-47	93.8	94.4	95.8	96.9	98.0	99.2	99.8

%N1 Adjustments for Engine Bleeds

BLEED		AIRPORT PRESSURE ALTITUDE (FT)								
CONFIGURATION	-1000	0	2000	4000	6000	8000	9000			
PACKS OFF	0.3	0.3	0.3	0.4	0.5	0.5	0.5			

Performance Inflight -General

767 Flight Crew Operations Manual

Flight With Unreliable Airspeed / Turbulent Air Penetration Altitude and/or vertical speed indications may also be unreliable. Climb (290/.78)

Flaps Up, Set Max Climb Thrust

PRES	SURE		WEIGHT (1000 LB)						
ALTITU	DE (FT)	220	260	300	350	400			
40000	PITCH ATT	4.0	4.0	4.0					
40000	V/S (FT/MIN)	1700	1100	500					
30000	PITCH ATT	4.5	4.0	4.0	4.0	4.0			
30000	V/S (FT/MIN)	2700	2200	1800	1300	900			
20000	PITCH ATT	7.0	6.5	6.0	6.0	5.5			
20000	V/S (FT/MIN)	4200	3400	2900	2300	1800			
10000	PITCH ATT	10.5	9.5	8.5	8.0	7.5			
10000	V/S (FT/MIN)	5700	4700	4000	3200	2700			
SEA LEVEL	PITCH ATT	13.0	11.5	10.5	9.5	9.0			
SEA LEVEL	V/S (FT/MIN)	6300	5300	4500	3700	3100			

Cruise (.78/290)

Flaps Up, %N1 for Level Flight

PRES	PRESSURE		WEIGHT (1000 LB)						
ALTITUDE (FT)		220	260	300	350	400			
40000	PITCH ATT	2.0	2.5	3.5	4.0				
40000	%N1	88	92	97	107				
25000	PITCH ATT	1.5	2.0	2.5	3.0	3.5			
35000	%N1	85	87	89	93	98			
30000	PITCH ATT	1.0	1.5	1.5	2.0	2.5			
30000	%N1	84	86	87	89	92			

Descent (.78/290)

Flaps Up, Set Idle Thrust

PRES	SURE	WEIGHT (1000 LB)						
ALTITU	JDE (FT)	220	260	300	350	400		
40000	PITCH ATT	-1.5	-0.5	-0.0	0.5			
40000	V/S (FT/MIN)	-2600	-2600	-2600	-2800			
30000	PITCH ATT	-2.5	-2.0	-1.0	-0.5	0.0		
30000	V/S (FT/MIN)	-2700	-2400	-2200	-2100	-2000		
20000	PITCH ATT	-2.5	-1.5	-1.0	-0.5	0.5		
20000	V/S (FT/MIN)	-2400	-2100	-2000	-1900	-1800		
10000	PITCH ATT	-2.5	-2.0	-1.0	-0.5	0.5		
10000	V/S (FT/MIN)	-2100	-1900	-1800	-1700	-1600		

Holding (VREF30+80)

Flaps Up, %N1 for Level Flight

PRESSURE ALTITUDE (FT)		WEIGHT (1000 LB)						
		220	260	300	350	220		
10000	PITCH ATT		5.0	5.0	5.5	5.5		
10000 %N1		60	64	67	72	76		

767-300/CF6-80C2B6F FAA Category C & D Brake

767 Flight Crew Operations Manual

Flight With Unreliable Airspeed / Turbulent Air Penetration Altitude and/or vertical speed indications may also be unreliable.

Terminal Area (5000 FT)

Gear Up, %N1 for Level Flight

FLAP PO	OSITION		W	EIGHT (1000 I	LB)	
(VREF + IN	CREMENT)	220	260	300	350	400
FLAPS UP	PITCH ATT	4.5	5.0	5.0	5.5	5.5
(VREF30 + 80)	%N1	56	60	63	68	71
FLAPS 1	PITCH ATT	6.0	6.5	7.0	7.0	7.0
(VREF30 + 60)	%N1	56	61	65	70	73
FLAPS 5	PITCH ATT	4.5	5.0	5.0	5.0	5.0
(VREF30 + 40)	%N1	59	64	67	72	75
FLAPS 15	PITCH ATT	6.0	6.0	6.5	6.0	5.5
(VREF30 + 20)	%N1	60	65	69	74	77
FLAPS 20	PITCH ATT	4.5	4.5	4.5	4.5	4.0
(VREF30 + 20)	%N1	62	67	70	75	78

Final Approach (1500 FT)

Gear Down, %N1 for 3° Glideslope

FLAP PC	OSITION	WEIGHT (1000 LB)							
(VREF + IN	CREMENT)	220	260	300	350	400			
FLAPS 25	PITCH ATT	0.5	0.5 1.0 1.0 1.0 1.0						
(VREF25 + 10)	%N1	54	59	62	67	70			
FLAPS 30	PITCH ATT	1.0	-0.5						
(VREF30 + 10)	%N1	57	57 62 66 71						

767 Flight Crew Operations Manual

Performance Inflight - All Engine

Chapter PI Section 11

Long Range Cruise Maximum Operating Altitude ISA + 10°C and Below

WEIGHT	OPTIMUM	TAT	MAR	GIN TO INITI	AL BUFFET '	G' (BANK AN	GLE)
(1000 LB)	ALT (FT)	(°C)	1.20 (33°)	1.25 (36°)	1.30 (39°)	1.40 (44°)	1.50 (48°)
420	28800	-1	34400	33500	32600	30900	29300
400	29900	-3	35400	34500	33600	31900	30400
380	31000	-6	36500	35600	34700	33000	31500
360	32200	-8	37600	36700	35800	34200	32600
340	33400	-11	38800	37900	37000	35400	33900
320	34700	-14	40000	39100	38300	36700	35100
300	36000	-17	41400	40500	39600	38000	36500
280	37500	-17	42800	41900	41100	39400	37900
260	39000	-17	43000	43000	42600	41000	39500
240	40700	-17	43000	43000	43000	42600	41100
220	42500	-17	43000	43000	43000	43000	42900

ISA + 15°C

WEIGHT	OPTIMUM	TAT	MAR	GIN TO INITI	AL BUFFET '	G' (BANK AN	GLE)
(1000 LB)	ALT (FT)	(°C)	1.20 (33°)	1.25 (36°)	1.30 (39°)	1.40 (44°)	1.50 (48°)
420	28800	5	33700*	33500	32600	30900	29300
400	29900	2	34900*	34500	33600	31900	30400
380	31000	0	35900*	35600	34700	33000	31500
360	32200	-3	37000*	36700	35800	34200	32600
340	33400	-6	38100*	37900	37000	35400	33900
320	34700	-8	39300*	39100	38300	36700	35100
300	36000	-11	40600*	40500	39600	38000	36500
280	37500	-12	41900*	41900	41100	39400	37900
260	39000	-12	43000	43000	42600	41000	39500
240	40700	-12	43000	43000	43000	42600	41100
220	42500	-12	43000	43000	43000	43000	42900

ISA + 20°C

WEIGHT	OPTIMUM	TAT	MAR	GIN TO INITI	AL BUFFET '(G' (BANK AN	GLE)
(1000 LB)	ALT (FT)	(°C)	1.20 (33°)	1.25 (36°)	1.30 (39°)	1.40 (44°)	1.50 (48°)
420	28800	10	32700*	32700*	32600	30900	29300
400	29900	8	33800*	33800*	33600	31900	30400
380	31000	5	35000*	35000*	34700	33000	31500
360	32200	3	36100*	36100*	35800	34200	32600
340	33400	0	37200*	37200*	37000	35400	33900
320	34700	-3	38400*	38400*	38300	36700	35100
300	36000	-6	39600*	39600*	39600	38000	36500
280	37500	-6	41000*	41000*	41000*	39400	37900
260	39000	-6	42500*	42500*	42500*	41000	39500
240	40700	-6	43000	43000	43000	42600	41100
220	42500	-6	43000	43000	43000	43000	42900

^{*}Denotes altitude thrust limited in level flight.

767 Flight Crew Operations Manual

767-300/CF6-80C2B6F FAA Category C & D Brake

Long Range Cruise Control

	EIGHT				PRE	SSURE A	ALTITU	DE (1000	FT)			
(100	00 LB)	23	25	27	29	31	33	35	37	39	41	43
	%N1	89.8	90.9	92.1	93.5	95.3	97.7					
420	MACH	.772	.787	.800	.804	.802	.798					
420	KIAS	338	332	324	312	298	284					
	FF/ENG	7229	7061	6950	6871	6889	7067					
	%N1	88.8	89.9	91.0	92.3	93.9	95.9	99.2				
400	MACH	.764	.778	.793	.803	.803	.800	.797				
400	KIAS	334	328	321	312	299	285	271				
	FF/ENG	6948	6777	6661	6566	6517	6573	6896				
	%N1	87.9	88.9	90.0	91.2	92.6	94.3	96.7				
380	MACH	.754	.770	.785	.798	.804	.802	.799				
300	KIAS	330	324	317	310	299	285	271				
	FF/ENG	6654	6499	6371	6278	6192	6188	6327				
	%N1	86.8	87.9	88.9	90.1	91.3	92.9	94.8	98.4			
360	MACH	.742	.760	.776	.791	.802	.803	.800	.797			
300	KIAS	324	319	313	307	298	286	272	259			
	FF/ENG	6352	6217	6090	5992	5898	5842	5868	6137			
	%N1	85.5	86.8	87.9	88.9	90.1	91.4	93.2	95.8			
340	MACH	.725	.749	.766	.781	.796	.804	.802	.799			
	KIAS	316	314	309	302	296	286	273	259			
	FF/ENG	6001	5923	5815	5706	5619	5535	5511	5628			
	%N1	84.1	85.5	86.7	87.8	88.9	90.1	91.6	93.8	97.5		
320	MACH	.703	.733	.754	.771	.786	.800	.804	.801	.798		
	KIAS	306	307	304	298	292	284	273	260	247		
	FF/ENG	5625	5600	5526	5429	5335	5251	5188	5224	5448	00.2	
	%N1	82.6	84.0	85.5	86.6	87.6	88.8	90.0	92.1	94.9	99.3	
300	MACH	.683	.711	.740	.759	.775	.791	.802	.803	.800	.797	
	KIAS	297	297	298	293	287	281	273	261	248	236	
	FF/ENG %N1	5269 80.8	5236 82.4	5222 83.9	5149 85.3	5055 86.4	4972	4894 88.6	4880 90.4	4982 92.9	5266 96.0	
	MACH	.661	.688	.718	.745	.763	87.5 .779	.795	.804	.802	.799	
280	KIAS	287	287	288	288	282	276	270	261	249	236	
	FF/ENG	4913	4882	4869	4858	4781	4691	4618	4575	4609	4740	
	%N1	79.0	80.6	82.2	83.7	85.0	86.1	87.2	88.8	91.0	93.6	97.1
	MACH	.640	.665	.693	.723	.749	.767	.783	.798	.804	.802	.798
260	KIAS	277	277	277	278	277	271	265	259	249	237	225
	FF/ENG	4575	4535	4512	4514	4493	4419	4337	4294	4286	4335	4491
	%N1	77.1	78.6	80.3	81.8	83.3	84.6	85.7	87.2	89.3	91.6	94.2
	MACH	.618	.642	.667	.696	.727	.751	.769	.786	.800	.804	.801
240	KIAS	267	267	266	267	268	266	260	254	248	238	226
	FF/ENG	4251	4208	4173	4155	4169	4138	4065	4015	3997	3996	4054
	%N1	75.2	76.6	78.1	79.8	81.4	82.9	84.1	85.6	87.5	89.6	92.0
l	MACH	.596	.618	.642	.668	.697	.729	.753	.771	.787	.800	.804
220	KIAS	257	256	256	256	256	257	254	249	243	237	227
	FF/ENG	3930	3894	3850	3820	3813	3831	3789	3740	3718	3700	3703

Shaded area approximates optimum altitude.

767 Flight Crew Operations Manual

Long Range Cruise Enroute Fuel and Time - Low Altitudes Ground to Air Miles Conversion

	AIR D	ISTANCE	(NM)		GROUND		AIR D	ISTANCE	E (NM)	
HE	ADWIND	COMPO	NENT (K	TS)	DISTANCE	TA	ILWIND	COMPON	NENT (KT	S)
100	80	60	40	20	(NM)	20	40	60	80	100
283	262	243	226	213	200	191	182	174	167	161
566	523	485	453	425	400	382	366	351	337	324
851	786	729	680	638	600	574	550	527	506	487
1137	1051	974	908	851	800	765	732	702	675	650
1424	1315	1218	1136	1064	1000	957	916	879	844	813
1712	1581	1464	1364	1278	1200	1148	1099	1054	1013	975
2001	1847	1709	1592	1491	1400	1339	1282	1229	1181	1138
2292	2114	1956	1821	1705	1600	1530	1465	1405	1350	1300
2584	2382	2203	2051	1919	1800	1721	1648	1580	1518	1462
2878	2652	2451	2280	2132	2000	1912	1830	1755	1686	1623

Reference Fuel And Time Required at Check Point

A ID				PRESS	URE ALT	ITUDE (10	00 FT)			
AIR DIST	1	0	1	4	2	0	2	4	28	
(NM)	FUEL (1000 LB)	TIME (HR:MIN)								
200	5.8	0:40	5.1	0:38	4.3	0:37	3.8	0:36	3.3	0:35
400	12.2	1:15	11.0	1:12	9.6	1:07	8.7	1:04	8.0	1:02
600	18.4	1:51	16.8	1:45	14.9	1:38	13.6	1:33	12.5	1:29
800	24.6	2:27	22.6	2:19	20.1	2:09	18.5	2:02	17.1	1:56
1000	30.7	3:03	28.3	2:53	25.2	2:40	23.3	2:32	21.6	2:24
1200	36.8	3:40	34.0	3:28	30.3	3:12	28.1	3:02	26.0	2:51
1400	42.8	4:17	39.6	4:03	35.4	3:44	32.8	3:31	30.4	3:19
1600	48.8	4:54	45.1	4:38	40.4	4:16	37.5	4:02	34.8	3:47
1800	54.7	5:32	50.6	5:13	45.4	4:48	42.1	4:32	39.2	4:16
2000	60.5	6:10	56.1	5:49	50.3	5:21	46.7	5:03	43.5	4:44

Fuel Required Adjustment (1000 LB)

REFERENCE FUEL REQUIRED		WEIGHT AT	CHECK POIN	VT (1000 LB)	
(1000 LB)	200	250	300	350	400
5	-0.5	-0.3	0.0	0.3	0.6
10	-1.4	-0.7	0.0	0.8	1.6
15	-2.2	-1.1	0.0	1.2	2.6
20	-3.1	-1.5	0.0	1.7	3.5
25	-3.9	-1.9	0.0	2.2	4.5
30	-4.7	-2.3	0.0	2.7	5.4
35	-5.5	-2.7	0.0	3.2	6.4
40	-6.3	-3.2	0.0	3.7	7.4
45	-7.1	-3.6	0.0	4.2	8.3
50	-7.9	-4.0	0.0	4.7	9.3
55	-8.7	-4.4	0.0	5.2	10.2
60	-9.5	-4.8	0.0	5.7	11.2
65	-10.4	-5.2	0.0	6.2	12.1

767-300/CF6-80C2B6F FAA Category C & D Brake

767 Flight Crew Operations Manual

Long Range Cruise Enroute Fuel and Time - High Altitudes Ground to Air Miles Conversion

	AIR D	ISTANCE	(NM)		GROUND		AIR D	ISTANCE	E (NM)		
HE	ADWIND	COMPO	NENT (K	TS)	DISTANCE	TAILWIND COMPONENT (KTS)					
100	80	60	40	20	(NM)	20	40	60	80	100	
1299	1227	1161	1102	1049	1000	957	918	881	848	818	
1947	1839	1740	1652	1573	1500	1437	1378	1323	1273	1228	
2598	2453	2321	2204	2098	2000	1916	1838	1766	1699	1639	
3253	3071	2904	2756	2623	2500	2395	2298	2208	2125	2050	
3912	3691	3489	3309	3148	3000	2875	2758	2650	2551	2461	
4575	4314	4076	3865	3675	3500	3355	3219	3093	2977	2871	
5243	4940	4665	4420	4201	4000	3834	3679	3536	3403	3282	
5915	5570	5256	4978	4729	4500	4313	4139	3978	3829	3693	
6591	6203	5849	5537	5257	5000	4792	4598	4419	4254	4103	
7273	6839	6445	6097	5785	5500	5272	5059	4861	4679	4513	
7959	7479	7043	6659	6315	6000	5750	5518	5302	5104	4923	

Reference Fuel And Time Required at Check Point

AID				PRESS	URE ALT	TUDE (10	00 FT)			
AIR DIST	2	9	31		3	3	3	5	37	
(NM)	FUEL	TIME								
()	(1000 LB)	(HR:MIN)								
1000	21.2	2:23	20.5	2:21	19.8	2:19	19.3	2:18	19.1	2:18
1500	32.1	3:31	31.1	3:28	30.1	3:26	29.4	3:24	29.0	3:24
2000	42.8	4:41	41.4	4:36	40.2	4:33	39.1	4:30	38.6	4:29
2500	53.2	5:52	51.6	5:45	50.0	5:40	48.7	5:37	47.9	5:34
3000	63.4	7:04	61.5	6:54	59.7	6:48	58.1	6:44	57.1	6:40
3500	73.3	8:18	71.2	8:05	69.1	7:57	67.2	7:52	66.0	7:47
4000	83.1	9:33	80.6	9:18	78.3	9:07	76.2	9:00	74.7	8:54
4500	92.6	10:50	89.9	10:32	87.4	10:18	85.0	10:09	83.2	10:02
5000	101.9	12:09	98.9	11:47	96.2	11:30	93.6	11:19	91.6	11:10
5500	111.1	13:29	107.8	13:04	104.8	12:44	102.0	12:30	99.8	12:19
6000	120.0	14:51	116.5	14:23	113.3	14:00	110.2	13:42	107.8	13:29

Fuel Required Adjustment (1000 LB)

REFERENCE FUEL REQUIRED		WEIGHT AT	CHECK POIN	T (1000 LB)	
(1000 LB)	200	250	300	350	400
10	-1.6	-0.8	0.0	2.8	5.3
20	-3.4	-1.8	0.0	5.6	11.5
30	-5.3	-2.7	0.0	8.2	17.2
40	-7.2	-3.7	0.0	10.5	22.5
50	-9.1	-4.7	0.0	12.6	27.2
60	-11.1	-5.6	0.0	14.5	31.5
70	-13.1	-6.6	0.0	16.2	35.3
80	-15.1	-7.5	0.0	17.6	38.6
90	-17.1	-8.5	0.0	18.8	41.4
100	-19.2	-9.4	0.0	19.8	43.7
110	-21.3	-10.4	0.0	20.6	45.5
120	-23.5	-11.3	0.0	21.1	46.9
130	-25.6	-12.3	0.0	21.4	47.8

Performance Inflight -All Engine

767 Flight Crew Operations Manual

Long Range Cruise Wind-Altitude Trade

PRESSURE					(CRUISI	E WEIG	3HT (1	000 LB)				
ALTITUDE (1000 FT)	420	400	380	360	340	320	300	290	280	270	260	250	240	230
43										37	25	15	8	3
41							41	29	19	11	6	2	1	2
39						29	13	7	4	2	1	2	5	8
37				37	19	8	2	1	2	3	6	10	14	20
35		41	23	11	4	1	3	5	8	12	16	22	28	34
33	25	13	5	2	1	4	10	14	19	24	30	36	43	50
31	6	2	1	3	7	14	22	27	33	39	45	51	58	65
29	1	2	5	11	18	26	36	42	47	54	60	66	73	80
27	5	9	15	22	31	40	51	57	62	68	75	81	87	94
25	13	20	27	35	45	55	66	71	77	83	89	95	101	107
23	25	32	41	50	59	69	80	85	90	96	102	107	113	119

The above wind factor table is for calculation of wind required to maintain present range capability at new pressure altitude, i.e., break-even wind.

Method:

- 1. Read wind factors for present and new altitudes from table.
- 2. Determine difference (new altitude wind factor minus present altitude wind factor); This difference may be negative or positive.
- 3. Break-even wind at new altitude is present altitude wind plus difference from step 2.

Descent at .78/290/250

PRESSURE ALT (1000 FT)	17	19	21	23	25	27	29	31	33	35	37	39	41	43
DISTANCE (NM)	66	72	79	86	93	100	107	114	119	125	130	136	141	146
TIME (MINUTES)	16	17	18	19	20	21	22	23	24	25	25	26	27	27

767 Flight Crew Operations Manual

767-300/CF6-80C2B6F FAA Category C & D Brake

Holding Flaps Up

W	EIGHT				PRESSU	RE ALTIT	UDE (FT)			
(10	000 LB)	1500	5000	10000	15000	20000	25000	30000	35000	40000
	%N1	68.8	71.5	76.1	80.3	84.3	88.6	93.3		
420	KIAS	259	259	259	259	259	259	261		
	FF/ENG	6500	6440	6380	6340	6340	6430	6550		
	%N1	67.4	70.1	74.7	78.9	83.0	87.3	91.8		
400	KIAS	252	252	252	252	252	252	255		
	FF/ENG	6200	6130	6080	6030	6010	6090	6190		
	%N1	66.1	68.8	73.1	77.5	81.7	85.9	90.3	96.1	
380	KIAS	246	246	246	246	246	246	248	263	
	FF/ENG	5900	5830	5770	5720	5700	5750	5840	6380	
	%N1	64.5	67.3	71.5	76.0	80.4	84.5	88.8	94.0	
360	KIAS	239	239	239	239	239	239	241	244	
	FF/ENG	5610	5530	5470	5410	5380	5410	5490	5710	
	%N1	62.8	65.8	69.8	74.4	78.8	82.9	87.3	92.1	
340	KIAS	231	231	231	231	231	231	233	236	
	FF/ENG	5320	5230	5160	5110	5070	5080	5150	5280	
	%N1	61.0	64.2	68.2	72.7	77.1	81.3	85.7	90.3	
320	KIAS	225	225	225	225	225	225	226	229	
	FF/ENG	5040	4950	4870	4810	4770	4760	4810	4910	
	%N1	59.3	62.3	66.6	70.8	75.3	79.7	83.9	88.5	96.2
300	KIAS	220	220	220	220	220	220	220	221	236
	FF/ENG	4760	4680	4580	4520	4480	4450	4480	4570	5190
	%N1	57.6	60.4	64.9	68.9	73.6	77.9	82.1	86.6	93.5
280	KIAS	215	215	215	215	215	215	215	215	216
	FF/ENG	4490	4410	4310	4240	4190	4170	4170	4220	4510
	%N1	55.8	58.6	63.0	67.0	71.6	76.0	80.2	84.6	91.0
260	KIAS	210	210	210	210	210	210	210	210	210
	FF/ENG	4230	4150	4040	3970	3920	3900	3870	3900	4090
	%N1	54.1	56.6	60.8	65.1	69.3	74.0	78.3	82.6	88.7
240	KIAS	204	204	204	204	204	204	204	204	204
	FF/ENG	3960	3890	3780	3700	3650	3620	3590	3600	3740
	%N1	52.3	54.7	58.7	63.2	67.2	71.9	76.2	80.5	86.5
220	KIAS	199	199	199	199	199	199	199	199	199
	FF/ENG	3700	3630	3530	3450	3380	3350	3310	3330	3420

This table includes 5% additional fuel for holding in a racetrack pattern.

767 Flight Crew Operations Manual

Performance Inflight - Advisory Information

Chapter PI Section 12

ADVISORY INFORMATION

Normal Configuration Landing Distance Flaps 25 Dry Runway

		L	ANDING	DISTA	NCE A	AND AL	JUST	MEN'	Γ(FT)			
	REF DIST	WT ADJ	ALT ADJ		O ADJ 0 KTS	SLOPE PER			P ADJ 10°C	APP SPD ADJ	REVI THR AI	UST
BRAKING CONFIGURATION	340000 LB LANDING WEIGHT	PER 10000 LB ABV/ BLW 340000 LB	PER 1000 FT ABOVE SEA LEVEL	HEAD WIND	TAIL WIND	DOWN HILL	UP HILL	ABV ISA	ISA	PER 10 KTS ABOVE VREF25	REV	
MAX MANUAL	3260	110/-60	80	-130	440	50	-40	80	-70	250	80	170
MAX AUTO	5490	130/-130	150	-250	840	0	0	160	-160	600	0	0
AUTOBRAKE 4	5670	140/-140	160	-260	880	0	0	160	-160	630	0	0
AUTOBRAKE 3	6520	160/-160	190	-300	1040	0	-20	190	-190	710	0	0
AUTOBRAKE 2	7270	190/-190	220	-350	1190	50	-120	220	-210	630	110	110
AUTOBRAKE 1	7950	220/-220	250	-390	1360	170	-220	250	-230	580	480	620

Good Reported Braking Action

MAX MANUAL	4500	110/-100	120	-210	720	120	-110	120	-110	340	260	580
MAX AUTO	5500	130/-130	150	-250	860	20	0	160	-160	600	20	80
AUTOBRAKE 4	5670	140/-140	160	-260	880	10	0	160	-160	630	10	50
AUTOBRAKE 3	6520	160/-160	190	-300	1040	0	-20	190	-190	710	0	0

Medium Reported Braking Action

MAX MANUAL	6190	170/-160	190	-330	1190	300	-230	180	-170	440	690	1660
MAX AUTO	6210	170/-160	190	-330	1190	260	-160	190	-170	570	600	1580
AUTOBRAKE 4	6280	170/-160	190	-330	1200	240	-140	190	-180	610	530	1510
AUTOBRAKE 3	6840	180/-170	200	-350	1260	160	-100	200	-200	710	350	1100

Poor Reported Braking Action

MAX MANUAL	8010	240/-230	260	-480	1830	660	-440	250	-220	520	1450	3870
MAX AUTO	8010	240/-230	260	-480	1820	660	-440	250	-220	510	1460	3890
AUTOBRAKE 4	8010	240/-230	260	-480	1820	670	-430	250	-220	520	1460	3890
AUTOBRAKE 3	8080	240/-220	260	-480	1840	610	-360	250	-230	660	1330	3760

Reference distance assumes sea level, standard day, no wind or slope, VREF25 approach speed and 2 engine reverse thrust.

Reference distance for manual braking is applicable for auto spoilers only, for manual spoilers operation increase landing distance by 400 ft.

Reference distance for auto braking is applicable for auto or manual spoilers.

Includes distance from 50 ft above threshold (1000 ft of air distance).

Actual (unfactored) distances are shown.

767-300/CF6-80C2B6F FAA Category C & D Brake

767 Flight Crew Operations Manual

ADVISORY INFORMATION

Normal Configuration Landing Distance Flaps 30 Dry Runway

		L	ANDING	DISTA	NCE A	AND AE	JUST	MENT	(FT)			
	REF DIST	WT ADJ	ALT ADJ	WINI PER 1		SLOPE PER			P ADJ 10°C	APP SPD ADJ	REVE THR AI	UST
BRAKING CONFIGURATION	340000 LB LANDING WEIGHT	PER 10000 LB ABV/ BLW 340000 LB			TAIL WIND	DOWN HILL	UP HILL		BLW ISA	PER 10 KTS ABOVE VREF 30	ONE REV	
MAX MANUAL	3230	140/-70	80	-130	440	50	-40	80	-70	250	80	160
MAX AUTO	5380	210/-140	150	-240	830	0	0	150	-150	600	0	0
AUTOBRAKE 4	5550	220/-140	150	-250	870	0	0	160	-160	620	0	0
AUTOBRAKE 3	6380	260/-170	180	-300	1020	0	-10	190	-190	720	0	0
AUTOBRAKE 2	7150	280/-200	210	-340	1180	40	-110	210	-210	640	80	80
AUTOBRAKE 1	7830	300/-220	240	-390	1350	160	-210	240	-230	580	410	540

Good Reported Braking Action

MAX MANUAL	4470	160/-110	120	-210	720	120	-110	120	-110	350	240	540
MAX AUTO	5390	210/-140	150	-250	850	20	0	150	-150	600	20	80
AUTOBRAKE 4	5550	220/-140	150	-250	870	10	0	160	-160	620	10	50
AUTOBRAKE 3	6380	260/-170	180	-300	1020	0	-10	190	-190	720	0	0

Medium Reported Braking Action

MAX MANUAL	6140	230/-170	190	-330	1190	300	-240	180	-170	450	650	1540
MAX AUTO	6150	250/-170	190	-330	1190	280	-170	180	-170	560	600	1500
AUTOBRAKE 4	6210	250/-170	190	-330	1200	260	-150	190	-180	600	540	1430
AUTOBRAKE 3	6720	280/-180	200	-350	1250	170	-100	200	-190	720	360	1060

Poor Reported Braking Action

_													
ſ	MAX MANUAL	7970	310/-230	260	-480	1830	680	-440	250	-220	520	1370	3600
I	MAX AUTO	7970	310/-230	260	-480	1830	680	-440	250	-220	520	1380	3610
I	AUTOBRAKE 4	7970	310/-230	260	-480	1830	680	-440	250	-220	520	1380	3610
Ī	AUTOBRAKE 3	8010	330/-230	260	-480	1840	640	-360	250	-230	670	1290	3520

Reference distance assumes sea level, standard day, no wind or slope, VREF30 approach speed and 2 engine reverse thrust.

Reference distance for manual braking is applicable for auto spoilers only, for manual spoilers operation increase landing distance by 400 ft.

Reference distance for auto braking is applicable for both auto and manual spoilers.

Includes distance from 50 ft above threshold (1000 ft of air distance).

Actual (unfactored) distances are shown.

Performance Inflight -Advisory Information

767 Flight Crew Operations Manual

ADVISORY INFORMATION

Non-Normal Configuration Landing Distance Dry Runway

Diy itunway	1		LANDIN	IG DIST	ANCES A	ND ADII	ISTMENT	rs (FT)		
		REF DIST	WT ADJ	ALT ADJ	WIND ADJ	SLOPE ADJ	TEMP ADJ	APP SPD ADJ	THR	ERSE UST DJ
LANDING CONFIGURATION	VREF	340000 LB LDG WT	PER 10000 LB ABV/BLW 340000 LB	ABV	PER 10 KTS HEAD/ TAIL WIND	PER 1% DOWN/ UP HILL	PER 10°C ABV/ BLW ISA	PER 10 KTS ABV VREF	ONE REV	
AIR/GRD SYS (FLAPS 25)	VREF25	4290	80/-90	100	-170/570	90/-80	110/-110	420	0	0
AIR/GRD SYS (FLAPS 30)	VREF30	4260	150/-90	100	-170/570	90/-80	110/-110	440	0	0
ALL FLAPS AND SLATS UP LANDING	VREF30+50	4730	240/-100	130	-170/570	80/-70	130/-120	320	200	440
ANTI-SKID OFF (FLAPS 25)	VREF25	6060	140/-140	160	-290/1010	190/-160	160/-150	440	410	960
ANTI-SKID OFF (FLAPS 30)	VREF30	5970	200/-140	160	-290/1010	190/-160	160/-150	450	380	880
ENGINE FAILURE (FLAPS 20)	VREF20	3530	130/-70	90	-140/470	60/-50	90/-90	280	0	110
HYD SYS PRESS (C ONLY) (FLAPS 20)	VREF20	4220	100/-90	100	-160/530	70/-60	100/-100	380	140	300
HYD SYS PRESS (L ONLY) (FLAPS 25)	VREF25	3420	80/-70	80	-130/460	50/-50	80/-80	290	100	200
HYD SYS PRESS (L ONLY) (FLAPS 30)	VREF30	3400	110/-70	80	-130/460	60/-50	80/-80	300	90	190
HYD SYS PRESS (R ONLY) (FLAPS 25)	VREF25	3760	80/-80	90	-150/530	70/-60	90/-90	310	140	300
HYD SYS PRESS (R ONLY) (FLAPS 30)	VREF30	3740	130/-80	90	-150/530	70/-70	90/-90	330	130	280
HYD SYS PRESS (L AND C) (FLAPS 20)	VREF30+20	5050	170/-100	130	-180/600	100/-90	130/-130	510	230	510
HYD SYS PRESS (L AND R) (FLAPS 20)	VREF30+20	4720	160/-100	130	-180/610	110/-90	130/-120	420	260	570
HYD SYS PRESS (R AND C) (FLAPS 20)	VREF30+20	6000	220/-130	170	-230/780	160/-140	170/-160	580	430	990

^{*}Reference distance assumes sea level, standard day with no wind or slope.

Actual (unfactored) distances are shown.

Includes distance from 50 ft above runway threshold (1000 ft of air distance).

767 Flight Crew Operations Manual

767-300/CF6-80C2B6F FAA Category C & D Brake

ADVISORY INFORMATION

Non-Normal Configuration Landing Distance Dry Runway

LANDING DISTANCES AND ADMISTMENTS (ET)													
		LANDING DISTANCES AND ADJUSTMENTS (FT)											
	_	REF DIST	WT ADJ	ALT ADJ	WIND ADJ	SLOPE ADJ	TEMP ADJ	APP SPD ADJ		ERSE UST DJ			
LANDING CONFIGURATION	VREF	340000 LB LDG WT	PER 10000 LB ABV/BLW 340000 LB	PER 1000 FT ABV S.L.	PER 10 KTS HEAD/ TAIL WIND	PER 1% DOWN/ UP HILL	PER 10°C ABV/ BLW ISA	PER 10 KTS ABV VREF	ONE REV				
LE SLAT ASYM (FLAPS > 20)	VREF30+20	3780	160/-80	90	-140/480	60/-50	90/-90	270	120	260			
LE SLAT ASYM (FLAPS = 20)	VREF30+30	4260	150/-90	110	-150/520	70/-60	110/-110	310	160	340			
LE SLAT ASYM (5 < FLAPS < 20)	VREF30+40	4570	160/-90	120	-160/540	80/-70	120/-120	320	180	390			
LE SLAT DIS- AGREE (FLAPS > 20)	VREF20	3460	130/-70	80	-130/450	50/-50	80/-80	260	100	220			
LE SLAT DISAGREE - ALTN FLAP EXT ACOMPLISHED (FLAPS = 20)	VREF20	3460	130/-70	80	-130/450	50/-50	80/-80	260	100	220			
LE SLAT DISAGREE - ALTN FLAP EXT FAILED (FLAPS = 20)	VREF30+30	4050	170/-80	100	-150/500	60/-60	100/-100	280	140	290			
REVERSER UNLOCKED (FLAPS 20)	VREF30+30	4380	160/-90	110	-160/540	80/-70	120/-110	330	0	180			
TE FLAP ASYM (FLAPS ≥ 20)	VREF20	3460	130/-70	80	-130/450	50/-50	80/-80	260	100	220			
TE FLAP ASYM (5 < FLAPS < 20)	VREF30+20	3780	160/-80	90	-140/480	60/-50	90/-90	270	120	260			
TE FLAP ASYM (FLAPS \leq 5)	VREF30+30	4000	190/-80	100	-150/490	60/-50	100/-100	270	130	290			
TE FLAP DISAGREE (FLAPS ≥ 20)	VREF20	3460	130/-70	80	-130/450	50/-50	80/-80	260	100	220			
TE FLAP DISAGREE (5 < FLAPS < 20)	VREF30+20	3780	160/-80	90	-140/480	60/-50	90/-90	270	120	260			
TE FLAP DISAGREE (FLAPS ≤ 5)	VREF30+30	4000	190/-80	100	-150/490	60/-50	100/-100	270	130	290			

^{*}Reference distance assumes sea level, standard day with no wind or slope.

Actual (unfactored) distances are shown.

Includes distance from 50 ft above runway threshold (1000 ft of air distance).

767 Flight Crew Operations Manual

ADVISORY INFORMATION

Non-Normal Configuration Landing Distance Good Reported Braking Action

-		LANDING DISTANCES AND ADJUSTMENTS (FT)										
	,	REF DIST	WT ADJ	ALT ADJ	WIND ADJ	SLOPE ADJ	TEMP ADJ	APP SPD ADJ	THR	ERSE UST DJ		
LANDING CONFIGURATION	VREF	340000 LB LDG WT	PER 10000 LB ABV/BLW 340000 LB	ABV	PER 10 KTS HEAD/ TAIL WIND	PER 1% DOWN/ UP HILL	PER 10°C ABV/ BLW ISA	PER 10 KTS ABV VREF	ONE REV			
AIR/GRD SYS (FLAPS 25)	VREF25	6360	140/-140	180	-300/1010	270/-220	180/-180	620	0	0		
AIR/GRD SYS (FLAPS 30)	VREF30	6300	230/-140	180	-300/1010	280/-230	180/-180	640	0	0		
ALL FLAPS AND SLATS UP LANDING	VREF30+50	6400	200/-140	190	-250/860	160/-150	190/-180	380	530	1220		
ANTI-SKID OFF (FLAPS 25)	VREF25	6820	170/-170	190	-350/1240	290/-230	190/-180	490	630	1530		
ANTI-SKID OFF (FLAPS 30)	VREF30	6720	240/-170	190	-350/1240	290/-230	190/-180	490	590	1410		
ENGINE FAILURE (FLAPS 20)	VREF20	5100	140/-120	140	-230/800	160/-140	140/-140	410	0	410		
HYD SYS PRESS (C ONLY) (FLAPS 20)	VREF20	5730	160/-140	160	-250/840	170/-150	160/-150	510	430	1010		
HYD SYS PRESS (L ONLY) (FLAPS 25)	VREF25	4730	110/-110	130	-220/750	140/-120	130/-120	390	300	680		
HYD SYS PRESS (L ONLY) (FLAPS 30)	VREF30	4710	170/-110	130	-220/750	140/-120	130/-120	400	280	640		
HYD SYS PRESS (R ONLY) (FLAPS 25)	VREF25	4730	110/-110	130	-220/750	140/-120	130/-120	390	300	680		
HYD SYS PRESS (R ONLY) (FLAPS 30)	VREF30	4710	170/-110	130	-220/750	140/-120	130/-120	400	280	640		
HYD SYS PRESS (L AND C) (FLAPS 20)	VREF30+20	6810	250/-160	200	-280/940	230/-190	200/-190	640	650	1560		
HYD SYS PRESS (L AND R) (FLAPS 20)	VREF30+20	5960	220/-140	180	-250/860	190/-170	180/-170	510	530	1250		
HYD SYS PRESS (R AND C) (FLAPS 20)	VREF30+20	6810	250/-160	200	-280/940	230/-190	200/-190	640	650	1560		

^{*}Reference distance assumes sea level, standard day with no wind or slope.

Actual (unfactored) distances are shown.

Includes distance from 50 ft above runway threshold (1000 ft of air distance).

767 Flight Crew Operations Manual

767-300/CF6-80C2B6F FAA Category C & D Brake

ADVISORY INFORMATION

Non-Normal Configuration Landing Distance Good Reported Braking Action

		LANDING DISTANCES AND ADJUSTMENTS (FT)											
	_	REF DIST	WT ADJ	ALT ADJ	WIND ADJ	SLOPE ADJ	TEMP ADJ	APP SPD ADJ		ERSE UST DJ			
LANDING CONFIGURATION	VREF	340000 LB LDG WT	PER 10000 LB ABV/BLW 340000 LB	ABV	PER 10 KTS HEAD/ TAIL WIND	PER 1% DOWN/ UP HILL	PER 10°C ABV/ BLW ISA	PER 10 KTS ABV VREF	ONE REV				
LE SLAT ASYM (FLAPS > 20)	VREF30+20	5290	180/-120	150	-230/790	150/-130	150/-140	380	380	860			
LE SLAT ASYM (FLAPS = 20)	VREF30+30	5950	200/-140	170	-250/840	170/-150	170/-170	420	470	1080			
LE SLAT ASYM (5 < FLAPS < 20)	VREF30+40	6380	210/-150	190	-260/870	180/-160	190/-180	430	520	1190			
LE SLAT DIS- AGREE (FLAPS > 20)	VREF20	4830	130/-110	130	-220/750	130/-120	130/-130	370	330	750			
LE SLAT DISAGREE - ALTN FLAP EXT ACOMPLISHED (FLAPS = 20)	VREF20	4830	130/-110	130	-220/750	130/-120	130/-130	370	330	750			
LE SLAT DISAGREE - ALTN FLAP EXT FAILED (FLAPS = 20)	VREF30+30	5670	180/-130	160	-240/810	150/-140	160/-160	380	420	950			
REVERSER UNLOCKED (FLAPS 20)	VREF30+30	6350	210/-150	180	-270/900	210/-180	190/-180	470	0	590			
TE FLAP ASYM (FLAPS ≥ 20)	VREF20	4830	130/-110	130	-220/750	130/-120	130/-130	370	330	750			
TE FLAP ASYM (5 < FLAPS < 20)	VREF30+20	5310	180/-120	150	-230/790	140/-130	150/-140	380	380	880			
TE FLAP ASYM (FLAPS ≤ 5)	VREF30+30	5640	180/-130	160	-230/810	150/-130	160/-150	370	430	980			
TE FLAP DISAGREE (FLAPS \geq 20)	VREF20	4830	130/-110	130	-220/750	130/-120	130/-130	370	330	750			
TE FLAP DISAGREE (5 < FLAPS < 20)	VREF30+20	5310	180/-120	150	-230/790	140/-130	150/-140	380	380	880			
TE FLAP DISAGREE (FLAPS ≤ 5)	VREF30+30	5640	180/-130	160	-230/810	150/-130	160/-150	370	430	980			

^{*}Reference distance assumes sea level, standard day with no wind or slope.

Actual (unfactored) distances are shown.

Includes distance from 50 ft above runway threshold (1000 ft of air distance).

767 Flight Crew Operations Manual

ADVISORY INFORMATION

Non-Normal Configuration Landing Distance Medium Reported Braking Action

_			S (FT)	FT)						
		REF DIST	WT ADJ	ALT ADJ	WIND ADJ	SLOPE ADJ	TEMP ADJ	APP SPD ADJ	THR	ERSE UST DJ
LANDING CONFIGURATION	VREF	340000 LB LDG WT	PER 10000 LB ABV/ BLW 340000 LB	PER 1000 FT ABV S.L.	PER 10 KTS HEAD/ TAIL WIND	PER 1% DOWN/ UP HILL	PER 10°C ABV/ BLW ISA	PER 10 KTS ABV VREF	ONE REV	
AIR/GRD SYS (FLAPS 25)	VREF25	10140	210/-210	310	-560/1950	1000/-670	320/-320	870	0	0
AIR/GRD SYS (FLAPS 30)	VREF30	9970	340/-210	310	-550/1940	1000/-670	320/-320	870	0	0
ALL FLAPS AND SLATS UP LANDING	VREF30+50	9110	310/-230	300	-400/1400	410/-330	300/-270	520	1430	3670
ANTI-SKID OFF (FLAPS 25)	VREF25	8580	240/-230	260	-500/1870	640/-440	250/-230	560	1370	3680
ANTI-SKID OFF (FLAPS 30)	VREF30	8480	320/-230	260	-500/1870	650/-440	250/-230	560	1290	3390
ENGINE FAILURE (FLAPS 20)	VREF20	7440	220/-200	230	-390/1360	440/-340	230/-220	560	0	1250
HYD SYS PRESS (C ONLY) (FLAPS 20)	VREF20	7720	240/-210	240	-380/1340	400/-310	240/-220	630	1120	2890
HYD SYS PRESS (L ONLY) (FLAPS 25)	VREF25	6480	180/-170	200	-340/1220	330/-260	200/-180	490	780	1900
HYD SYS PRESS (L ONLY) (FLAPS 30)	VREF30	6450	250/-170	200	-340/1220	340/-260	200/-180	500	740	1780
HYD SYS PRESS (R ONLY) (FLAPS 25)	VREF25	6480	180/-170	200	-340/1220	330/-260	200/-180	490	780	1900
HYD SYS PRESS (R ONLY) (FLAPS 30)	VREF30	6450	250/-170	200	-340/1220	340/-260	200/-180	500	740	1780
HYD SYS PRESS (L AND C) (FLAPS 20)	VREF30+20	9040	350/-240	290	-420/1460	500/-390	290/-260	740	1530	4090
HYD SYS PRESS (L AND R) (FLAPS 20)	VREF30+20	8140	310/-220	270	-390/1370	430/-340	260/-240	620	1300	3370
HYD SYS PRESS (R AND C) (FLAPS 20)	VREF30+20	9040	350/-240	290	-420/1460	500/-390	290/-260	740	1530	4090

^{*}Reference distance assumes sea level, standard day with no wind or slope.

Actual (unfactored) distances are shown.

Includes distance from 50 ft above runway threshold (1000 ft of air distance).

767 Flight Crew Operations Manual

767-300/CF6-80C2B6F FAA Category C & D Brake

ADVISORY INFORMATION

Non-Normal Configuration Landing Distance Medium Reported Braking Action

	1	LANDING DISTANCES AND ADJUSTMENTS (FT)											
		REF DIST	WT ADJ	ALT ADJ	WIND ADJ	SLOPE ADJ	TEMP ADJ	APP SPD ADJ		ERSE .UST DJ			
LANDING CONFIGURATION	VREF	340000 LB LDG WT	PER 10000 LB ABV/BLW 340000 LB	PER 1000 FT ABV S.L.	PER 10 KTS HEAD/ TAIL WIND	PER 1% DOWN/ UP HILL	PER 10°C ABV/ BLW ISA	10 KTS	ONE REV				
LE SLAT ASYM (FLAPS > 20)	VREF30+20	7310	270/-190	230	-360/1280	350/-280	230/-210	490	980	2430			
LE SLAT ASYM (FLAPS = 20)	VREF30+30	8170	290/-210	260	-380/1350	390/-320	260/-240	530	1170	2930			
LE SLAT ASYM (5 < FLAPS < 20)	VREF30+40	8720	300/-220	290	-400/1380	410/-330	280/-260	540	1340	3430			
LE SLAT DIS- AGREE (FLAPS > 20)	VREF20	6710	200/-180	210	-340/1230	330/-260	200/-190	490	880	2200			
LE SLAT DISAGREE - ALTN FLAP EXT ACOMPLISHED (FLAPS = 20)	VREF20	6710	200/-180	210	-340/1230	330/-260	200/-190	490	880	2200			
LE SLAT DISAGREE - ALTN FLAP EXT FAILED (FLAPS = 20)	VREF30+30	7800	270/-200	250	-370/1310	360/-290	250/-230	490	1050	2620			
REVERSER UNLOCKED (FLAPS 20)	VREF30+30	9160	320/-230	290	-430/1510	530/-420	290/-280	610	0	1680			
TE FLAP ASYM (FLAPS ≥ 20)	VREF20	6710	200/-180	210	-340/1230	330/-260	200/-190	490	880	2200			
TE FLAP ASYM (5 < FLAPS < 20)	VREF30+20	7370	270/-190	230	-360/1280	350/-280	230/-210	490	1010	2540			
TE FLAP ASYM (FLAPS ≤ 5)	VREF30+30	7850	280/-200	250	-370/1310	360/-290	250/-230	490	1110	2810			
TE FLAP DISAGREE (FLAPS \geq 20)	VREF20	6710	200/-180	210	-340/1230	330/-260	200/-190	490	880	2200			
TE FLAP DISAGREE (5 < FLAPS < 20)	VREF30+20	7370	270/-190	230	-360/1280	350/-280	230/-210	490	1010	2540			
TE FLAP DISAGREE (FLAPS ≤ 5)	VREF30+30	7850	280/-200	250	-370/1310	360/-290	250/-230	490	1110	2810			

^{*}Reference distance assumes sea level, standard day with no wind or slope.

Actual (unfactored) distances are shown.

Includes distance from 50 ft above runway threshold (1000 ft of air distance).

767 Flight Crew Operations Manual

ADVISORY INFORMATION

Non-Normal Configuration Landing Distance Poor Reported Braking Action

•	Ĩ	LANDING DISTANCES AND ADJUSTMENTS (FT)											
		REF DIST	WT ADJ	ALT ADJ	WIND ADJ	SLOPE ADJ	TEMP ADJ	APP SPD ADJ	THR	ERSE UST DJ			
LANDING CONFIGURATION	VREF	340000 LB LDG WT	PER 10000 LB ABV/ BLW 340000 LB	PER 1000 FT ABV S.L.	PER 10 KTS HEAD/ TAIL WIND	PER 1% DOWN/ UP HILL	PER 10°C ABV/ BLW ISA	PER 10 KTS ABV VREF	ONE REV	NO REV			
AIR/GRD SYS (FLAPS 25)	VREF25	16740	290/-180	570	-1120/4230	6080/-2020	600/-590	1090	0	0			
AIR/GRD SYS (FLAPS 30)	VREF30	16320	440/-180	550	-1100/4180	5960/-1970	580/-570	1080	0	0			
ALL FLAPS AND SLATS UP LANDING	VREF30+50	12000	440/-330	430	-590/2140	900/-630	410/-370	640	3020	8970			
ANTI-SKID OFF (FLAPS 25)	VREF25	11270	350/-330	370	-800/3310	3040/-940	350/-310	630	3540	14250			
ANTI-SKID OFF (FLAPS 30)	VREF30	11160	440/-330	360	-800/3310	3040/-950	350/-310	630	3380	13380			
ENGINE FAILURE (FLAPS 20)	VREF20	10240	330/-290	340	-600/2200	1100/-700	330/-310	690	0	3070			
HYD SYS PRESS (C ONLY) (FLAPS 20)	VREF20	9840	330/-290	330	-550/2030	840/-570	320/-290	710	2280	6740			
HYD SYS PRESS (L ONLY) (FLAPS 25)	VREF25	8360	250/-240	280	-500/1870	710/-480	270/-240	560	1610	4380			
HYD SYS PRESS (L ONLY) (FLAPS 30)	VREF30	8340	340/-240	280	-500/1870	730/-490	270/-240	570	1530	4080			
HYD SYS PRESS (R ONLY) (FLAPS 25)	VREF25	8360	250/-240	280	-500/1870	710/-480	270/-240	560	1610	4380			
HYD SYS PRESS (R ONLY) (FLAPS 30)	VREF30	8340	340/-240	280	-500/1870	730/-490	270/-240	570	1530	4080			
HYD SYS PRESS (L AND C) (FLAPS 20)	VREF30+20	11330	460/-320	400	-600/2160	990/-670	380/-340	800	2910	8920			
HYD SYS PRESS (L AND R) (FLAPS 20)	VREF30+20	10390	420/-300	360	-560/2060	890/-610	350/-310	690	2540	7490			
HYD SYS PRESS (R AND C) (FLAPS 20)	VREF30+20	11330	460/-320	400	-600/2160	990/-670	380/-340	800	2910	8920			

^{*}Reference distance assumes sea level, standard day with no wind or slope.

Actual (unfactored) distances are shown.

Includes distance from 50 ft above runway threshold (1000 ft of air distance).

767 Flight Crew Operations Manual

767-300/CF6-80C2B6F FAA Category C & D Brake

ADVISORY INFORMATION

Non-Normal Configuration Landing Distance Poor Reported Braking Action

LANDING DISTANCES AND ADJUSTMENTS (FT)													
		REF DIST	WT ADJ	ALT ADJ	WIND ADJ	SLOPE ADJ	TEMP ADJ	APP SPD ADJ	THR	ERSE UST DJ			
LANDING CONFIGURATION	VREF	340000 LB LDG WT	PER 10000 LB ABV/ BLW 340000 LB	PER 1000 FT ABV S.L.	PER 10 KTS HEAD/ TAIL WIND	PER 1% DOWN/ UP HILL	PER 10°C ABV/ BLW ISA	PER 10 KTS ABV VREF	ONE REV	NO REV			
LE SLAT ASYM (FLAPS > 20)	VREF30+20	9460	360/-270	320	-530/1950	760/-520	310/-280	570	2010	5610			
LE SLAT ASYM (FLAPS = 20)	VREF30+30	10460	390/-290	360	-560/2040	820/-570	350/-320	600	2310	6530			
LE SLAT ASYM (5 < FLAPS < 20)	VREF30+40	11270	420/-310	400	-570/2100	870/-610	380/-340	630	2700	7890			
LE SLAT DIS- AGREE (FLAPS > 20)	VREF20	8750	290/-250	290	-510/1900	730/-500	280/-260	580	1860	5230			
LE SLAT DISAGREE - ALTN FLAP EXT ACOMPLISHED (FLAPS = 20)	VREF20	8750	290/-250	290	-510/1900	730/-500	280/-260	580	1860	5230			
LE SLAT DISAGREE - ALTN FLAP EXT FAILED (FLAPS = 20)	VREF30+30	10020	370/-280	340	-540/1990	780/-540	330/-300	560	2120	5910			
REVERSER UNLOCKED (FLAPS 20)	VREF30+30	12380	450/-340	420	-660/2380	1260/-830	410/-390	730	0	3880			
TE FLAP ASYM (FLAPS ≥ 20)	VREF20	8750	290/-250	290	-510/1900	730/-500	280/-260	580	1860	5230			
TE FLAP ASYM (5 < FLAPS < 20)	VREF30+20	9590	370/-270	330	-530/1960	760/-520	320/-280	590	2160	6210			
TE FLAP ASYM (FLAPS ≤ 5)	VREF30+30	10170	380/-280	350	-540/2000	780/-540	340/-300	580	2290	6540			
TE FLAP DISAGREE (FLAPS ≥ 20)	VREF20	8750	290/-250	290	-510/1900	730/-500	280/-260	580	1860	5230			
TE FLAP DISAGREE (5 < FLAPS < 20)	VREF30+20	9590	370/-270	330	-530/1960	760/-520	320/-280	590	2160	6210			
TE FLAP DISAGREE (FLAPS ≤ 5)	VREF30+30	10170	380/-280	350	-540/2000	780/-540	340/-300	580	2290	6540			

^{*}Reference distance assumes sea level, standard day with no wind or slope.

Includes distance from 50 ft above runway threshold (1000 ft of air distance).

Actual (unfactored) distances are shown.

Performance Inflight -Advisory Information

767 Flight Crew Operations Manual

ADVISORY INFORMATION

Recommended Brake Cooling Schedule Reference Brake Energy Per Brake (Millions of Foot Pounds)

				BRAKES ON SPEED (KIAS)*																
				80			100			120			140			160			180	
WEIGHT	O.	Δ T						PF	RESS	URE	ALT	ITUE	E (10	000 F	T)					
(1000 LB)	°F	°C	0	2	4	0	2	4	0	2	4	0	2	4	0	2	4	0	2	4
	40	4	16.2	17.2	18.2	24.4	26.0	27.5	34.0	36.2	38.5	44.7	47.7	50.7	56.4	60.2	64.1			
	60	16													58.5					
420	80	27					l			l .				l	60.7					
	100	38					l			l .				l	62.5					
	120	49													64.1		_			
	40	4													51.4					
	60	16	15.4	16.3	17.2	23.1	24.6	26.1	32.2	34.3	36.4	42.3	45.2	48.0	53.4	57.0	60.7			
380	80	27	15.9	16.9	17.9	24.0	25.5	27.0	33.4	35.6	37.8	43.9	46.8	49.8	55.4	59.2	63.0			
	100	38	16.3	17.3	18.3	24.6	26.2	27.7	34.2	36.5	38.8	45.1	48.1	51.2	57.0	60.9	64.8			
	120	49													58.4					
	40	4	13.5	14.3	15.1	20.2	21.5	22.8	28.0	29.9	31.7	36.8	39.2	41.7	46.3	49.4	52.6	56.5	60.4	64.3
	60	16	14.0	14.8	15.7	21.0	22.3	23.6	29.1	31.0	32.9	38.2	40.7	43.3	48.1	51.3	54.6	58.7	62.7	66.8
340	80	27	14.5	15.3	16.2	21.7	23.1	24.5	30.2	32.1	34.1	39.6	42.2	44.9	49.8	53.2	56.6	60.8	65.0	69.3
	100	38	14.8	15.7	16.6	22.3	23.7	25.1	30.9	33.0	35.0	40.7	43.4	46.1	51.3	54.8	58.3	62.6	67.0	71.3
	120	49	15.0	15.9	16.8	22.6	24.1	25.6	31.5	33.6	35.7	41.5	44.4	47.2	52.5	56.1	59.7	64.2	68.7	73.2
	40	4	12.1	12.9	13.6	18.1	19.3	20.4	25.0	26.6	28.3	32.7	34.9	37.0	41.0	43.8	46.6	49.9	53.4	56.8
	60	16	12.6	13.3	14.1	18.8	20.0	21.2	26.0	27.6	29.3	33.9	36.2	38.4	42.6	45.5	48.4	51.9	55.4	59.0
300	80	27	13.0	13.8	14.6	19.5	20.7	21.9	26.9	28.7	30.4	35.2	37.5	39.8	44.2	47.2	50.1	53.8	57.5	61.1
	100	38	13.3	14.1	14.9	19.9	21.2	22.5	27.6	29.4	31.2	36.1	38.5	40.9	45.4	48.5	51.6	55.3	59.1	63.0
	120	49	13.5	14.3	15.1	20.3	21.6	22.9	28.1	30.0	31.8	36.9	39.4	41.8	46.4	49.6	52.8	56.7	60.6	64.6
	40	4	10.8	11.5	12.1	16.0	17.0	18.0	22.0	23.4	24.8	28.6	30.4	32.3	35.6	38.0	40.4	43.2	46.1	49.0
	60	16	11.2	11.9	12.6	16.6	17.7	18.7	22.8	24.3	25.7	29.6	31.6	33.5	37.0	39.5	41.9	44.8	47.8	50.9
260	80	27	11.6	12.3	13.0	17.2	18.3	19.4	23.6	25.2	26.7	30.7	32.7	34.7	38.3	40.9	43.5	46.5	49.6	52.8
	100	38	11.9	12.6	13.3	17.6	18.7	19.8	24.2	25.8	27.3	31.5	33.6	35.6	39.4	42.0	44.7	47.8	51.0	54.3
	120	49	12.0	12.7	13.5	17.9	19.0	20.2	24.7	26.3	27.9	32.1	34.3	36.4	40.2	43.0	45.7	48.9	52.2	55.6
	40	4	9.6	10.1	10.7	14.0	14.8	15.7	18.9	20.1	21.3	24.3	25.9	27.4	30.1	32.1	34.0	36.1	38.6	41.0
	60	16	9.9	10.5	11.1	14.5	15.4	16.3	19.6	20.9	22.1	25.2	26.9	28.5	31.2	33.3	35.3	37.5	40.0	42.5
220	80	27	10.3	10.9	11.5	15.0	15.9	16.8	20.3	21.6	22.9	26.2	27.8	29.5	32.4	34.5	36.6	38.9	41.5	44.1
	100	38	10.5	11.1	11.7	15.3	16.3	17.2	20.8	22.1	23.5	26.8	28.5	30.3	33.2	35.4	37.6	40.0	42.6	45.3
	120	49	10.6	11.2	11.8	15.6	16.5	17.5	21.2	22.5	23.9	27.3	29.1	30.9	33.9	36.1	38.4	40.8	43.6	46.3
*To corre																				

^{*}To correct for wind, enter table with the brakes on speed minus one half the headwind or plus 1.5 times the tailwind.

Adjusted Brake Energy Per Brake (Millions of Foot Pounds) No Reverse Thrust

	REF	EREN	CE BRA	KE EN	ERGY	PER B	RAKE (MILLI	ONS O	F FOOT	POUN	IDS)
EVENT	5	10	15	20	25	30	35	40	45	50	55	60
TO MAX MAN	5.0	10.0	15.0	20.0	25.0	30.0	35.0	40.0	45.0	50.0	55.0	60.0
MAX MAN	1.0	6.1	11.2	16.1	21.0	25.8	30.5	35.2	39.8	44.5	49.1	53.8
MAX AUTO	1.7	6.1	10.4	14.7	18.9	23.1	27.3	31.5	35.8	40.0	44.3	48.7
AUTOBRAKE 4	1.9	6.0	10.1	14.1	18.1	22.0	26.0	29.9	33.8	37.8	41.8	45.8
AUTOBRAKE 3	1.8	5.7	9.5	13.2	17.0	20.7	24.3	28.0	31.6	35.3	39.0	42.8
AUTOBRAKE 2	1.7	5.4	9.0	12.5	15.9	19.3	22.7	26.1	29.4	32.8	36.2	39.7
AUTOBRAKE 1	1.7	5.0	8.2	11.3	14.4	17.4	20.3	23.3	26.2	29.1	32.1	35.0
	O MAX MAN MAX MAN MAX AUTO AUTOBRAKE 4 AUTOBRAKE 3 AUTOBRAKE 2	EVENT 5 O MAX MAN 5.0 MAX MAN 1.0 MAX AUTO 1.7 AUTOBRAKE 4 1.9 AUTOBRAKE 3 1.8 AUTOBRAKE 2 1.7	EVENT 5 10 TO MAX MAN 5.0 10.0 MAX MAN 1.0 6.1 MAX AUTO 1.7 6.1 AUTOBRAKE 4 1.9 6.0 AUTOBRAKE 3 1.8 5.7 AUTOBRAKE 2 1.7 5.4	EVENT 5 10 15 O MAX MAN 5.0 10.0 15.0 MAX MAN 1.0 6.1 11.2 MAX AUTO 1.7 6.1 10.4 AUTOBRAKE 4 1.9 6.0 10.1 AUTOBRAKE 3 1.8 5.7 9.5 AUTOBRAKE 2 1.7 5.4 9.0	EVENT 5 10 15 20 O MAX MAN 5.0 10.0 15.0 20.0 MAX MAN 1.0 6.1 11.2 16.1 MAX AUTO 1.7 6.1 10.4 14.7 AUTOBRAKE 4 1.9 6.0 10.1 14.1 AUTOBRAKE 3 1.8 5.7 9.5 13.2 AUTOBRAKE 2 1.7 5.4 9.0 12.5	EVENT 5 10 15 20 25 O MAX MAN 5.0 10.0 15.0 20.0 25.0 MAX MAN 1.0 6.1 11.2 16.1 21.0 MAX AUTO 1.7 6.1 10.4 14.7 18.9 AUTOBRAKE 4 1.9 6.0 10.1 14.1 18.1 AUTOBRAKE 3 1.8 5.7 9.5 13.2 17.0 AUTOBRAKE 2 1.7 5.4 9.0 12.5 15.9	EVENT 5 10 15 20 25 30 O MAX MAN 5.0 10.0 15.0 20.0 25.0 30.0 MAX MAN 1.0 6.1 11.2 16.1 21.0 25.8 MAX AUTO 1.7 6.1 10.4 14.7 18.9 23.1 AUTOBRAKE 4 1.9 6.0 10.1 14.1 18.1 22.0 AUTOBRAKE 3 1.8 5.7 9.5 13.2 17.0 20.7 AUTOBRAKE 2 1.7 5.4 9.0 12.5 15.9 19.3	EVENT 5 10 15 20 25 30 35 O MAX MAN 5.0 10.0 15.0 20.0 25.0 30.0 35.0 MAX MAN 1.0 6.1 11.2 16.1 21.0 25.8 30.5 MAX AUTO 1.7 6.1 10.4 14.7 18.9 23.1 27.3 AUTOBRAKE 4 1.9 6.0 10.1 14.1 18.1 22.0 26.0 AUTOBRAKE 3 1.8 5.7 9.5 13.2 17.0 20.7 24.3 AUTOBRAKE 2 1.7 5.4 9.0 12.5 15.9 19.3 22.7	EVENT 5 10 15 20 25 30 35 40 O MAX MAN 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 MAX MAN 1.0 6.1 11.2 16.1 21.0 25.8 30.5 35.2 MAX AUTO 1.7 6.1 10.4 14.7 18.9 23.1 27.3 31.5 AUTOBRAKE 4 1.9 6.0 10.1 14.1 18.1 22.0 26.0 29.9 AUTOBRAKE 3 1.8 5.7 9.5 13.2 17.0 20.7 24.3 28.0 AUTOBRAKE 2 1.7 5.4 9.0 12.5 15.9 19.3 22.7 26.1	EVENT 5 10 15 20 25 30 35 40 45 O MAX MAN 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 MAX MAN 1.0 6.1 11.2 16.1 21.0 25.8 30.5 35.2 39.8 MAX AUTO 1.7 6.1 10.4 14.7 18.9 23.1 27.3 31.5 35.8 AUTOBRAKE 4 1.9 6.0 10.1 14.1 18.1 22.0 26.0 29.9 33.8 AUTOBRAKE 3 1.8 5.7 9.5 13.2 17.0 20.7 24.3 28.0 31.6 AUTOBRAKE 2 1.7 5.4 9.0 12.5 15.9 19.3 22.7 26.1 29.4	EVENT 5 10 15 20 25 30 35 40 45 50 O MAX MAN 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 MAX MAN 1.0 6.1 11.2 16.1 21.0 25.8 30.5 35.2 39.8 44.5 MAX AUTO 1.7 6.1 10.4 14.7 18.9 23.1 27.3 31.5 35.8 40.0 AUTOBRAKE 4 1.9 6.0 10.1 14.1 18.1 22.0 26.0 29.9 33.8 37.8 AUTOBRAKE 3 1.8 5.7 9.5 13.2 17.0 20.7 24.3 28.0 31.6 35.3 AUTOBRAKE 2 1.7 5.4 9.0 12.5 15.9 19.3 22.7 26.1 29.4 32.8	O MAX MAN 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0 MAX MAN 1.0 6.1 11.2 16.1 21.0 25.8 30.5 35.2 39.8 44.5 49.1 MAX AUTO 1.7 6.1 10.4 14.7 18.9 23.1 27.3 31.5 35.8 40.0 44.3 AUTOBRAKE 4 1.9 6.0 10.1 14.1 18.1 22.0 26.0 29.9 33.8 37.8 41.8 AUTOBRAKE 3 1.8 5.7 9.5 13.2 17.0 20.7 24.3 28.0 31.6 35.3 39.0 AUTOBRAKE 2 1.7 5.4 9.0 12.5 15.9 19.3 22.7 26.1 29.4 32.8 36.2

If ground speed is used for brakes on speed, ignore wind, altitude, and OAT effects.

767-300/CF6-80C2B6F FAA Category C & D Brake

767 Flight Crew Operations Manual

ADVISORY INFORMATION

Recommended Brake Cooling Schedule Two Engines Reverse Thrust

		REF	EREN	CE BRA	KE EN	ERGY	PER B	RAKE ((MILLI	ONS O	F FOOT	POUN	(DS)
	EVENT	5	10	15	20	25	30	35	40	45	50	55	60
	MAX MAN	0.0	5.0	9.9	14.6	19.2	23.8	28.2	32.6	37.0	41.3	45.6	49.9
Ð	MAX AUTO	0.2	3.7	7.3	10.8	14.3	17.9	21.5	25.1	28.7	32.4	36.2	40.0
NDING	AUTOBRAKE 4	0.0	2.9	6.0	9.0	12.1	15.1	18.2	21.3	24.5	27.7	30.9	34.2
I ₹	AUTOBRAKE 3	0.0	1.8	4.3	6.9	9.5	12.1	14.8	17.4	20.1	23.9	25.7	28.6
Ľ	AUTOBRAKE 2	0.0	0.7	2.8	4.8	6.9	8.9	11.0	13.1	15.3	17.6	19.9	22.2
	AUTOBRAKE 1	0.0	0.4	1.8	3.2	4.6	6.0	7.5	9.0	10.5	12.1	13.8	15.5

Cooling Time (Minutes)

Category "C" and "D" Brakes

		ADJUSTED) BRA	KE E	NERC	Y PE	R BR	AKE (MILL	IONS OF FOO	T POUNDS)
		14 & BELOW	15	16	18	20	24	28	34	35 TO 42	43 & ABOVE
		BRAKE	TEM	PERA	ΓURE	MON	ITOR	SYS	TEM I	NDICATION O	N EICAS
		UP TO 1	1	1	2	2	3	4	5	5 TO 6	7 & ABOVE
Ī	INFLIGHT GEAR DOWN	NO SPECIAL PROCEDURE	1	1	2	2	3	4	6	CAUTION	FUSE PLUG MELT ZONE
	GROUND	REQUIRED	11	15	19	24	34	44	59		WIELI ZONE

Observe maximum quick turnaround limit.

Table shows energy per brake added by a single stop with all brakes operating. Energy is assumed to be equally distributed among the operating brakes. Total energy is the sum of residual energy plus energy added.

Add 1.0 million foot pounds per brake for each taxi mile.

For one brake deactivated, increase brake energy by 15 percent.

When in caution zone, wheel fuse plugs may melt. Delay takeoff and inspect after one hour. If overheat occurs after takeoff, extend gear soon for at least 6 minutes.

When in fuse plug melt zone, clear runway immediately. Unless required, do not set parking brake. Do not approach gear or attempt to taxi for one hour. Tire, wheel and brake replacement may be required. If overheat occurs after takeoff, extend gear soon for at least 10 minutes.

Brake temperature monitor system (BTMS) indication on EICAS may be used 10 to 15 minutes after airplane has come to a complete stop, or inflight with gear retracted, to determine recommended cooling schedule.

767-300/CF6-80C2B6F FAA Category C & D Brake

DO NOT USE FOR FLIGHT

767 Flight Crew Operations Manual

Performance Inflight - Engine Inoperative

Chapter PI Section 13

ENGINE INOP

Initial Max Continuous %N1 Based on .80M, packs on or off and APU on

TAT			PRE	SSURE ALT	TUDE (1000) FT)		
(°C)	29	31	33	35	37	39	41	43
20	103.8	103.4	102.5					
15	104.4	104.0	103.3	102.3	101.1	100.8	100.8	100.8
10	105.2	104.6	104.0	103.2	101.9	101.4	101.4	101.4
5	106.1	105.5	104.7	103.9	102.6	102.1	102.2	102.2
0	107.1	106.4	105.6	104.7	103.3	102.9	102.9	102.9
-5	106.9	107.5	106.6	105.7	104.3	103.9	103.9	103.9
-10	106.0	107.1	107.7	106.7	105.3	104.9	104.9	104.9
-15	105.1	106.2	107.1	107.8	106.5	106.2	106.2	106.2
-20	104.2	105.3	106.2	106.9	106.6	106.4	106.4	106.4
-25	103.2	104.3	105.3	105.8	105.8	105.6	105.6	105.6
-30	102.3	103.3	104.3	104.7	104.7	104.7	104.7	104.7
-35	101.3	102.4	103.3	103.6	103.6	103.6	103.6	103.6
-40	100.3	101.3	102.3	102.6	102.6	102.6	102.6	102.6

767 Flight Crew Operations Manual

767-300/CF6-80C2B6F FAA Category C & D Brake

ENGINE INOP

Max Continuous %N1 37000 FT to 27000 FT Pressure Altitudes Based on engine bleed for packs on or off and anti-ice off

Dasca	based on engine bleed for packs on of off and anti-lee off													
37000 H	T PRES	SS ALT						TAT	(°C)					
KIAS	M	-40	-35	-30	-25	-20	-15	-10	-5	0	5	10	15	20
200	.63	102.6	103.6	104.7	105.8	106.9	105.8	104.8	104.1	103.3	101.8	98.8	95.7	
220	.69	102.6	103.6	104.7	105.8	106.9	105.9	104.8	104.0	103.3	102.4	100.4	97.5	
240	.74	102.6	103.6	104.7	105.8	106.9	106.1	105.0	104.0	103.3	102.5	101.7	99.4	
260	.80	102.6	103.6	104.7	105.8	106.6	106.5	105.3	104.3	103.3	102.6	101.9	101.1	
35000 F	T PRES	S ALT						TAT	(°C)					
KIAS	M	-40	-35	-30	-25	-20	-15	-10	-5	0	5	10	15	20
200	.60	102.6	103.6	104.7	105.8	106.9	107.2	106.2	105.5	104.7	103.2	100.2	97.1	
220	.66	102.6	103.6	104.7	105.8	106.9	107.3	106.2	105.4	104.7	103.8	101.8	98.8	
240	.71	102.6	103.6	104.7	105.8	106.9	107.5	106.4	105.3	104.6	104.0	102.9	100.5	
260	.77	102.6	103.6	104.7	105.8	106.9	107.7	106.6	105.6	104.5	103.9	103.2	102.1	
33000 H	T PRES	SS ALT						TAT	(°C)					
KIAS	M	-40	-35	-30	-25	-20	-15	-10	-5	0	5	10	15	20
200	.58	102.6	103.6	104.7	105.8	106.9	107.9	107.2	106.5	105.8	104.9	102.6	99.6	
220	.63	102.6	103.6	104.7	105.8	106.9	107.9	107.3	106.3	105.7	105.0	104.1	101.2	
240	.68	102.6	103.6	104.7	105.8	106.9	107.9	107.4	106.4	105.5	104.9	104.1	102.7	
260	.74	102.6	103.6	104.7	105.8	106.9	107.9	107.4	106.5	105.5	104.7	104.1	103.3	
31000 H	T PRES	SS ALT						TAT	(°C)					
KIAS	M	-40	-35	-30	-25	-20	-15	-10	-5	0	5	10	15	20
200	.55	102.6	103.6	104.7	105.8	106.8	107.9	108.1	107.2	106.6	106.0	105.0	102.0	
220	.61	102.6	103.6	104.7	105.8	106.9	107.9	108.2	107.3	106.6	106.0	105.3	103.5	
240	.66	102.6	103.6	104.7	105.8	106.9	107.9	108.2	107.3	106.4	105.7	105.1	104.4	
260	.71	102.6	103.6	104.7	105.8	106.9	107.9	108.3	107.3	106.4	105.5	104.9	104.3	
29000 F	T PRES	SS ALT						TAT	(°C)					
KIAS	M	-40	-35	-30	-25	-20	-15	-10	-5	0	5	10	15	20
200	.53	102.6	103.6	104.7	105.8	106.8	107.9	108.4	107.5	106.8	106.1	105.5	103.6	100.7
220	.58	102.6	103.6	104.7	105.8	106.9	107.9	108.5	107.7	106.7	106.1	105.5	104.9	102.1
240	.63	102.6	103.6	104.7	105.8	106.9	107.9	108.7	107.7	106.8	106.0	105.4	104.8	103.5
260	.68	102.6	103.6	104.7	105.8	106.9	107.9	108.8	107.7	106.8	105.9	105.3	104.7	104.0
27000 F	T PRES							TAT						
KIAS	M	-40	-35	-30	-25	-20	-15	-10	-5	0	5	10	15	20
200	.51	102.6	103.6	104.7	105.8	106.8	107.9	108.2	107.2	106.3	105.6	104.8	104.1	101.4
220	.56	102.6	103.6	104.7	105.8	106.8	107.9	108.4	107.4	106.4	105.6	104.9	104.2	102.7
240	.60	102.6	103.6	104.7	105.8	106.9	107.9	108.6	107.6	106.7	105.7	105.0	104.3	103.6
260	.65	102.2	103.2	104.2	105.1	106.1	107.0	107.9	107.8	106.8	105.9	105.0	104.3	103.6

%N1 Adjustments for Engine Bleed

BLEED		PRESSURE ALTITUDE (1000 FT)										
CONFIGURATION	27	29	31	33	35	37						
ENGINE ANTI-ICE ON	-0.8	-0.9	-1.0	-1.1	-1.2	-1.4						
ENGINE & WING ANTI-ICE ON	-1.7	-1.9	-2.1	-2.3	-2.5	-2.9						

767 Flight Crew Operations Manual

ENGINE INOP

Max Continuous %N1 25000 FT to 16000 FT Pressure Altitudes Based on engine bleed for packs on or off and anti-ice off

25000 F	25000 FT PRESS ALT TAT (°C)															
KIAS	M	-40	-35	-30	-25	-20	-15	-10	-5	0	5	10	15	20	25	30
200	.49												103.3	_		30
220	.53												103.4			
240	.58												103.4			
260	.63												103.8			
24000 F			101.6	102.6	105.6	104.7	105.0	100.5	TAT		103.0	104.0	105.6	103.0	102.2	
KIAS	M	-40	-35	-30	-25	-20	-15	-10	-5	0	5	10	15	20	25	30
200	.48									-			104.1			
220	.52												104.1			
240	.57												104.2			
260	.61												104.4			
22000 F	T PRES	S ALT							TAT	(°C)						
KIAS	M	-40	-35	-30	-25	-20	-15	-10	-5	0	5	10	15	20	25	30
200	.46	102.6	103.6	104.7	105.8	106.8	107.9	108.9	109.8	108.9	107.9	106.9	106.1	105.2	103.7	
220	.50	102.6	103.6	104.7	105.8	106.8	107.9	108.9	109.8	109.0	108.0	107.0	106.1	105.3	104.4	
240	.55	102.6	103.6	104.7	105.7	106.6	107.6	108.5	109.4	109.2	108.2	107.2	106.3	105.4	104.6	
260	.59	102.0	103.0	104.0	105.0	105.9	106.9	107.8	108.7	109.3	108.5	107.5	106.5	105.6	104.8	
20000 F	T PRES	S ALT							TAT	(°C)						
KIAS	M	-40	-35	-30	-25	-20	-15	-10	-5	0	5	10	15	20	25	30
200	.44	102.6	103.6	104.7	105.8	106.8	107.9	108.9	109.9	110.8	109.8	108.8	107.9	106.9	106.1	104.0
220	.48												108.0			
240	.53												108.1			
260	.57		103.4	104.4	105.4	106.4	107.4	108.3	109.3	110.2	110.1	109.3	108.3	107.4	106.4	105.6
18000 F	T PRES								TAT	(°C)						
KIAS	M	-40	-35	-30	-25	-20	-15	-10	-5	0	5	10	15	20	25	30
200	.42												108.4			
220	.46												108.3			
240	.51												108.4			
260	.55		102.6	103.6	104.6	105.6	106.6	107.5	108.5	109.4	110.3	109.5	108.6	107.6	106.7	105.8
	T PRES								TAT							
KIAS	M	-40	-35	-30	-25	-20	-15	-10	-5	0	5	10	15	20	25	30
200	.41												108.6			
220	.45												108.5		_	
240	.49												108.5			
260	.53	99.9	101.0	102.0	103.0	104.0	105.0	106.1	107.1	108.0	109.0	109.5	108.6	107.7	106.8	106.0

%N1 Adjustments for Engine Bleed

BLEED		PRESSURE ALTITUDE (1000 FT)										
CONFIGURATION	16	18	20	22	24	25						
ENGINE ANTI-ICE ON	-0.4	-0.4	-0.5	-0.6	-0.7	-0.7						
ENGINE & WING ANTI-ICE ON	-1.1	-1.1	-1.2	-1.4	-1.5	-1.5						

767 Flight Crew Operations Manual

767-300/CF6-80C2B6F FAA Category C & D Brake

ENGINE INOP

Max Continuous %N1 14000 FT to 5000 FT Pressure Altitudes Based on engine bleed for packs on or off and anti-ice off

14000 F	T PRES	S ALT							TAT	(°C)						
KIAS	M	-40	-35	-30	-25	-20	-15	-10	-5	0	5	10	15	20	25	30
200	.39	101.1	102.1	103.1	104.2	105.2	106.3	107.3	108.3	109.3	110.2	109.4	108.5	107.6	106.8	106.1
220	.43	100.8	101.8	102.8	103.9	104.8	105.8	106.8	107.7	108.6	109.6	109.4	108.4	107.6	106.7	106.0
240	.47	100.2	101.2	102.2	103.2	104.1	105.1	106.0	107.0	107.9	108.9	109.4	108.4	107.5	106.6	105.9
260	.51	99.5	100.5	101.5	102.5	103.4	104.4	105.3	106.2	107.2	108.1	109.1	108.4	107.5	106.7	105.9
12000 F	T PRES	S ALT							TAT	(°C)						
KIAS	M	-40	-35	-30	-25	-20	-15	-10	-5	0	5	10	15	20	25	30
200	.38	100.0	101.0	101.9	102.9	103.9	104.8	105.8	106.7	107.7	108.6	109.2	108.2	107.4	106.6	105.8
220	.41	99.4								107.1						
240	.45	98.9								106.6						
260	.49	98.4		100.3	101.3	102.3	103.2	104.1		106.0	106.9	107.8	108.5	107.6	106.8	105.9
10000 F	T PRES								TAT	(°C)						
KIAS	M	-40	-35	-30	-25	-20	-15	-10	-5	0	5	10	15	20	25	30
200	.36	98.2	99.2	100.2		102.1				105.8						
220	.40	97.7	98.7	99.7						105.4						
240	.43	97.4	98.4	99.3						105.0						
260	.47	97.0	98.0	99.0	99.9	100.9	101.8	102.7		104.6	105.5	106.4	107.3	107.4	106.6	105.8
5000 FT	Γ PRESS	SALT								(°C)						
KIAS	M	-40	-35	-30	-25	-20	-15	-10	-5	0	5	10	15	20	25	30
200	.33	95.5	96.5	97.5	98.4	99.4	100.3	101.2	102.1	103.1	104.0	104.8	105.7	106.6	106.4	105.7
220	.36	95.1	96.1	97.1	98.0	99.0	99.9	100.8	101.7	102.7						
240	.40	94.7	95.7	96.7	97.6	98.6	99.5			102.2			104.9			
260	.43	94.4	95.4	96.4	97.3	98.3	99.2	100.1	101.0	101.9	102.8	103.7	104.6	105.5	106.3	105.9

%N1 Adjustments for Engine Bleed

BLEED		PRESSURE ALT	ITUDE (1000 FT)	
CONFIGURATION	5	10	12	14
ENGINE ANTI-ICE ON	-0.6	-0.5	-0.5	-0.6
ENGINE & WING ANTI-ICE ON	-1.2	-1.1	-1.2	-1.2

Performance Inflight -Engine Inoperative

767 Flight Crew Operations Manual

ENGINE INOP

MAX CONTINUOUS THRUST

Driftdown Speed/Level Off Altitude 100 ft/min residual rate of climb

WEIGHT	(1000 LB)	OPTIMUM	LEVE	EL OFF ALTITUDI	E (FT)
START DRIFT DOWN	LEVEL OFF	DRIFTDOWN SPEED (KIAS)	ISA + 10°C & BELOW	ISA + 15°C	ISA + 20°C
420	406	276	18300	17300	15500
400	388	270	19700	18800	17400
380	369	263	20900	20200	19200
360	349	256	22100	21400	20600
340	330	249	23300	22600	21700
320	310	242	24700	23900	23000
300	291	235	26100	25400	24300
280	271	227	27800	27300	26200
260	252	219	29400	29300	28600
240	233	211	31100	31100	30800
220	213	202	32900	32900	32700

Includes APU fuel burn.

Driftdown/LRC Cruise Range Capability Ground to Air Miles Conversion

	AIR D	ISTANCE	(NM)		GROUND		AIR D	ISTANCE	E (NM)	
HE	ADWIND	COMPO	NENT (K	TS)	DISTANCE	TA	AILWIND	COMPON	NENT (K7	TS)
100	80	60	40	20	(NM)	20	40	60	80	100
265	249	234	222	210	200	191	182	174	167	161
533	500	470	444	421	400	381	364	348	333	320
803	752	707	667	632	600	571	545	521	499	479
1074	1005	945	891	843	800	761	726	694	664	637
1346	1259	1182	1115	1054	1000	951	907	866	829	796
1618	1513	1420	1338	1265	1200	1141	1088	1039	994	953
1892	1767	1659	1562	1477	1400	1331	1268	1211	1159	1111
2165	2022	1897	1786	1688	1600	1521	1449	1383	1324	1269
2438	2277	2135	2010	1899	1800	1710	1629	1556	1488	1427

Driftdown/Cruise Fuel and Time

AIR		FUEL REQUIRED (1000 LB)												
DIST			WEIG	HT AT	START	OF DRI	FTDOV	VN (100	0 LB)			TIME (HR:MIN)		
(NM)	220	240	260	280	300	320	340	360	380	400	420	(IIIX.WIIN)		
200	3.5	3.7	4.0	4.2	4.4	4.7	4.9	5.2	5.6	5.9	6.0	0:29		
400	7.5	8.0	8.7	9.2	9.8	10.4	10.9	11.6	12.2	12.9	13.4	0:60		
600	11.3	12.2	13.2	14.0	15.0	15.9	16.7	17.7	18.7	19.7	20.4	1:31		
800	15.1	16.3	17.6	18.8	20.0	21.3	22.4	23.7	25.0	26.3	27.4	2:02		
1000	18.9	20.4	22.0	23.5	25.0	26.6	28.0	29.6	31.2	32.8	34.3	2:34		
1200	22.5	24.3	26.3	28.1	30.0	31.8	33.5	35.4	37.3	39.3	41.0	3:06		
1400	26.1	28.3	30.5	32.6	34.8	37.0	39.0	41.2	43.4	45.6	47.7	3:38		
1600	29.7	32.1	34.7	37.1	39.6	42.0	44.4	46.8	49.3	51.9	54.3	4:10		
1800	33.2	35.9	38.8	41.5	44.3	47.1	49.7	52.4	55.2	58.1	60.8	4:43		

Includes APU fuel burn.

Driftdown at optimum driftdown speed and cruise at Long Range Cruise speed.

767 Flight Crew Operations Manual

767-300/CF6-80C2B6F FAA Category C & D Brake

ENGINE INOP

MAX CONTINUOUS THRUST

Long Range Cruise Altitude Capability 100 ft/min residual rate of climb and APU on

WEIGHT		PRESSURE ALTITUDE (FT	")
(1000 LB)	ISA + 10°C & BELOW	ISA + 15°C	ISA + 20°C
420	15300	12900	10100
410	16100	13900	11200
400	17000	15000	12300
390	17800	16000	13500
380	18700	17100	14600
370	19500	18100	15700
360	20300	19000	16900
350	20900	20000	18100
340	21500	20600	19300
330	22100	21200	20300
320	22800	21900	20900
310	23500	22500	21500
300	24100	23200	22100
290	24900	23900	22800
280	25700	24600	23400
270	26700	25500	24100
260	27600	26800	24800
250	28600	28000	26200
240	29600	29300	27700
230	30600	30400	29300
220	31500	31400	30600

With engine anti-ice on, decrease altitude capability by 1800 ft.

With engine and wing anti-ice on, decrease altitude capability by 3800 ft.

Performance Inflight -Engine Inoperative

767 Flight Crew Operations Manual

ENGINE INOP

MAX CONTINUOUS THRUST

Long Range Cruise Control

	EIGHT				RESSURE	ALTITUE	E (1000 F			
(10	00 LB)	10	14	18	21	23	25	27	29	31
	%N1	98.9	102.5							
420	MACH	.584	.617							
420	KIAS	324	319							
	FF/ENG	14058	14193							
	%N1	97.5	100.9	105.3						
400	MACH	.573	.606	.643						
400	KIAS	318	313	308						
	FF/ENG	13339	13421	13752						
	%N1	96.0	99.4	103.3						
380	MACH	.563	.596	.631						
500	KIAS	312	307	302						
	FF/ENG	12635	12695	12923						
	%N1	94.4	97.8	101.5	105.2					
360	MACH	.550	.585	.619	.647					
500	KIAS	305	301	296	292					
	FF/ENG	11912	11976	12117	12403					
	%N1	92.9	96.1	99.6	102.9					
340	MACH	.538	.572	.606	.634					
	KIAS	298	295	290	286					
	FF/ENG	11215	11267	11346	11549					
	%N1	91.2	94.4	97.8	100.8	103.2				
320	MACH	.525	.559	.594	.621	.640				
	KIAS	291	288	284	279	277				
	FF/ENG	10540	10566	10625	10739	10905	102.5			
	%N1 MACH	89.6	92.6 .545	96.0	98.7	100.8 .625	103.5			
300		.512 283	280	.580 277	.606 273	270	.645 268			
	KIAS FF/ENG	9873	9852	9903	9966	10078	10257			
	%N1	9873 87.8	9852	94.0	96.7	98.5	10257	103.7		
	MACH	.498	.530	.566	.593	.610	.629	.649		
280	KIAS	276	272	270	266	263	261	259		
	FF/ENG	9219	9175	9209	9251	9288	9413	9597		
	%N1	85.8	88.8	91.9	94.5	96.3	98.3	100.6	103.9	
	MACH	.484	.515	.549	.576	.595	.612	.632	.653	
260	KIAS	268	264	261	259	257	254	252	249	
	FF/ENG	8574	8506	8497	8536	8571	8611	8740	8925	
	%N1	83.8	86.8	89.8	92.3	94.0	95.9	97.9	100.3	
	MACH	.468	.499	.532	.559	.578	.596	.614	.635	
240	KIAS	259	256	253	251	249	247	244	242	
	FF/ENG	7928	7855	7819	7842	7862	7889	7932	8059	
	%N1	81.5	84.5	87.6	89.9	91.6	93.4	95.2	97.3	99.8
220	MACH	.449	.482	.514	.540	.559	.577	.596	.615	.635
220	KIAS	248	247	244	242	240	239	236	234	232
	FF/ENG	7259	7214	7156	7144	7170	7187	7208	7250	7367

767 Flight Crew Operations Manual

767-300/CF6-80C2B6F FAA Category C & D Brake

ENGINE INOP

MAX CONTINUOUS THRUST

Long Range Cruise Diversion Fuel and Time Ground to Air Miles Conversion

	AIR D	ISTANCE	E (NM)		GROUND	AIR DISTANCE (NM)						
HE	ADWIND	COMPO	NENT (K	TS)	DISTANCE	TA	ILWIND	COMPON	NENT (KT	TS)		
100	80	60	40	20	(NM)	20	40	60	80	100		
288	265	245	228	213	200	190	181	173	166	159		
578	532	490	456	427	400	380	362	346	331	318		
869	799	737	685	640	600	571	544	519	497	477		
1160	1067	984	914	854	800	761	725	692	662	636		
1453	1335	1231	1143	1068	1000	951	906	865	828	794		
1747	1605	1479	1373	1282	1200	1141	1087	1038	993	953		
2042	1875	1728	1603	1496	1400	1332	1269	1211	1158	1111		
2339	2147	1977	1833	1710	1600	1521	1449	1383	1323	1269		
2637	2419	2226	2064	1924	1800	1711	1629	1555	1487	1427		

Reference Fuel and Time Required at Check Point

				1							
A ID				PRESS	URE ALT	ITUDE (10	00 FT)				
AIR DIST	1	0	1	4	1	8	2	2	26		
(NM)	FUEL	TIME	FUEL	TIME	FUEL	TIME	FUEL	TIME	FUEL	TIME	
()	(1000 LB)	(HR:MIN)	(1000 LB)	(HR:MIN)	(1000 LB)	(HR:MIN)	(1000 LB)	(HR:MIN)	(1000 LB)	(HR:MIN)	
200	5.6	0:41	4.9	0:40	4.4	0:39	4.0	0:38	3.7	0:37	
400	11.6	1:18	10.7	1:15	10.0	1:12	9.4	1:10	9.0	1:07	
600	17.6	1:56	16.4	1:51	15.4	1:46	14.6	1:42	14.2	1:38	
800	23.5	2:33	22.0	2:27	20.8	2:20	19.8	2:15	19.3	2:09	
1000	29.4	3:11	27.6	3:03	26.1	2:55	24.9	2:48	24.3	2:41	
1200	35.1	3:50	33.1	3:39	31.4	3:29	30.0	3:21	29.2	3:12	
1400	40.9	4:29	38.5	4:16	36.5	4:04	35.0	3:54	34.1	3:44	
1600	46.5	5:08	43.8	4:53	41.7	4:39	39.9	4:27	38.9	4:16	
1800	52.1	5:47	49.1	5:31	46.7	5:15	44.8	5:01	43.6	4:48	

Fuel Required Adjustment (1000 LB)

REFERENCE FUEL REQUIRED		WEIGHT AT	CHECK POIN	VT (1000 LB)	
(1000 LB)	200	250	300	350	400
5	-0.8	-0.4	0.0	0.6	1.1
10	-1.8	-0.9	0.0	1.4	2.6
15	-2.8	-1.4	0.0	2.2	4.2
20	-3.8	-1.9	0.0	3.0	5.7
25	-4.8	-2.4	0.0	3.7	7.3
30	-5.8	-2.8	0.0	4.5	8.8
35	-6.8	-3.3	0.0	5.3	10.4
40	-7.8	-3.8	0.0	6.0	11.9
45	-8.8	-4.3	0.0	6.7	13.5
50	-9.8	-4.8	0.0	7.5	15.1
55	-10.8	-5.3	0.0	8.2	16.7

Includes APU fuel burn.

767 Flight Crew Operations Manual

Performance Inflight -Engine Inoperative

ENGINE INOP

MAX CONTINUOUS THRUST

Holding Flaps Up

w	EIGHT			PRESSU	JRE ALTITU	DE (FT)		
	000 LB)	1500	5000	10000	15000	20000	25000	30000
	%N1	87.4	90.4	95.0	100.3			
420	KIAS	259	259	259	259			
	FF/ENG	12060	12150	12380	12850			
	%N1	85.8	88.9	93.4	98.5	105.8		
400	KIAS	252	252	252	252	252		
	FF/ENG	11430	11490	11680	12050	12880		
	%N1	84.2	87.4	91.8	96.7	103.1		
380	KIAS	246	246	246	246	246		
	FF/ENG	10820	10860	11010	11300	11940		
	%N1	82.6	85.6	90.1	94.9	100.7		
360	KIAS	239	239	239	239	239		
	FF/ENG	10210	10230	10340	10580	11080		
	%N1	80.7	83.8	88.3	93.0	98.5		
340	KIAS	231	231	231	231	231		
	FF/ENG	9610	9620	9690	9870	10260		
	%N1	78.8	82.1	86.5	91.1	96.2	103.7	
320	KIAS	225	225	225	225	225	225	
	FF/ENG	9020	9020	9060	9200	9490	10170	
	%N1	76.8	80.1	84.6	89.1	94.0	100.3	
300	KIAS	220	220	220	220	220	220	
	FF/ENG	8440	8430	8450	8550	8770	9250	
	%N1	74.8	77.9	82.5	87.0	91.8	97.4	
280	KIAS	215	215	215	215	215	215	
	FF/ENG	7880	7860	7870	7930	8090	8440	
	%N1	72.7	75.8	80.5	85.0	89.6	94.8	102.6
260	KIAS	210	210	210	210	210	210	210
	FF/ENG	7340	7310	7300	7330	7450	7700	8290
	%N1	70.2	73.6	78.1	82.7	87.3	92.2	98.6
240	KIAS	204	204	204	204	204	204	204
	FF/ENG	6800	6770	6750	6760	6840	7000	7400
	%N1	67.8	71.1	75.6	80.4	84.9	89.6	95.2
220	KIAS	199	199	199	199	199	199	199
	FF/ENG	6280	6240	6220	6210	6250	6360	6640

This table includes 5% additional fuel for holding in a racetrack pattern.

Performance Inflight -Engine Inoperative

DO NOT USE FOR FLIGHT

767 Flight Crew Operations Manual

767-300/CF6-80C2B6F FAA Category C & D Brake

Intentionally Blank

767 Flight Crew Operations Manual

Performance Inflight -Gear Down Chapter PI Section 14

GEAR DOWN

200 KIAS Max Climb %N1 Based on engine bleed for packs on and anti-ice off

m.m		_			DDEC	CLIDE	TTITL	DE (100	O ET)				
TAT								DE (100					
(°C)	0	5	10	12	14	16	18	20	22	24	26	28	30
55	96.7	97.4	97.0	97.0	96.6	96.7	97.0	97.1	96.1	95.2	96.3	98.2	99.9
50	97.2	98.3	98.1	98.1	97.8	97.9	98.3	98.3	97.3	96.2	96.2	97.5	99.2
45	97.9	98.8	99.1	99.1	98.9	99.0	99.5	99.5	98.5	97.4	97.4	98.1	98.8
40	98.5	99.3	99.9	100.1	99.9	100.2	100.6	100.7	99.6	98.6	98.5	99.3	99.9
35	99.1	100.0	100.4	100.7	100.9	101.2	101.7	101.8	100.7	99.7	99.6	100.4	101.0
30	99.6	100.6	101.1	101.2	101.4	102.1	102.8	102.9	101.8	100.8	100.7	101.4	102.1
25	98.7	101.4	101.7	101.9	102.0	102.6	103.5	103.9	102.9	101.8	101.7	102.5	103.1
20	97.9	101.9	102.5	102.6	102.7	103.3	104.1	104.6	103.7	102.8	102.7	103.4	104.1
15	97.1	101.0	103.5	103.4	103.4	104.0	104.9	105.3	104.5	103.6	103.6	104.4	105.0
10	96.3	100.2	103.6	104.4	104.2	104.8	105.7	106.2	105.3	104.5	104.4	105.2	105.9
5	95.5	99.3	102.7	103.9	104.9	105.6	106.5	107.0	106.2	105.4	105.3	105.9	106.6
0	94.7	98.4	101.8	103.0	104.0	105.6	107.3	107.8	107.2	106.3	106.2	106.7	107.2
-5	93.8	97.5	100.9	102.1	103.0	104.7	106.7	108.3	108.2	107.6	107.1	107.5	108.0
-10	93.0	96.6	100.0	101.2	102.2	103.7	105.8	107.3	108.2	108.5	108.5	108.5	108.5
-15	92.1	95.7	99.1	100.3	101.2	102.8	104.8	106.4	107.3	107.5	107.5	107.5	107.5
-20	91.3	94.8	98.2	99.3	100.3	102.0	103.9	105.5	106.3	106.5	106.5	106.5	106.5
-25	90.4	93.9	97.3	98.4	99.4	101.0	103.0	104.6	105.4	105.4	105.4	105.4	105.4
-30	89.5	93.0	96.4	97.5	98.5	100.0	102.0	103.7	104.4	104.4	104.4	104.4	104.4
-35	88.6	92.0	95.4	96.5	97.5	99.0	101.1	102.7	103.3	103.3	103.3	103.3	103.3
-40	87.7	91.1	94.5	95.6	96.5	98.1	100.1	101.8	102.2	102.2	102.2	102.2	102.2

%N1 Adjustments for Engine Bleeds

BLEED		PRESSURE ALTITUDE (1000 FT)											
CONFIGURATION	1 0	5	10	12	14	16	18	20	22	24	26	28	30
PACKS OFF	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ENGINE ANTI-ICE	ON -0.6	-0.6	-0.6	-0.6	-0.6	-0.6	-0.7	-0.8	-0.8	-0.9	-1.0	-1.0	-1.1
ENGINE & WING ANTI-	ICE ON -0.9	-0.9	-1.0	-1.0	-1.1	-1.1	-1.2	-1.3	-1.3	-1.4	-1.5	-1.5	-1.7

Long Range Cruise Altitude Capability

WEIGHT		PRESSURE ALTITUDE (FT)	
(1000 LB)	ISA + 10°C & BELOW	ISA + 15°C	ISA + 20°C
400	21400	20000	18300
380	23200	21700	20300
360	25100	23500	22100
340	27000	25400	23900
320	28400	27700	26100
300	29900	29800	28700
280	31200	31100	30600
260	32500	32400	32000
240	33900	33800	33500
220	35300	35300	35000

767 Flight Crew Operations Manual

767-300/CF6-80C2B6F FAA Category C & D Brake

GEAR DOWN

Long Range Cruise Control

	EIGHT				PRE	SSURE A						
(100	00 LB)	10	14	18	21	23	25	27	29	31	33	35
	%N1	91.7	95.2	99.2								
420	MACH	.473	.508	.547								
420	KIAS	262	261	260								
	FF/ENG	10536	10639	10900								
	%N1	90.2	93.7	97.6	100.9							
400	MACH	.462	.497	.536	.565							
400	KIAS	256	255	255	254							
	FF/ENG	9983	10059	10267	10508							
	%N1	88.8	92.1	95.8	99.0	101.6						
380	MACH	.452	.486	.523	.553	.574						
500	KIAS	250	249	249	248	247						
	FF/ENG	9452	9498	9633	9835	10042						
	%N1	87.3	90.5	94.1	97.1	99.4	102.3					
360	MACH	.441	.474	.510	.540	.560	.582					
500	KIAS	244	243	242	242	241	241					
	FF/ENG	8927	8935	9028	9201	9336	9566					
	%N1	85.6	88.8	92.4	95.3	97.4	99.8	103.0				
340	MACH	.430	.461	.497	.527	.547	.568	.589				
	KIAS	237	236	236	236	235	234	233				
	FF/ENG	8407	8388	8453	8577	8692	8853	9071				
	%N1	83.9	87.2	90.6	93.3	95.4	97.5	100.2	103.7			
320	MACH	.418	.449	.484	.512	.533	.553	.575	.595			
	KIAS	231	230	229	229	229	228	228	226			
	FF/ENG	7885	7864	7899	7967	8075	8179	8365	8564			
	%N1	82.1	85.4	88.7	91.3	93.2	95.3	97.6	100.5			
300	MACH	.405	.436	.469	.497	.517	.538	.558	.581			
	KIAS	224	223	222	222	222	222	221	220			
	FF/ENG	7380	7347	7344	7395	7455	7562	7668	7863	100.0		
	%N1	80.4 .394	83.4	86.7	89.3	91.1	93.1	95.2	97.6	100.8		
280	MACH		.422	.455	.482	.501	.521	.542	.563	.586		
	KIAS FF/ENG	218 6918	216 6832	215 6817	215 6845	215 6878	214 6945	214 7041	213 7159	213 7348		
	%N1	78.2	81.3	84.7	87.2	89.0	90.8	92.8	95.0	97.5	100.9	
	MACH	.382	.408	.440	.465	.484	.504	.525	.546	.568	.590	
260	KIAS	210	209	208	207	207	207	207	206	206	205	
	FF/ENG	6445	6323	6304	6300	6329	6361	6432	6522	6654	6817	
	%N1	75.8	79.4	82.5	85.0	86.7	88.5	90.4	92.4	94.6	97.3	100.
	MACH	.367	.395	.424	.449	.467	.486	.506	.527	.548	.571	.593
240	KIAS	202	202	200	200	199	199	199	199	198	198	196
	FF/ENG	5948	5864	5796	5785	5785	5813	5843	5914	6005	6136	629
	%N1	73.4	76.8	80.1	82.6	84.3	86.0	87.8	89.7	91.8	94.0	96.8
	MACH	.353	.380	.407	.432	.449	.466	.486	.506	.528	.550	.573
220	KIAS	194	194	192	192	192	191	191	191	191	190	190
	FF/ENG	5476	5399	5295	5280	5272	5272	5296	5325	5397	5486	561

Performance Inflight -Gear Down

767 Flight Crew Operations Manual

GEAR DOWN

Long Range Cruise Enroute Fuel and Time Ground to Air Miles Conversion

	AIR D	ISTANCE	E (NM)		GROUND	AIR DISTANCE (NM)						
HE.	ADWIND	COMPO	NENT (K	TS)	DISTANCE	TA	AILWIND	COMPON	NENT (KT	S)		
100	80	60	40	20	(NM)	20	40	60	80	100		
324	290	260	236	217	200	189	179	170	161	154		
655	584	523	474	435	400	377	356	338	322	308		
989	880	787	713	653	600	566	535	507	483	461		
1327	1180	1053	953	871	800	754	713	676	643	614		
1670	1482	1320	1193	1090	1000	943	891	844	803	766		
2018	1787	1590	1435	1309	1200	1131	1069	1013	962	918		
2371	2096	1862	1678	1529	1400	1319	1246	1180	1121	1069		
2729	2409	2136	1922	1750	1600	1507	1423	1347	1279	1219		
3093	2725	2411	2167	1970	1800	1695	1599	1513	1437	1370		
3462	3044	2688	2412	2191	2000	1882	1775	1679	1594	1519		

Reference Fuel and Time Required at Check Point

				PRESS	URE ALT	TUDE (10	00 FT)			
AIR DIST	1	0	1	4	1	8	2	2	2	8
(NM)	FUEL (1000 LB)	TIME (HR:MIN)								
200	10.4	0:50	9.5	0:48	8.7	0:46	8.0	0:44	7.2	0:42
400	21.5	1:37	19.9	1:33	18.5	1:28	17.3	1:24	16.0	1:18
600	32.4	2:26	30.1	2:18	28.2	2:11	26.5	2:04	24.7	1:55
800	43.1	3:15	40.1	3:05	37.6	2:55	35.4	2:45	33.2	2:32
1000	53.5	4:05	49.9	3:52	46.8	3:39	44.2	3:26	41.4	3:09
1200	63.7	4:56	59.5	4:40	55.9	4:24	52.8	4:09	49.4	3:47
1400	73.7	5:48	68.9	5:29	64.7	5:10	61.1	4:51	57.3	4:26
1600	83.5	6:41	78.1	6:18	73.4	5:56	69.4	5:35	64.9	5:05
1800	93.0	7:35	87.1	7:09	81.9	6:44	77.4	6:19	72.4	5:45
2000	102.4	8:31	95.9	8:00	90.2	7:32	85.3	7:04	79.8	6:26

Fuel Required Adjustment (1000 LB)

REFERENCE FUEL REQUIRED		WEIGHT AT	CHECK POIN	T (1000 LB)	
(1000 LB)	200	250	300	350	400
10	-1.7	-0.8	0.0	1.4	3.0
20	-3.6	-1.8	0.0	2.9	6.2
30	-5.5	-2.7	0.0	4.4	9.3
40	-7.3	-3.6	0.0	5.8	12.3
50	-9.2	-4.6	0.0	7.2	15.2
60	-11.1	-5.5	0.0	8.6	18.1
70	-12.9	-6.5	0.0	9.9	20.8
80	-14.8	-7.4	0.0	11.1	23.4
90	-16.6	-8.4	0.0	12.3	25.9
100	-18.4	-9.3	0.0	13.5	28.4
110	-20.3	-10.3	0.0	14.6	30.7

Descent at VREF30 + 70

PRESSURE ALTITUDE (1000 FT)	5	10	15	17	19	21	23	25	27	29	31	33	35
DISTANCE (NM)	16	26	36	40	44	48	52	56	60	64	67	71	74
TIME (MINUTES)	7	10	12	13	14	15	16	16	17	18	19	19	20

767 Flight Crew Operations Manual

767-300/CF6-80C2B6F FAA Category C & D Brake

GEAR DOWN

Holding Flaps Up

W	EIGHT			PRESSU	JRE ALTITU	DE (FT)		
	000 LB)	1500	5000	10000	15000	20000	25000	30000
	%N1	83.2	86.0	90.2	94.7	100.1		
420	KIAS	249	249	249	249	249		
	FF/ENG	10410	10380	10420	10590	11030		
	%N1	81.5	84.4	88.6	93.0	98.2		
400	KIAS	242	242	242	242	242		
	FF/ENG	9860	9810	9830	9950	10280		
	%N1	79.8	82.9	87.1	91.4	96.4		
380	KIAS	236	236	236	236	236		
	FF/ENG	9360	9300	9290	9370	9620		
	%N1	78.1	81.3	85.4	89.7	94.5	100.5	
360	KIAS	229	229	229	229	229	229	
	FF/ENG	8830	8770	8720	8780	8960	9420	
	%N1	76.2	79.2	83.5	87.8	92.4	98.0	
340	KIAS	221	221	221	221	221	221	
	FF/ENG	8280	8220	8150	8180	8310	8640	
	%N1	74.5	77.4	81.8	86.1	90.5	95.7	104.1
320	KIAS	215	215	215	215	215	215	215
	FF/ENG	7790	7730	7660	7650	7740	7980	8610
	%N1	72.8	75.7	80.2	84.4	88.8	93.8	100.6
300	KIAS	210	210	210	210	210	210	210
	FF/ENG	7360	7300	7220	7190	7250	7430	7890
	%N1	70.9	74.0	78.3	82.6	87.0	91.8	97.7
280	KIAS	205	205	205	205	205	205	205
	FF/ENG	6940	6870	6790	6740	6770	6890	7230
	%N1	69.0	72.2	76.4	80.8	85.2	89.7	95.2
260	KIAS	200	200	200	200	200	200	200
	FF/ENG	6520	6450	6370	6300	6310	6390	6630
	%N1	67.0	70.0	74.4	79.0	83.3	87.7	92.8
240	KIAS	194	194	194	194	194	194	194
	FF/ENG	6110	6040	5950	5880	5860	5910	6070
	%N1	65.1	67.9	72.5	76.8	81.2	85.6	90.4
220	KIAS	189	189	189	189	189	189	189
	FF/ENG	5710	5640	5550	5470	5430	5450	5550

767 Flight Crew Operations Manual

Performance Inflight - Gear Down, Engine Inop

Chapter PI Section 15

MAX CONTINUOUS THRUST

Driftdown Speed/Level Off Altitude 100 ft/min residual rate of climb

WEIGHT	(1000 LB)	OPTIMUM	LEVI	EL OFF ALTITUDE	E (FT)
START DRIFT DOWN	LEVEL OFF	DRIFTDOWN SPEED (KIAS)	ISA + 10°C & BELOW	ISA + 15°C	ISA + 20°C
380	363	233	4900	3100	
360	345	226	7400	5700	3700
340	326	218	9700	8200	6400
320	307	213	11700	10500	8900
300	288	208	13600	12800	11200
280	270	203	15500	15100	13800
260	250	198	17100	17000	16100
240	231	193	19100	19000	18400
220	212	187	21000	20900	20400

Includes APU fuel burn.

Long Range Cruise Altitude Capability 100 ft/min residual rate of climb

WEIGHT		PRESSURE ALTITUDE (FT))
(1000 LB)	ISA + 10°C & BELOW	ISA + 15°C	ISA + 20°C
370	1800		
360	3300		
350	4700	2100	
340	6100	3600	
330	7500	5100	2600
320	8800	6700	4100
310	10100	8200	5700
300	11400	9600	7400
290	12700	11200	9000
280	14000	12800	10600
270	15200	14500	12400
260	16100	15800	14200
250	17100	17000	15800
240	18200	18100	17400
230	19300	19200	18500
220	20300	20200	19700

With engine anti-ice on, decrease altitude capability by 1200 ft.

With engine and wing anti-ice on, decrease altitude capability by 2500 ft.

767 Flight Crew Operations Manual

767-300/CF6-80C2B6F FAA Category C & D Brake

MAX CONTINUOUS THRUST

Long Range Cruise Control

WE	EIGHT			PRES	SURE ALT	ITUDE (100	0 FT)		
(1000 LB)		6	8	10	12	14	16	18	20
	%N1	102.0	104.2						
340	MACH	.393	.404						
340	KIAS	234	231						
	FF/ENG	16362	16453						
	%N1	99.8	101.8	104.2					
320	MACH	.384	.395	.406					
320	KIAS	228	226	224					
	FF/ENG	15297	15345	15441					
	%N1	97.7	99.6	101.6	104.1				
300	MACH	.374	.386	.397	.408				
300	KIAS	222	221	219	217				
	FF/ENG	14271	14281	14327	14419				
	%N1	95.5	97.3	99.2	101.3	103.8			
280	MACH	.364	.375	.387	.398	.409			
200	KIAS	216	215	214	212	209			
	FF/ENG	13262	13254	13268	13307	13398			
	%N1	93.2	94.9	96.7	98.6	100.8	103.4		
260	MACH	.353	.364	.376	.388	.399	.410		
200	KIAS	209	208	207	206	204	202		
	FF/ENG	12280	12250	12244	12256	12287	12388		
	%N1	90.9	92.5	94.2	96.0	97.9	100.1	102.9	
240	MACH	.341	.352	.364	.376	.388	.399	.412	
240	KIAS	202	201	200	199	198	196	194	
	FF/ENG	11318	11274	11245	11241	11247	11277	11435	
	%N1	88.3	90.0	91.6	93.3	95.1	97.0	99.4	102.7
220	MACH	.328	.339	.350	.362	.374	.387	.400	.416
220	KIAS	194	194	193	192	191	190	189	189
	FF/ENG	10333	10314	10276	10249	10244	10247	10337	10638

Performance Inflight -Gear Down, Engine Inop

767 Flight Crew Operations Manual

GEAR DOWN ENGINE INOP

MAX CONTINUOUS THRUST

Long Range Cruise Diversion Fuel and Time Ground to Air Miles Conversion

	AIR DISTANCE (NM)		GROUND		AIR D	ISTANCE	E (NM)			
HE	ADWIND	COMPO	NENT (K	(KTS) DISTANCE		TAILWIND COMPONENT (KTS)				
100	80	60	40	20	(NM)	20	40	60	80	100
165	147	131	119	109	100	93	88	83	78	75
337	298	264	239	218	200	187	175	165	156	148
509	450	399	359	328	300	280	262	246	233	221
683	602	534	480	437	400	374	350	329	310	294
858	756	669	601	547	500	467	437	410	387	367
1034	910	805	723	657	600	560	524	491	463	439
1211	1064	940	844	767	700	653	610	573	540	512
1389	1220	1076	965	877	800	746	697	654	616	584
1569	1377	1214	1088	987	900	839	784	735	693	657
1749	1534	1351	1210	1097	1000	932	871	817	769	729

Reference Fuel and Time Required at Check Point

4.110		PRESSURE ALTITUDE (1000 FT)									
AIR DIST	(5	10		1	4	18				
(NM)	FUEL (1000 LB)	TIME (HR:MIN)	FUEL (1000 LB)	TIME (HR:MIN)	FUEL (1000 LB)	TIME (HR:MIN)	FUEL (1000 LB)	TIME (HR:MIN)			
100	5.3	0:28	4.8	0:27	4.3	0:26	3.9	0:26			
200	11.2	0:53	10.4	0:51	9.8	0:49	9.5	0:48			
300	17.0	1:18	15.9	1:15	15.2	1:12	14.9	1:10			
400	22.7	1:43	21.4	1:39	20.5	1:36	20.3	1:32			
500	28.4	2:09	26.8	2:04	25.8	1:59	25.5	1:55			
600	34.0	2:35	32.1	2:28	30.9	2:23	30.7	2:17			
700	39.5	3:01	37.4	2:53	36.0	2:47	35.7	2:40			
800	44.9	3:27	42.6	3:18	41.0	3:10	40.7	3:03			
900	50.3	3:54	47.7	3:43	45.9	3:34	45.5	3:26			
1000	55.6	4:21	52.7	4:09	50.7	3:59	50.3	3:49			

Fuel Required Adjustment (1000 LB)

REFERENCE FUEL REQUIRED		WEIGHT AT	CHECK POIN	T (1000 LB)	
(1000 LB)	200	250	300	350	400
5	-0.9	-0.5	0.0	0.7	1.5
10	-2.0	-1.0	0.0	1.6	3.2
15	-3.1	-1.5	0.0	2.4	4.9
20	-4.1	-2.0	0.0	3.3	6.6
25	-5.2	-2.5	0.0	4.1	8.3
30	-6.2	-3.1	0.0	5.0	10.1
35	-7.3	-3.6	0.0	5.8	11.8
40	-8.3	-4.1	0.0	6.6	13.5
45	-9.4	-4.6	0.0	7.5	15.1
50	-10.4	-5.2	0.0	8.3	16.8
55	-11.5	-5.7	0.0	9.1	18.5
60	-12.5	-6.2	0.0	10.0	20.2
65	-13.6	-6.8	0.0	10.8	21.9
70	-14.6	-7.3	0.0	11.6	23.5

Includes APU fuel burn.

767 Flight Crew Operations Manual

767-300/CF6-80C2B6F FAA Category C & D Brake

MAX CONTINUOUS THRUST

Holding Flaps Up

W	EIGHT		PRES	SSURE ALTITUDE	(FT)	
(10	000 LB)	1500	5000	10000	15000	20000
	%N1	101.6				
400	KIAS	242				
	FF/ENG	19390				
	%N1	99.7				
380	KIAS	236				
	FF/ENG	18220				
	%N1	97.6	101.3			
360	KIAS	229	229			
	FF/ENG	17050	17320			
	%N1	95.5	98.9			
340	KIAS	221	221			
	FF/ENG	15860	16020			
	%N1	93.5	96.7	102.4		
320	KIAS	215	215	215		
	FF/ENG	14830	14940	15390		
	%N1	91.7	94.8	100.0		
300	KIAS	210	210	210		
	FF/ENG	13920	13990	14290		
	%N1	89.8	92.8	97.7	104.6	
280	KIAS	205	205	205	205	
	FF/ENG	13020	13070	13260	13890	
	%N1	87.8	90.8	95.4	101.3	
260	KIAS	200	200	200	200	
	FF/ENG	12150	12180	12300	12690	
	%N1	85.7	88.6	93.1	98.4	
240	KIAS	194	194	194	194	
	FF/ENG	11280	11290	11360	11600	
	%N1	83.4	86.4	90.8	95.7	102.7
220	KIAS	189	189	189	189	189
	FF/ENG	10450	10440	10480	10630	11170

This table includes 5% additional fuel for holding in a racetrack pattern.

767-300/CF6-80C2B6F FAA Category C & D Brake

DO NOT USE FOR FLIGHT

767 Flight Crew Operations Manual

Performance Inflight Text

Chapter PI Section 16

Introduction

This chapter contains information to supplement performance data from the Flight Management Computer (FMC). In addition, sufficient inflight data is provided to complete a flight with the FMC inoperative. In the event of conflict between data presented in this chapter and that contained in the approved Airplane Flight Manual, the Flight Manual shall always take precedence.

Takeoff Speeds

The speeds presented in the Takeoff Speeds table can be used for all performance conditions except where adjustments must be made to V1 for clearway, stopway, anti-skid inoperative, brakes deactivated, improved climb, contaminated runway situations, brake energy limits, or obstacle clearance with unbalanced V1. These speeds may be used for weights less than or equal to the performance limited weight.

Normal takeoff speeds, V1, VR, and V2, with anti-skid on and all brakes operative, are read from the table by entering with takeoff flap setting, brake release weight and appropriate column. The appropriate column is obtained by entering the Column Reference chart with the airport pressure altitude and the actual temperature or assumed temperature for reduced thrust takeoffs. Slope and wind adjustments to V1 are obtained by entering the V1 Adjustment chart. Adjusted V1 must not exceed VR. These takeoff speeds are not valid when the brake release weight is based on clearway, stopway, improved climb or is limited by tire speed or brake energy.

V1(MCG)

Regulations prohibit scheduling takeoff with a V1 less than minimum V1 for control on the ground, V1(MCG). Therefore compare the adjusted V1 to the V1(MCG). To find V1(MCG) enter the V1(MCG) table with the airport pressure altitude and actual OAT. If the adjusted V1 is less than V1(MCG), set V1 equal to V1(MCG). If VR is less than V1(MCG), set VR equal to V1(MCG), and determine a new V2 by adding the difference between the normal VR and V1(MCG) to the normal V2. No takeoff weight adjustment is necessary provided that the actual field length exceeds the minimum field length.

767 Flight Crew Operations Manual

767-300/CF6-80C2B6F FAA Category C & D Brake

Clearway and Stopway V1 Adjustments

Takeoff speed adjustments are to be applied to V1 speed when using takeoff weights based on the use of clearway and stopway.

Adjust V1 speed by the amount shown in the table. The adjusted V1 speed must not exceed VR.

Maximum allowable clearway limits are provided for guidance when more precise data is not available.

Stab Trim

To find takeoff stabilizer trim setting, enter Stab Trim Setting table with anticipated brake release weight and center of gravity (C.G. % MAC) and read required stabilizer trim units.

VREF

This table contains flaps 30, 25 and 20 reference speeds for a given weight.

Flap Maneuver Speeds

This table provides the flap speed schedule for recommended maneuver speeds. Using VREF as the basis for the schedule makes it variable as a function of weight and will provide adequate maneuver margin above stall at all weights.

During flap retraction/extension, movement of the flap to the next position should be initiated when within 20 knots of the recommended speed for that position.

Slush/Standing Water Takeoff

Experience has shown that aircraft performance may deteriorate significantly on runways covered with snow, slush, standing water or ice. Therefore, reductions in runway/obstacle limited takeoff weight and revised takeoff speeds are necessary. The tables are intended for guidance in accordance with advisory material and assumes an engine failure at the critical point during the takeoff.

The entire runway is assumed to be completely covered by a contaminant of uniform thickness and density. Therefore this information is conservative when operating under typical colder weather conditions where patches of slush exist and some degree of sanding is common. Takeoffs in slush depths greater than 0.5 inches (13 mm) are not recommended because of possible airplane damage as a result of slush impingement on the airplane structure. The use of assumed temperature for reduced thrust is not allowed on contaminated runways. Interpolation for slush/standing water depths between the values shown is permitted.

Performance Inflight -Text

767 Flight Crew Operations Manual

Takeoff weight is determined as follows:

- 1. Determine the field/obstacle limit weight for the takeoff flap setting.
- 2. Enter the Weight Adjustment table with the field/obstacle limit weight to obtain the weight reduction for the slush/standing water depth and airport pressure altitude.
- 3. Adjust field length available for temperature by amount shown on chart.
- 4. Enter the V1(MCG) Limit Weight table with the adjusted field length and pressure altitude to obtain the slush/standing water limit weight with respect to minimum field length required for V1(MCG) speed.

The maximum allowable takeoff weight in slush/standing water is the lesser of the limit weights found in steps 2 and 4.

Takeoff speed determination:

- 1. Determine takeoff speeds V1, VR and V2 for actual brake release weight using the Takeoff Speeds table in this section.
- 2. If V1(MCG) limited, set V1=V1(MCG). If not limited by V1(MCG) considerations, enter the V1 Adjustment table with actual brake release weight to determine the V1 reduction to apply to V1 speed. If the adjusted V1 is less than V1(MCG), set V1=V1(MCG).

Slippery Runway Takeoff

Airplane braking action is reported as good, medium or poor, depending on existing runway conditions. If braking action is reported as good, conditions should not be expected to be as good as on clean, dry runways. The value "good" is comparative and is intended to mean that airplanes should not experience braking or directional control difficulties when stopping. Good reported braking action denotes wet runway conditions or runways covered by compact snow. Similarly, poor braking action denotes runways covered with wet ice. Performance is based on reversers operating and a 15 ft. screen height at the end of the runway. The tables provided are used in the same manner as the Slush/Standing Water tables.

Anti-Skid Inoperative

When operating with anti-skid inoperative, the field limit weight and V1 must be reduced to account for the effect on accelerate-stop performance. A simplified method which conservatively accounts for the effects of anti-

767-300/CF6-80C2B6F FAA Category C & D Brake

767 Flight Crew Operations Manual

skid inoperative is to reduce the normal runway/obstacle limited weight and the V1 associated with the reduced weight by the amount shown in the table below.

AN	ANTI-SKID INOPERATIVE ADJUSTMENT							
FIELD LENGTH (FT)	WEIGHT (1000 LB)	V1 ADJUSTMENT (KTS)						
6000	-102.6	-44						
7000	-102.6	-42						
8000	-102.6	-39						
9000	-83.5	-37						
10000	-59.6	-34						
12000	-50.0	-31						
14000	-50.0	-29						

If the resulting V1 is less than V1(MCG), takeoff is permitted with V1 set equal to V1(MCG) provided the accelerate-stop distance adjusted for wind and slope exceeds approximately 8200 ft.

Detailed analysis for the specific case from the Airplane Flight Manual may yield a less restrictive penalty.

Brakes Deactivated

When operating with brakes deactivated, the field and brake energy limit weights and the V1 and VMBE must be reduced to allow for reduced braking capability. A simplified method which conservatively accounts for the reduced braking capability of one brake deactivated is to reduce the normal runway/obstacle limited weight by 7000 lb and the V1 associated with the reduced weight by the amount shown in the table below.

ONE BRAKE DEACTIVATED SPEED ADJUSTMENT					
FIELD LENGTH (FT)	V1 ADJUSTMENT (KTS)				
4000	-2				
6000	-2				
8000	-2				
10000	-2				
12000	-2				
14000	-2				

If the resulting V1 is less than V1(MCG), takeoff is permitted with V1 set equal to V1(MCG) provided the accelerate-stop distance exceeds approximately 3800 ft for one brake deactivated.

Takeoff %N1

To find Max Takeoff %N1 based on normal engine bleed for air conditioning packs on, enter Takeoff %N1 table with airport pressure altitude and airport OAT and read %N1. %N1 adjustments are shown for packs off operation.

Performance Inflight -Text

767 Flight Crew Operations Manual

Assumed Temperature Reduced Thrust

Regulations permit the use of up to 25% takeoff thrust reduction for operation with assumed temperature reduced thrust. Use of reduced thrust is not allowed on runways contaminated with water, ice, slush or snow. Use of assumed temperature reduced thrust is not recommended if potential windshear conditions exist.

Enter the Minimum Assumed Temperature table with airport pressure altitude and read minimum assumed temperature. If assumed temperature is below this value, use the Takeoff %N1 table to set takeoff thrust. To find assumed temperature reduced thrust, obtain the assumed temperature %N1 by entering the Assumed Temperature Limit %N1 table with actual airport temperature and assumed temperature and apply the altitude adjustment shown in the %N1 Altitude Adjustment table. Check this value by entering the Minimum Assumed Temperature Limit %N1 table with actual airport temperature and pressure altitude. Use the greater of assumed temperature limit %N1 or minimum %N1 as the assumed temperature reduced thrust %N1. If limited by %N1, re-enter the Assumed Temperature Limit %N1 table to estimate the new assumed temperature corresponding to the minimum %N1. Determine takeoff speeds using the actual takeoff weight and assumed temperature.

Max Climb %N1

This table shows Max Climb %N1 for a 250/290/.78 climb speed schedule, normal engine bleed for packs on and anti-ice off. Enter the table with airport pressure altitude and TAT and read %N1. %N1 adjustments are shown for packs off and anti-ice operation.

Go-around %N1

To find Max Go-around %N1 based on normal engine bleed for packs on, enter the Go-around %N1 table with airport pressure altitude and reported OAT or TAT and read %N1. %N1 adjustments are shown for packs off and anti-ice operation.

Flight with Unreliable Airspeed / Turbulent Air Penetration

Pitch attitude and average %N1 information is provided for use in all phases of flight in the event of unreliable airspeed/Mach indications resulting from blocking or freezing of the pitot system. Loss of radome or turbulent air may also cause unreliable airspeed/Mach indications. The cruise table in this section may also be used for turbulent air penetration.

Pitch attitude is shown in bold type for emphasis since altitude and/or vertical speed indications may also be unreliable.

767 Flight Crew Operations Manual

767-300/CF6-80C2B6F FAA Category C & D Brake

All Engines

Long Range Cruise Maximum Operating Altitude

These tables provide the maximum operating altitude in the same manner as the FMC. Maximum altitudes are shown for a given cruise weight and maneuver capability. Note that these tables consider both thrust and buffet limits, providing the more limiting of the two. Any data that is thrust limited is denoted by an asterisk and represents only a thrust limited condition in level flight with maximum cruise thrust at 0 ft/min residual rate of climb or maximum climb thrust at 100 ft/min residual rate of climb. Flying above these altitudes with sustained banks in excess of approximately 12° may cause the airplane to lose speed and/or altitude.

Note that optimum altitudes shown in the tables result in buffet related maneuver margins of 1.5g (48° bank) or more. The altitudes shown in the table are limited to the maximum certified altitude of 43100 ft.

Long Range Cruise Control

These tables provide target %N1, Long Range Cruise Mach number, IAS and standard day fuel flow per engine for the airplane weight and pressure altitude. As indicated by the shaded area, at optimum altitude .80M approximates the Long Range Cruise Mach schedule.

APU Operation During Flight

For APU operation during flight, increase fuel flow according to the table in the Engine Inoperative text section.

Long Range Cruise Enroute Fuel and Time

Long Range Cruise Enroute Fuel and Time tables are provided to determine remaining time and fuel required to destination. The data is based on Long Range Cruise and .78/290/250 descent. Tables are presented for low altitudes and high altitudes.

To determine remaining fuel and time required, first enter the Ground to Air Miles Conversion table to convert ground distance and enroute wind to an equivalent still air distance for use with the Reference Fuel and Time tables. Next, enter the Reference Fuel and Time table with air distance from the Ground to Air Miles Conversion table and the desired altitude and read Reference Fuel and Time Required. Lastly, enter the Fuel Required Adjustment Table with the Reference Fuel and the actual weight at checkpoint to obtain fuel required to destination.

767 Flight Crew Operations Manual

Performance Inflight -Text

Long Range Cruise Wind-Altitude Trade

Wind is a factor which may justify operations considerably below optimum altitude. For example, a favorable wind component may have an effect on ground speed which more than compensates for the loss in air range.

Using this table, it is possible to determine the break-even wind (advantage necessary or disadvantage that can be tolerated) to maintain the same range at another altitude and long range cruise speed. The table makes no allowance for climb or descent time, fuel or distance, and are based on comparing ground fuel mileage.

Descent

Distance and time for descent are shown for a .78/290/250 descent speed schedule. Enter the table with top of descent pressure altitude and read distance in nautical miles and time in minutes. Data is based on flight idle thrust descent in zero wind. Allowances are included for a straight-in approach with gear down and landing flaps at the outer marker.

Holding

Target %N1, indicated airspeed and fuel flow per engine information is tabulated for holding with flaps up based on the FMC optimum holding speed schedule. This is the higher of the maximum endurance speed and the maneuvering speed. Small variations in airspeed will not appreciably affect the overall endurance time. Enter the table with weight and pressure altitude to read %N1, IAS and fuel flow per engine.

Advisory Information

Normal Configuration Landing Distance

Tables are provided as advisory information for normal configuration landing distances on dry runways and slippery runways with good, medium, and poor reported braking action. These values are actual landing distances and do not include the 1.67 regulatory factor. Therefore, they cannot be used to determine the dispatch required landing field length.

To use these tables, determine the reference landing distance for the selected braking configuration. Then adjust the reference distance for landing weight, altitude, wind, slope, temperature, approach speed, and the number of operative thrust reversers to obtain the actual landing distance.

When landing on slippery runways or runways contaminated with ice, snow, slush, or standing water, the reported braking action must be considered. If the surface is affected by water, snow, or ice, and the braking action is reported as "good", conditions should not be expected to

767 Flight Crew Operations Manual

767-300/CF6-80C2B6F FAA Category C & D Brake

be as good as on clean, dry runways. The value "good" is comparative and is intended to mean that airplanes should not experience braking or directional control difficulties when landing. The performance level used to calculate the "good" data is consistent with wet runway testing done on early Boeing jets. The performance level used to calculate "poor" data reflects runways covered with wet ice.

Use of the autobrake system commands the airplane to a constant deceleration rate. In some conditions, such as a runway with "poor" braking action, the airplane may not be able to achieve these deceleration rates. In these cases, runway slope and inoperative reversers influence the stopping distance. Since it cannot be determined quickly when this becomes a factor, it is appropriate to add the effects of slope and inoperative reversers when using the autobrake system.

Non-normal Configuration Landing Distance

Advisory information is provided to support non-normal configurations that affect the landing performance of the airplane. Landing distances and adjustments are provided for dry runways and runways with good, medium, and poor reported braking action.

Enter the table with the applicable non-normal configuration and read the normal approach speed. The reference landing distance is a reference distance from 50 ft above the threshold to stop based on a reference landing weight and speed at sea level, zero wind, and zero slope. Subsequent columns provide adjustments for off-reference landing weight, altitude, wind, slope, temperature, and speed conditions as well as thrust reverser configuration. Each adjustment is independently added to the reference landing distance. Landing distance includes the effects of max manual braking and reverse thrust.

Recommended Brake Cooling Schedule

Advisory information is provided to assist in avoiding the problems associated with hot brakes. For normal operation, most landings are at weights below the AFM quick turnaround limit weight.

Use of the recommended cooling schedule will help avoid brake overheat and fuse plug problems that could result from repeated landing at short time intervals or a rejected takeoff.

Enter the Recommended Brake Cooling Schedule table with the airplane weight, the brakes on speed adjusted for wind and the appropriate temperature and altitude condition. Instructions for applying wind adjustments are included below the table. Linear interpolation may be used

Performance Inflight -Text

PI.16.9

767 Flight Crew Operations Manual

to obtain intermediate values. The resulting number is the reference brake energy per brake in millions of foot-pounds, and represents the amount of energy absorbed by each brake during a rejected takeoff.

To determine the energy per brake absorbed during landing, enter the appropriate Adjusted Brake Energy Per Brake table (No Reverse Thrust or 2 Engine Reverse Thrust) with the reference brake energy per brake and the type of braking used during landing (Max Manual, Max Auto, or Autobrake). The resulting number is the adjusted brake energy per brake and represents the energy absorbed in each brake during the landing.

The recommended cooling time is found in the final table by entering with the adjusted brake energy per brake or brake temperature monitor system (BTMS) indication on EICAS. Times are provided for ground cooling and inflight gear down cooling.

If brake temperature monitor indication on EICAS is available, the hottest brake indication 10 to 15 minutes after the airplane has come to a complete stop, or inflight with gear retracted, may be used to determine the recommended cooling schedule by entering at the bottom of the chart. The brake temperature light illuminates when the hottest brake is registering 5 on the EICAS indication and extinguishes as the hottest brake cools with an EICAS indication of 4.

Engine Inoperative

Initial Max Continuous %N1

The Initial Max Continuous %N1 setting for use following an engine failure is shown. The table is based on the typical all engine cruise speed of .80M to provide a target %N1 setting at the start of driftdown. Once driftdown is established, the Max Continuous %N1 table should be used to determine %N1 for the given conditions.

Max Continuous %N1

Power setting is based on one engine operating with packs on or off and all anti-ice bleeds off. Enter the table with pressure altitude and IAS or Mach to read %N1.

It is desirable to maintain engine thrust level within the limits of the Max Cruise Thrust rating. However, where thrust level in excess of Max Cruise rating is required, such as for meeting terrain clearance, ATC altitude assignments, or to attain maximum range capability, it is permissible to use the thrust needed up to the Max Continuous Thrust rating. The Max

767 Flight Crew Operations Manual

767-300/CF6-80C2B6F FAA Category C & D Brake

Continuous Thrust rating is intended primarily for emergency use at the discretion of the pilot and is the maximum thrust that may be used continuously.

Driftdown Speed/Level Off Altitude

The table shows optimum driftdown speed as a function of cruise weight at start of driftdown. Also shown are the approximate weight and pressure altitude at which the airplane will level off considering 100 ft/min residual rate of climb.

The level off altitude is dependent on air temperature (ISA deviation).

Driftdown/LRC Range Capability

This table shows the range capability from the start of driftdown. Driftdown is continued to level off altitude. As weight decreases due to fuel burn, the airplane is accelerated to Long Range Cruise speed. The cruise segment is at a level off altitude which is based on 100 ft/min residual rate of climb.

To determine fuel required, enter the Ground to Air Miles Conversion table with the desired ground distance and adjust for anticipated winds to obtain air distance to destination. Then enter the Driftdown/Cruise Fuel and Time table with air distance and weight at start of driftdown to determine fuel and time required. If altitudes other than the level off altitude are used, fuel and time required may be obtained by using the Engine Inoperative Long Range Cruise Enroute Fuel and Time table.

Long Range Cruise Altitude Capability

The table shows the maximum altitude that can be maintained at a given weight and air temperature (ISA deviation), based on Long Range Cruise speed, Max Continuous thrust, and 100 ft/min residual rate of climb.

Long Range Cruise Control

The table provides target %N1, engine inoperative Long Range Cruise Mach number, IAS and fuel flow for the airplane weight and pressure altitude. The fuel flow values in this table reflect single engine fuel burn.

Performance Inflight -Text

PI.16.11

767 Flight Crew Operations Manual

APU Operation During Flight

For APU operation during flight, increase fuel flow according to the following table. These increments include the APU fuel flow and the effect of increased drag from the APU door.

PRESSURE		APU FUEL FLOW PENALTY (LB/HR)								
ALTITUDE			GROSS WEIGHT (1000 LB)							
(1000 FT)	420	380	340	300	260	220				
43					135	125				
39				140	135	130				
35		160	155	150	145	140				
31	170	165	165	160	155	150				
27	185	180	175	170	165	155				
25	190	185	180	180	165	160				
20	205	200	195	185	175	170				
15	235	225	215	205	200	195				
10	255	250	240	230	225	215				
5	275	275	260	255	250	245				

Long Range Cruise Diversion Fuel and Time

Tables are provided for crews to determine the fuel and time required to proceed to an alternate airfield with one engine inoperative. The data is based on single engine Long Range Cruise speed and .78/290/250 descent. Enter with Air Distance as determined from the Ground to Air Miles Conversion table and read Fuel and Time required at the cruise pressure altitude. Adjust the fuel obtained for deviation from the reference weight at checkpoint as required by entering the Fuel Required Adjustment table with the fuel required for the reference weight and the actual weight at checkpoint. Read fuel and time required for the actual weight.

Holding

Single engine holding data is provided in the same format as the all engine holding data and is based on the same assumptions.

Gear Down

This section contains performance for airplane operation with the landing gear extended for all phases of flight. The data is based on engine bleeds for normal air conditioning.

NOTE: The Flight Management Computer System (FMCS) does not contain special provisions for operation with landing gear extended. As a result, the FMCS will generate inaccurate enroute speed schedules, display non-conservative predictions of fuel burn, estimated time of arrival (ETA), maximum altitude, and compute overly shallow descent path. To obtain accurate ETA predictions, gear down cruise speed and altitude should be entered on the CLB and CRZ pages. Gear down cruise speed should also

767 Flight Crew Operations Manual

767-300/CF6-80C2B6F FAA Category C & D Brake

be entered on the DES page and a STEP SIZE of zero should be entered on the PERF INIT or CRZ page. Use of the VNAV during descent under these circumstances is not recommended.

Tables for gear down performance in this section are identical in format and used in the same manner as tables for the gear up configuration previously described.

767 Flight Crew Operations Manual

Performance Inflight Chapter PI Table of Contents Section 20

767-300 PW4060 LB FAA CATC CATD

General	PI.20.1
Takeoff Speeds	PI.20.1
V1(MCG)	
Clearway and Stopway V1 Adjustments	PI.20.2
Stab Trim Setting	PI.20.3
VREF (KIAS)	
Flap Maneuver Speeds	PI.20.5
Slush/Standing Water Takeoff	PI.20.6
Takeoff EPR	PI.20.7
Assumed Temperature Reduced Thrust	PI.20.8
Max Climb EPR	PI.20.9
Go-around EPR	PI.20.10
Flight With Unreliable Airspeed /	
Turbulent Air Penetration	PI.20.11
All Engine	PI.21.1
Long Range Cruise Maximum Operating Altitude	PI.21.1
Long Range Cruise Control	PI.21.2
Long Range Cruise Enroute Fuel and Time - Low	
Altitudes	PI.21.3
Long Range Cruise Enroute Fuel and Time - High	
Altitudes	PI.21.4
Long Range Cruise Wind-Altitude Trade	
Descent at .78/290/250	PI.21.5
Holding	PI.21.6
Advisory Information	PI.22.1
Normal Configuration Landing Distance	PI.22.1
Non-Normal Configuration Landing Distance	PI.22.3
Recommended Brake Cooling Schedule	PI.22.11

Performance Inflight -Table of Contents

DO NOT USE FOR FLIGHT

767 Flight Crew Operations Manual

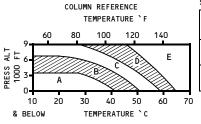
Engine Inoperative	PI.23.1
Initial Max Continuous EPR	PI.23.1
Max Continuous EPR	PI.23.2
Driftdown Speed/Level Off Altitude	PI.23.4
Driftdown/LRC Cruise Range Capability	PI.23.4
Long Range Cruise Altitude Capability	PI.23.5
Long Range Cruise Control	PI.23.6
Long Range Cruise Diversion Fuel and Time	PI.23.7
Holding	PI.23.8
Alternate EEC Mode	PI.24.1
Takeoff Performance	PI.24.1
Takeoff Speeds Adjustment	PI.24.1
Landing Performance	PI.24.1
Takeoff EPR	PI.24.1
Go-around EPR	PI.24.2
Go-around %N1	PI.24.3
Alternate EEC Mode, Engine Inoperative	PI.24.4
Initial Max Continuous %N1	PI.24.4
Max Continuous %N1	PI.24.5
Gear Down	PI.25.1
200 KIAS Max Climb EPR	PI.25.1
Long Range Cruise Altitude Capability	PI.25.2
Long Range Cruise Control	PI.25.3
Long Range Cruise Enroute Fuel and Time	PI.25.4
Descent at VREF30 + 70	PI.25.4
Holding	PI.25.5
Gear Down, Engine Inoperative	PI.26.1
Initial Max Continuous EPR	
Driftdown Speed/Level Off Altitude	PI.26.2
Long Range Cruise Altitude Capability	PI.26.2
Long Range Cruise Control	PI.26.3
Long Range Cruise Diversion Fuel and Time	PI.26.4
Holding	PI.26.5

Performance Inflight -Table of Contents

767 Flight Crew Operations Manual

Text		PI.27.1
Int	troduction	PI.27.1
Ta	keoff Speeds	PI.27.1
Al	l Engines	PI.27.5
Ac	dvisory Information	PI.27.6
En	ngine Inoperative	PI.27.8
Al	ternate EEC Mode	PI.27.10
Al	ternate EEC Mode, Engine Inoperative	PI.27.12
Ge	ear Down	PI.27.12

767 Flight Crew Operations Manual


Intentionally Blank

767 Flight Crew Operations Manual

Performance Inflight -General

Chapter PI Section 20

Takeoff Speeds Max Takeoff Thrust

SLOPE/WIND V1 ADJUSTMENT*

	DI		0PE		UP	TA	T I	W	IND	KT:	S	ш	AD
WEIGHT 1000 LB	-2	-1	0	1	2	-15	-10	-5	0	10	20	30	40
420 380 340	-3 -3 -2	-2 -1 -1	0 0	2 2 2	2 2 3	-2 -2 -3	-1 -1 -2	0 0 -1	0 0	0 0	0 1 1	0 1 1	1 1 1
300 260 220	-2 -1 -1	-1 -1 0	0 0 0	2 1 1	3 3 2	-3 -4 -4	-2 -3 -3	-1 -1 -1	000	0 0 0	1 1	1 1 2	2 2 3

*V1 NOT TO EXCEED VR

S	WT		Α			В			С			D			Е	
FLAP	1000 LB	٧1	V _R	٧2	٧1	V _R	٧2	۷ ₁	V _R	٧2	۷ ₁	V _R	٧2	٧1	v _R	٧2
5	420 400 380 360 340 320 300 280 260 240 220	166 161 156 151 145 139 133 127 121 114 108	171 166 161 156 151 145 140 134 128 121	176 171 167 163 158 153 149 144 138 133 127	169 164 159 154 148 142 136 130 124	172 167 162 157 152 147 141 135 129 123 116	176 172 167 163 158 153 148 143 138 133	161 156 150 145 139 133 126 120 113	164 159 154 148 143 137 131 125 118	168 163 158 153 148 143 133 127	154 148 143 136 130 123 116	155 150 144 139 133 127 120	159 154 148 143 138 133 127	145 139 133 126 119	146 141 135 129 122	149 144 138 133 127
15	420 400 380 360 340 320 300 280 260 240 220	161 156 151 146 140 135 129 124 118	163 159 154 149 144 139 134 128 122 116 110	169 164 160 156 152 147 142 138 133 128 122	159 154 149 143 138 132 126 120	160 155 151 146 141 135 130 124 118 111	165 160 156 152 147 142 138 133 127 122	151 146 140 134 128 122 116 109	152 147 142 137 131 126 120 113	156 152 147 142 137 133 127 122	143 138 132 125 119 112	144 138 133 127 121 115	147 142 137 132 127 122	140 134 128 122 115	140 135 129 123 117	143 138 133 127 122
20	420 400 380 360 340 320 300 280 260 240 220	159 153 148 143 138 132 126 120 114 108 101	160 154 149 144 139 134 129 123 118 112	165 160 155 151 147 142 138 133 128 123 118	150 145 140 134 129 123 117 110	151 145 141 136 130 125 119 114	156 151 146 142 138 133 128 123 118	146 141 136 131 125 119 113 107	147 142 137 132 127 121 115 109	151 147 142 138 133 128 123 118	138 133 128 122 116 109	139 133 128 123 117 111	143 138 133 128 123 118	130 124 119 113	130 124 119 113	133 128 123 118

CHECK V1(MCG) IN BOXED AREA

767 Flight Crew Operations Manual

767-300/PW4060 Category C & D Brake

V1(MCG) Max Takeoff Thrust

ACTU/	AL OAT			PRESSU	JRE ALTITU	DE (FT)		
°F	°C	-1000	0	2000	4000	6000	8000	9000
131	55	99	97	93				
122	50	103	100	96	93			
113	45	106	103	99	95	92		
104	40	109	106	102	98	94	90	89
95	35	110	109	104	100	96	92	90
86	30	111	110	106	102	98	94	92
77	25	111	110	106	103	99	95	93
68	20	111	110	106	103	100	96	94
59	15	111	110	106	103	100	96	95
-58	-50	111	111	107	104	100	97	95

Maximum Allowable Clearway

FIELD	MAX ALLOWABLE
LENGTH	CLEARWAY FOR V1
(FT)	REDUCTION (FT)
4000	350
6000	450
8000	550
10000	650
12000	750
14000	800

Clearway and Stopway V1 Adjustments

CLEARWAY MINUS		NORMAL V1 (KIAS)	
STOPWAY (FT)	120	140	160
800	-5	-3	-2
600	-3	-2	-2
400	-2	-1	-1
200	-1	-1	-1
0	0	0	0
-200	1	1	1
-400	2	1	1
-600	3	2	2
-800	5	3	2

767 Flight Crew Operations Manual

Stab Trim Setting Max Takeoff Thrust

WEIGHT				C.G. %MAC			
(1000 LB)	12	16	20	24	28	32	36
420	7	6 1/2	5 1/2	4 1/2	4	3	2
400	7	6	5 1/2	4 1/2	3 1/2	3	1 1/2
380	7	6	5	4 1/2	3 1/2	2 1/2	1 1/2
360	6 1/2	6	5	4	3 1/2	2 1/2	1 1/2
340	6	5 1/2	4 1/2	3 1/2	3	2	1
320	5 1/2	5	4	3 1/2	2 1/2	1 1/2	1/2
300	5	4 1/2	3 1/2	3	2	1 1/2	1/2
280	4 1/2	4	3	2 1/2	1 1/2	1	1/2
260	4	3 1/2	2 1/2	2	1	1/2	1/2
240	3 1/2	3	2	1 1/2	1	1/2	1/2
220	3 1/2	2 1/2	2	1	1/2	1/2	1/2

767 Flight Crew Operations Manual

767-300/PW4060 FAA Category C & D Brake

VREF (KIAS)

WEIGHT		FLAPS	
(1000 LB)	30	25	20
420	179	171	179
400	172	166	174
380	166	162	169
360	159	158	164
340	151	153	159
320	145	149	154
300	140	144	149
280	135	139	144
260	130	134	139
240	124	129	134
220	119	123	128

767 Flight Crew Operations Manual

Flap Maneuver Speeds

FLAP POSITION	MANEUVER SPEED
UP	VREF30 + 80
1	VREF30 + 60
5	VREF30 + 40
15	VREF30 + 20
20	VREF30 + 20
25	VREF25
30	VREF30

767 Flight Crew Operations Manual

767-300/PW4060 FAA Category C & D Brake

ALL ENGINES

ADVISORY INFORMATION

Slush/Standing Water Takeoff Weight Adjustment (1000 LB)

		SLU	JSH/STANDIN	G WATER DEI	PTH		
FIELD/OBSTACLE LIMIT WEIGHT	0.2	5 INCHES (6 n	nm)	0.50 INCHES (13 mm)			
(1000 LB)	P	RESS ALT (FT	.)	P	RESS ALT (FT	[]	
(**** ==)	S.L.	4000	8000	S.L.	4000	8000	
420	0.0	-4.8	-9.6	-10.3	-15.1	-19.9	
400	0.0	-4.8	-9.6	-11.2	-16.0	-20.8	
380	-0.9	-5.7	-10.5	-11.3	-16.1	-20.9	
360	-1.7	-6.5	-11.3	-10.8	-15.6	-20.4	
340	-2.0	-6.8	-11.6	-9.8	-14.6	-19.4	
320	-1.8	-6.6	-11.4	-8.3	-13.1	-17.9	
300	-1.3	-6.1	-10.9	-6.6	-11.4	-16.2	
280	-0.5	-5.3	-10.1	-4.7	-9.5	-14.3	
260	0.0	-4.8	-9.6	-2.8	-7.6	-12.4	
240	0.0	-4.8	-9.6	-1.1	-5.9	-10.7	
220	0.0	-4.8	-9.6	0.0	-4.8	-9.6	

Interpolate as required using dry runway as zero slush/standing water depth.

767 Flight Crew Operations Manual

Takeoff EPR

Max Takeoff Thrust

Based on engine bleed for packs on and anti-ice on or off

AIRPO	RT OAT		AIR	PORT PRESSUI	RE ALTITUDE	(FT)	
°F	°C	-1000	0	2000	4000	6000	8000
158	70	1.24	1.23	1.25	1.25	1.25	1.25
149	65	1.29	1.28	1.27	1.27	1.27	1.27
140	60	1.34	1.33	1.33	1.32	1.32	1.32
131	55	1.39	1.38	1.38	1.37	1.37	1.37
122	50	1.43	1.42	1.42	1.42	1.42	1.42
113	45	1.46	1.46	1.46	1.46	1.46	1.46
104	40	1.51	1.51	1.51	1.51	1.50	1.51
95	35	1.53	1.55	1.55	1.54	1.54	1.54
86	30	1.53	1.56	1.58	1.58	1.58	1.58
77	25	1.53	1.56	1.58	1.60	1.60	1.60
68	20	1.53	1.56	1.58	1.60	1.61	1.62
59	15	1.53	1.56	1.58	1.60	1.61	1.64
50 & BELOW	10 & BELOW	1.53	1.56	1.58	1.60	1.61	1.64

EPR Adjustments for Engine Bleeds

BLEED CONFIGURATION	AIRPORT PRESSURE ALTITUDE (FT)								
	-1000	0	2000	4000	4500	4501	6000	8000	
PACKS OFF	0.01	0.01	0.01	0.01	0.01	0.02	0.02	0.02	

767 Flight Crew Operations Manual

767-300/PW4060 FAA Category C & D Brake

Assumed Temperature Reduced Thrust Based on 25% thrust reduction

MINIMUM ALLOWABLE	EPR FOR REDUCED THRUST
MAX TAKEOFF EPR FOR	MIN TAKEOFF EPR
ACTUAL OAT	ALLOWED
1.75	1.44
1.70	1.42
1.65	1.40
1.60	1.38
1.55	1.35
1.50	1.33
1.45	1.30
1.40	1.27
1.35	1.24
1.31	1.21
1.25	1.21

767 Flight Crew Operations Manual

Max Climb EPR Based on engine bleed for packs on and anti-ice off

TAT		PR	ESSURE A	LTITUDE (1000 FT)/S	PEED (KIA	S OR MAC	CH)	
TAT (°C)	0	5	10	15	20	25	30	35	40
(C)	250	250	250	290	290	290	290	.78	.78
60	1.24	1.25	1.25	1.21	1.20	1.18	1.14	1.08	1.05
50	1.28	1.29	1.29	1.26	1.24	1.23	1.21	1.15	1.11
40	1.32	1.34	1.34	1.31	1.30	1.29	1.27	1.21	1.18
30	1.33	1.40	1.40	1.38	1.37	1.36	1.35	1.29	1.25
20	1.33	1.40	1.46	1.46	1.45	1.44	1.43	1.37	1.34
10	1.33	1.40	1.46	1.47	1.53	1.53	1.53	1.47	1.44
0	1.33	1.40	1.46	1.47	1.53	1.57	1.63	1.57	1.54
-10	1.33	1.40	1.46	1.47	1.53	1.57	1.64	1.67	1.63
-20 & BELOW	1.33	1.40	1.46	1.47	1.53	1.57	1.64	1.68	1.66

EPR Adjustments for Engine Bleeds

BLEED	PRESSURE ALTITUDE (1000 FT)								
CONFIGURATION	0	5	10	15	20	25	30	35	40
PACKS OFF	0.01	0.01	0.01	0.01	0.01	0.01	0.02	0.02	0.03
ENGINE ANTI-ICE ON	-0.01	-0.02	-0.02	-0.03	-0.03	-0.03	-0.04	-0.04	-0.05
ENGINE & WING ANTI-ICE ON	-0.02	-0.03	-0.04	-0.05	-0.05	-0.05	-0.07	-0.07	-0.08

767 Flight Crew Operations Manual

767-300/PW4060 FAA Category C & D Brake

Go-around EPR

Based on engine bleed for packs on, engine anti-ice on or off and wing anti-ice off

	REPORTED TAT			AIRPORT PRESSURE ALTITUDE (FT)							
°F	°C	(°C)	-1000	0	2000	4000	6000	8000			
131	55	58	1.38	1.38	1.37	1.37	1.36	1.37			
122	50	53	1.42	1.42	1.42	1.42	1.41	1.42			
113	45	48	1.46	1.46	1.47	1.46	1.46	1.46			
104	40	43	1.51	1.51	1.51	1.51	1.51	1.51			
95	35	38	1.54	1.56	1.55	1.55	1.55	1.55			
86	30	33	1.54	1.57	1.59	1.59	1.59	1.59			
77	25	28	1.54	1.57	1.60	1.62	1.61	1.62			
68	20	23	1.54	1.57	1.60	1.62	1.63	1.64			
59	15	18	1.54	1.57	1.60	1.62	1.63	1.66			
50 & BELOW	10 & BELOW	13 & BELOW	1.54	1.57	1.60	1.62	1.63	1.66			

EPR Adjustments for Engine Bleeds

BLEED	AIRPORT PRESSURE ALTITUDE (FT)								
CONFIGURATION	-1000	0	2000	4000	4500	4501	6000	8000	
PACKS OFF	0.01	0.01	0.01	0.01	0.01	0.02	0.02	0.02	
WING ANTI-ICE ON	-0.01	-0.01	-0.01	-0.01	-0.01	-0.02	-0.02	-0.02	

Performance Inflight -General

767 Flight Crew Operations Manual

Flight With Unreliable Airspeed / Turbulent Air Penetration Altitude and/or vertical speed indications may also be unreliable. Climb (290/.78)

Flaps Up, Set Max Climb Thrust

PRES	SURE		W	EIGHT (1000 L	B)	
ALTITU	DE (FT)	220	260	300	350	400
40000	PITCH ATT	4.0	4.0	3.5		
	V/S (FT/MIN)	1500	1000	300		
30000	PITCH ATT	4.0	4.0	3.5	3.5	4.0
	V/S (FT/MIN)	2600	2100	1700	1200	900
20000	PITCH ATT	6.5	6.0	6.0	5.5	5.5
20000	V/S (FT/MIN)	4000	3100	2700	2100	1700
10000	PITCH ATT	10.0	9.0	8.0	7.5	7.5
10000	V/S (FT/MIN)	5300	4400	3700	3000	2500
SEA LEVEL	PITCH ATT	12.5	11.0	10.0	9.5	9.0
	V/S (FT/MIN)	6000	5000	4300	3500	3000

Cruise (.78/290)

Flaps Up, EPR for Level Flight

PRES	PRESSURE		WEIGHT (1000 LB)							
ALTITUDE (FT)		220	260	300	350	400				
40000	PITCH ATT	2.0	2.5	3.5	4.0					
40000	EPR	1.22	1.33	1.53	1.87					
35000	PITCH ATT	1.5	1.5	2.5	3.0	3.5				
33000	EPR	1.13	1.17	1.24	1.37	1.59				
20000	PITCH ATT	1.0	1.0	1.5	2.0	2.5				
30000	EPR	1.08	1.11	1.14	1.20	1.26				

Descent (.78/290)

Flaps Up, Set Idle Thrust

1 1/									
PRES	SURE		WEIGHT (1000 LB)						
ALTITU	JDE (FT)	220	260	300	350	400			
40000	PITCH ATT	-1.0	0.0	0.0	0.5				
40000	V/S (FT/MIN)	-2200	-2200	-2400	-2900				
30000	PITCH ATT	-2.5	-1.5	-1.5	-0.5	0.0			
30000	V/S (FT/MIN)	-2500	-2300	-2100	-2000	-2000			
20000	PITCH ATT	-2.5	-1.5	-1.0	0.0	0.5			
20000	V/S (FT/MIN)	-2300	-2100	-1900	-1800	-1800			
10000	PITCH ATT	-2.5	-2.0	-1.0	0.0	0.5			
10000	V/S (FT/MIN)	-2100	-1900	-1700	-1600	-1600			

Holding (VREF30 + 80)

Flaps Up, EPR for Level Flight

PRESSURE ALTITUDE (FT)		WEIGHT (1000 LB)						
		220	260	300	350	400		
10000	PITCH ATT	4.5	5.0	5.0	5.5	5.5		
10000	EPR	1.02	1.03	1.05	1.06	1.07		

767 Flight Crew Operations Manual

767-300/PW4060 FAA Category C & D Brake

Flight With Unreliable Airspeed / Turbulent Air Penetration Altitude and/or vertical speed indications may also be unreliable.

Terminal Area (5000 FT)

Gear Up, EPR for Level Flight

FLAP PC	OSITION		W	EIGHT (1000 L	B)	
(VREF + IN	CREMENT)	220	260	300	350	400
FLAPS UP	PITCH ATT	4.5	5.0	5.0	5.5	5.5
(VREF30 + 80)	EPR	1.01	1.01	1.03	1.04	1.05
FLAPS 1	PITCH ATT	6.0	6.5	7.0	7.0	7.0
(VREF30 + 60)	EPR	1.03	1.04	1.05	1.07	1.08
FLAPS 5	PITCH ATT	4.5	5.0	5.0	5.0	5.0
(VREF30 + 40)	EPR	1.05	1.07	1.08	1.10	1.11
FLAPS 15	PITCH ATT	6.0	6.0	6.5	6.0	5.5
(VREF30 + 20)	EPR	1.07	1.08	1.10	1.12	1.14
FLAPS 20	PITCH ATT	4.5	4.5	4.5	4.5	4.0
(VREF30 + 20)	EPR	1.07	1.09	1.11	1.13	1.16

Final Approach (1500 FT)

Gear Down, EPR for 3° Glideslope

FLAP PC	OSITION		WEIGHT (1000 LB)							
(VREF + IN	CREMENT)	220	260	300	350	400				
FLAPS 25	PITCH ATT	0.5	1.0	1.0	1.0	1.0				
(VREF25 + 10)	EPR	1.05	1.06	1.07	1.08	1.10				
FLAPS 30	PITCH ATT	1.0	1.0	1.0	0.5	-0.5				
(VREF30 + 10)	EPR	1.06	1.08	1.09	1.11	1.13				

767 Flight Crew Operations Manual

Performance Inflight - All Engine

Chapter PI Section 21

Long Range Cruise Maximum Operating Altitude ISA + 10°C and Below

WEIGHT	OPTIMUM	TAT	MAR	GIN TO INIT	AL BUFFET '	G' (BANK AN	GLE)
(1000 LB)	ALT (FT)	(°C)	1.20 (33°)	1.25 (36°)	1.30 (39°)	1.40 (44°)	1.50 (48°)
420	29000	-1	34000*	33600	32600	30900	29400
400	30000	-4	35000*	34600	33700	31900	30400
380	31200	-6	36000*	35700	34800	33000	31500
360	32300	-9	37000*	36800	35900	34200	32700
340	33600	-12	38200*	38000	37100	35400	33900
320	34800	-15	39400*	39300	38300	36600	35200
300	36200	-17	40700*	40600	39700	38000	36600
280	37600	-17	42000*	42000	41100	39400	38000
260	39200	-17	43100	43100	42700	41000	39500
240	40800	-17	43100	43100	43100	42600	41200
220	42600	-17	43100	43100	43100	43100	43000

ISA + 15°C

WEIGHT	OPTIMUM	TAT	MAR	GIN TO INIT	AL BUFFET '	G' (BANK AN	GLE)
(1000 LB)	ALT (FT)	(°C)	1.20 (33°)	1.25 (36°)	1.30 (39°)	1.40 (44°)	1.50 (48°)
420	29000	4	33900*	33600	32600	30900	29400
400	30000	2	34900*	34600	33700	31900	30400
380	31200	-1	35900*	35700	34800	33000	31500
360	32300	-3	37000*	36800	35900	34200	32700
340	33600	-6	38200*	38000	37100	35400	33900
320	34800	-9	39400*	39300	38300	36600	35200
300	36200	-12	40600*	40600	39700	38000	36600
280	37600	-12	42000*	42000	41100	39400	38000
260	39200	-12	43100	43100	42700	41000	39500
240	40800	-12	43100	43100	43100	42600	41200
220	42600	-12	43100	43100	43100	43100	43000

^{*}Denotes altitude thrust limited in level flight.

ISA + 20°C

WEIGHT	OPTIMUM	TAT	MAR	GIN TO INITI	AL BUFFET '	G' (BANK AN	GLE)
(1000 LB)	ALT (FT)	(°C)	1.20 (33°)	1.25 (36°)	1.30 (39°)	1.40 (44°)	1.50 (48°)
420	29000	10	33400*	33400*	32600	30900	29400
400	30000	7	34400*	34400*	33700	31900	30400
380	31200	5	35400*	35400*	34800	33000	31500
360	32300	2	36500*	36500*	35900	34200	32700
340	33600	0	37600*	37600*	37100	35400	33900
320	34800	-3	38800*	38800*	38300	36600	35200
300	36200	-6	40100*	40100*	39700	38000	36600
280	37600	-6	41400*	41400*	41100	39400	38000
260	39200	-6	42900*	42900*	42700	41000	39500
240	40800	-6	43100	43100	43100	42600	41200
220	42600	-6	43100	43100	43100	43100	43000

^{*}Denotes altitude thrust limited in level flight.

767 Flight Crew Operations Manual

767-300/PW4060 FAA Category C & D Brake

Long Range Cruise Control

	EIGHT							DE (1000				
(100	00 LB)	23	25	27	29	31	33	35	37	39	41	43
	EPR	1.12	1.15	1.19	1.25	1.33	1.46					
420	MACH	.777	.791	.797	.802	.802	.796					
420	KIAS	341	333	323	311	298	283					
	FF/ENG	7307	7199	7072	6990	7023	7252					
	EPR	1.11	1.14	1.17	1.22	1.29	1.39	1.56				
400	MACH	.766	.783	.795	.800	.802	.799	.791				
400	KIAS	336	330	322	310	298	284	269				
	FF/ENG	6986	6913	6794	6676	6635	6750	7197				
	EPR	1.09	1.12	1.15	1.19	1.24	1.33	1.46				
380	MACH	.755	.774	.789	.797	.801	.802	.796				
300	KIAS	330	326	319	309	298	285	271				
	FF/ENG	6676	6613	6508	6390	6305	6325	6519				
	EPR	1.08	1.10	1.13	1.17	1.21	1.28	1.38	1.54			
360	MACH	.742	.762	.780	.793	.799	.802	.800	.792			
200	KIAS	324	320	315	308	297	285	272	257			
	FF/ENG	6361	6301	6222	6118	5996	5956	6030	6429			
	EPR	1.07	1.09	1.11	1.15	1.19	1.24	1.32	1.44			
340	MACH	.727	.749	.769	.786	.796	.801	.802	.797			
	KIAS	317	315	310	305	296	285	273	259			
	FF/ENG	6026	5990	5916	5834	5726	5635	5629	5809	4.50		
	EPR	1.06	1.08	1.10	1.13	1.16	1.20	1.26	1.36	1.50		
320	MACH	.711	.734	.755	.775	.790	.798	.802	.801	.794		
	KIAS	310	308	304	300	293	284	273	260	246		
	FF/ENG	5675	5665	5610	5539	5453	5338	5286	5347	5653		
	EPR	1.04	1.06	1.08	1.11	1.14	1.18	1.22	1.29	1.41		
300	MACH KIAS	.693 302	.717 300	.740 298	.761 294	.780 289	.793 282	.799 272	.802 260	.799 248		
			5322	5297								
	FF/ENG EPR	5326 1.03	1.05	1.07	5232 1.09	5168 1.12	5075 1.15	4975 1.19	4972 1.24	5119	1.45	
	MACH	.675	.698	.722	.745	.766	.784	.796	.801	.802	.798	
280	KIAS	293	292	290	287	283	278	270	260	249	236	
	FF/ENG	4997	4975	4958	4930	4863	4799	4705	4658	4709	4878	
	EPR	1.03	1.04	1.05	1.07	1.10	1.12	1.16	1.20	1.26	1.35	1.49
	MACH	.654	.678	.702	.726	.749	.770	.787	.797	.801	.802	.796
260	KIAS	284	283	281	279	277	273	267	259	248	237	225
	FF/ENG	4687	4650	4612	4600	4564	4503	4438	4377	4375	4428	4622
	EPR	1.02	1.03	1.04	1.06	1.08	1.10	1.13	1.17	1.21	1.28	1.38
	MACH	.632	.656	.680	.704	.729	.752	.773	.790	.797	.802	.801
240	KIAS	274	273	272	270	269	266	262	256	247	237	226
	FF/ENG	4405	4341	4301	4254	4247	4206	4149	4111	4085	4073	4132
	EPR	1.01	1.02	1.03	1.04	1.06	1.08	1.11	1.14	1.18	1.22	1.29
	MACH	.609	.632	.656	.681	.706	.731	.754	.775	.791	.798	.802
220	KIAS	263	262	262	261	259	258	255	251	245	236	226
	FF/ENG	4118	4060	4002	3957	3918	3889	3854	3825	3818	3777	3760

Shaded area approximates optimum altitude.

767 Flight Crew Operations Manual

Long Range Cruise Enroute Fuel and Time - Low Altitudes Ground to Air Miles Conversion

	AIR D	ISTANCE	E (NM)		GROUND		AIR D	ISTANCE	E (NM)	
HE	ADWIND	COMPO	NENT (K	TS)	DISTANCE	TA	ILWIND	COMPON	NENT (KT	TS)
100	80	60	40	20	(NM)	20	40	60	80	100
282	261	242	226	213	200	191	182	174	167	161
564	522	485	453	425	400	382	366	351	337	324
848	784	728	680	638	600	574	550	527	506	487
1133	1048	972	908	851	800	765	732	702	675	650
1420	1312	1216	1135	1064	1000	957	916	879	844	813
1708	1578	1462	1363	1277	1200	1148	1099	1054	1013	976
1998	1844	1708	1592	1491	1400	1339	1282	1229	1181	1138
2290	2112	1954	1820	1704	1600	1530	1465	1405	1350	1300
2583	2381	2202	2050	1918	1800	1721	1648	1580	1518	1462
2878	2652	2451	2280	2132	2000	1912	1830	1755	1686	1624

Reference Fuel And Time Required at Check Point

A ID				PRESS	URE ALT	ITUDE (10	00 FT)			
AIR DIST	1	0	14		2	0	24		28	
(NM)	FUEL (1000 LB)	TIME (HR:MIN)								
200	6.0	0:39	5.3	0:38	4.2	0:36	3.8	0:35	3.4	0:35
400	12.6	1:14	11.4	1:10	9.5	1:06	8.7	1:04	8.1	1:02
600	19.1	1:50	17.6	1:44	14.8	1:36	13.6	1:32	12.7	1:29
800	25.5	2:25	23.6	2:17	20.0	2:07	18.5	2:01	17.3	1:56
1000	31.9	3:02	29.6	2:51	25.2	2:37	23.3	2:30	21.9	2:24
1200	38.1	3:39	35.5	3:25	30.4	3:08	28.1	2:59	26.4	2:51
1400	44.3	4:16	41.4	3:59	35.5	3:39	32.8	3:28	30.9	3:19
1600	50.4	4:54	47.2	4:34	40.6	4:11	37.5	3:58	35.3	3:47
1800	56.5	5:32	52.9	5:09	45.6	4:42	42.2	4:27	39.7	4:15
2000	62.4	6:10	58.6	5:45	50.6	5:14	46.8	4:57	44.0	4:43

Fuel Required Adjustment (1000 LB)

REFERENCE FUEL REQUIRED		WEIGHT AT	CHECK POIN	T (1000 LB)	
(1000 LB)	200	250	300	350	400
5	-0.5	-0.3	0.0	0.3	0.7
10	-1.4	-0.8	0.0	0.8	1.6
15	-2.3	-1.3	0.0	1.2	2.6
20	-3.2	-1.7	0.0	1.7	3.6
25	-4.0	-2.2	0.0	2.2	4.6
30	-4.9	-2.6	0.0	2.7	5.6
35	-5.7	-3.1	0.0	3.2	6.5
40	-6.6	-3.5	0.0	3.7	7.5
45	-7.4	-4.0	0.0	4.2	8.5
50	-8.2	-4.4	0.0	4.7	9.5
55	-9.0	-4.8	0.0	5.2	10.4
60	-9.8	-5.2	0.0	5.7	11.4
65	-10.6	-5.7	0.0	6.2	12.4

767 Flight Crew Operations Manual

767-300/PW4060 FAA Category C & D Brake

Long Range Cruise Enroute Fuel and Time - High Altitudes Ground to Air Miles Conversion

	AIR D	ISTANCE	(NM)		GROUND		AIR D	ISTANCE	E (NM)	
HE.	ADWIND	COMPO	NENT (K	TS)	DISTANCE	TA	AILWIND	COMPO	NENT (KT	TS)
100	80	60	40	20	(NM)	20	40	60	80	100
1299	1226	1160	1101	1048	1000	958	919	882	849	818
1946	1838	1740	1652	1573	1500	1437	1379	1324	1275	1229
2597	2452	2320	2203	2097	2000	1917	1839	1767	1700	1639
3251	3069	2903	2755	2622	2500	2395	2298	2208	2125	2050
3907	3688	3487	3309	3148	3000	2875	2758	2650	2551	2460
4568	4309	4073	3863	3674	3500	3354	3217	3091	2975	2869
5232	4932	4660	4417	4200	4000	3833	3677	3532	3399	3278
5900	5559	5249	4974	4727	4500	4312	4136	3973	3823	3686
6572	6189	5840	5532	5254	5000	4790	4594	4413	4246	4094
7249	6822	6434	6090	5782	5500	5268	5052	4852	4668	4500
7931	7459	7029	6650	6311	6000	5746	5510	5291	5090	4906

Reference Fuel And Time Required at Check Point

A ID				PRESS	SURE ALT	ITUDE (10	00 FT)			
AIR DIST	2	.9	31		3	33		5	37	
(NM)	FUEL	TIME	FUEL	TIME	FUEL	TIME	FUEL	TIME	FUEL	TIME
,	(1000 LB)	(HR:MIN)	(1000 LB)	(HR:MIN)	(1000 LB)	(HR:MIN)	(1000 LB)	(HR:MIN)	(1000 LB)	(HR:MIN)
1000	21.5	2:22	20.8	2:20	20.2	2:19	19.7	2:19	19.5	2:19
1500	32.5	3:31	31.5	3:27	30.6	3:25	29.9	3:24	29.5	3:24
2000	43.4	4:40	42.0	4:35	40.8	4:31	39.8	4:30	39.3	4:29
2500	53.9	5:51	52.3	5:44	50.8	5:39	49.5	5:36	48.8	5:35
3000	64.2	7:02	62.3	6:53	60.6	6:47	59.0	6:43	58.1	6:41
3500	74.2	8:15	72.1	8:04	70.1	7:56	68.3	7:50	67.2	7:47
4000	84.1	9:29	81.7	9:16	79.4	9:05	77.4	8:59	76.1	8:54
4500	93.8	10:45	91.1	10:29	88.5	10:16	86.3	10:08	84.7	10:01
5000	103.4	12:02	100.3	11:44	97.5	11:28	94.9	11:18	93.2	11:09
5500	112.7	13:21	109.3	12:59	106.3	12:42	103.5	12:29	101.4	12:18
6000	121.9	14:41	118.2	14:17	114.9	13:56	111.8	13:41	109.5	13:28

Fuel Required Adjustment (1000 LB)

		***********	arrearr non	TTT (4000 T T)	
REFERENCE FUEL REQUIRED		WEIGHT AT	CHECK POIN	T (1000 LB)	
(1000 LB)	200	250	300	350	400
10	-1.9	-1.1	0.0	2.2	7.7
20	-3.4	-2.0	0.0	3.9	11.7
30	-5.0	-2.8	0.0	5.4	15.5
40	-6.7	-3.7	0.0	6.8	18.9
50	-8.4	-4.6	0.0	8.2	22.1
60	-10.1	-5.4	0.0	9.5	25.0
70	-11.9	-6.3	0.0	10.7	27.7
80	-13.8	-7.1	0.0	11.8	30.0
90	-15.7	-8.0	0.0	12.9	32.1
100	-17.6	-8.8	0.0	13.8	33.9
110	-19.7	-9.6	0.0	14.7	35.4
120	-21.7	-10.4	0.0	15.5	36.6
130	-23.8	-11.2	0.0	16.2	37.6

Performance Inflight -All Engine

767 Flight Crew Operations Manual

Long Range Cruise Wind-Altitude Trade

PRESSURE					(CRUISI	E WEIG	ъНТ (1	000 LB)				
ALTITUDE (1000 FT)	420	400	380	360	340	320	300	290	280	270	260	250	240	230
43											30	18	10	4
41									23	14	7	3	0	0
39							16	9	4	1	0	0	2	5
37					24	10	2	0	0	1	3	7	11	16
35				14	5	0	1	2	5	9	13	18	24	30
33		16	7	1	0	2	7	11	15	20	26	32	39	46
31	8	2	0	1	4	10	19	24	29	35	41	47	54	61
29	0	0	3	7	14	22	32	38	44	50	56	62	69	76
27	2	6	11	18	27	36	47	53	58	64	71	77	83	90
25	10	16	23	32	41	51	62	67	73	79	85	91	97	103

The above wind factor table is for calculation of wind required to maintain present range capability at new pressure altitude, i.e., break-even wind.

Mathad:

- 1. Read wind factors for present and new altitudes from table.
- 2. Determine difference (new altitude wind factor minus present altitude wind factor); This difference may be negative or positive.
- 3. Break-even wind at new altitude is present altitude wind plus difference from step 2.

Descent at .78/290/250

PRESSURE ALT (1000 FT)	5	10	15	17	19	21	23	25	27	29	31	33	35	37	39	41	43
DISTANCE (NM)	21	38	58	64	70	77	83	90	96	103	110	115	120	126	131	137	143
TIME (MINUTES)	8	11	15	16	17	18	19	20	21	22	23	23	24	25	26	26	27

767 Flight Crew Operations Manual

767-300/PW4060 FAA Category C & D Brake

Holding Flaps Up

W	EIGHT				PRESSU	RE ALTIT	UDE (FT)			
(10	000 LB)	1500	5000	10000	15000	20000	25000	30000	35000	40000
	EPR	1.03	1.04	1.06	1.09	1.13	1.20	1.30		
420	KIAS	259	259	259	259	262	264	267		
	FF/ENG	6770	6740	6690	6580	6410	6510	6690		
	EPR	1.03	1.04	1.05	1.08	1.12	1.18	1.27		
400	KIAS	252	252	252	253	255	257	260		
	FF/ENG	6450	6410	6370	6270	6090	6150	6300		
	EPR	1.03	1.04	1.05	1.07	1.11	1.17	1.25	1.45	
380	KIAS	246	246	246	247	248	250	253	263	
	FF/ENG	6140	6080	6040	5960	5790	5810	5940	6600	
	EPR	1.02	1.03	1.05	1.07	1.10	1.15	1.23	1.38	
360	KIAS	239	239	239	240	241	243	246	249	
	FF/ENG	5840	5760	5710	5650	5490	5470	5580	5890	
	EPR	1.02	1.03	1.04	1.06	1.09	1.14	1.20	1.33	
340	KIAS	231	231	232	233	234	236	239	241	
	FF/ENG	5540	5450	5400	5340	5180	5150	5230	5410	
	EPR	1.02	1.03	1.04	1.05	1.08	1.12	1.19	1.29	
320	KIAS	225	225	225	226	227	229	231	234	
	FF/ENG	5240	5150	5090	5030	4880	4840	4880	5010	
	EPR	1.01	1.02	1.03	1.05	1.07	1.11	1.17	1.25	1.47
300	KIAS	220	220	220	220	220	221	223	226	236
	FF/ENG	4950	4850	4800	4730	4580	4550	4550	4660	5360
	EPR	1.01	1.02	1.03	1.04	1.06	1.09	1.15	1.22	1.38
280	KIAS	215	215	215	215	215	215	215	217	220
	FF/ENG	4670	4570	4510	4440	4290	4280	4240	4310	4630
	EPR	1.01	1.01	1.02	1.03	1.05	1.08	1.12	1.20	1.31
260	KIAS	210	210	210	210	210	210	210	210	212
	FF/ENG	4380	4280	4230	4150	4000	4020	3980	3970	4180
	EPR	1.01	1.01	1.02	1.03	1.04	1.06	1.10	1.17	1.27
240	KIAS	204	204	204	204	204	204	204	204	204
	FF/ENG	4100	4010	3960	3870	3720	3740	3700	3680	3810
	EPR	1.00	1.01	1.01	1.02	1.03	1.05	1.08	1.14	1.22
220	KIAS	199	199	199	199	199	199	199	199	199
	FF/ENG	3830	3740	3700	3600	3450	3460	3420	3390	3510

This table includes 5% additional fuel for holding in a racetrack pattern.

767 Flight Crew Operations Manual

Performance Inflight - Advisory Information

Chapter PI Section 22

ADVISORY INFORMATION

Normal Configuration Landing Distance Flaps 25 Dry Runway

			L	ANDING	DISTA	NCE A	AND AD	JUSTI	MENT	(FT)			
		REF DIST	WT ADJ	ALT ADJ		O ADJ 0 KTS	SLOPE PER			P ADJ 10°C	APP SPD ADJ	REVE THR AI	UST
	BRAKING CONFIGURATION	340000 LB LANDING WEIGHT	PER 10000 LB ABV/ BLW 340000 LB			TAIL WIND	DOWN HILL	UP HILL			PER 10 KTS ABOVE VREF25	REV	
	MAX MANUAL	3280	110/-70	80	-130	440	50	-40	80	-80	250	70	140
1	MAX AUTO	5490	130/-130	150	-250	840	0	0	160	-160	600	0	0
1	AUTOBRAKE 4	5670	140/-140	160	-260	880	0	0	160	-160	630	0	0
1	AUTOBRAKE 3	6520	160/-160	190	-300	1040	0	0	190	-190	740	0	0
1	AUTOBRAKE 2	7330	190/-190	220	-350	1190	30	-110	230	-210	660	60	60
1	AUTOBRAKE 1	8040	220/-220	260	-400	1370	170	-220	270	-230	580	430	520

Good Reported Braking Action

MAX MANUAL	4550	110/-100	130	-210	740	130	-110	130	-120	350	230	520
MAX AUTO	5500	130/-130	150	-250	860	20	-10	160	-160	600	20	80
AUTOBRAKE 4	5670	140/-140	160	-260	880	10	0	160	-160	630	10	50
AUTOBRAKE 3	6520	160/-160	190	-300	1040	0	0	190	-190	740	0	0

Medium Reported Braking Action

MAX MANUAL	6300	170/-160	200	-330	1220	310	-240	210	-180	450	640	1540
MAX AUTO	6300	170/-160	200	-330	1220	300	-170	210	-180	570	610	1510
AUTOBRAKE 4	6340	170/-160	200	-340	1220	270	-150	210	-190	620	550	1450
AUTOBRAKE 3	6880	180/-180	210	-360	1280	170	-90	220	-210	740	350	1080

Poor Reported Braking Action

MAX MANUAL	8220	240/-230	280	-500	1910	720	-460	310	-250	520	1400	3700
MAX AUTO	8220	240/-230	280	-500	1910	720	-460	310	-250	510	1400	3710
AUTOBRAKE 4	8220	240/-230	280	-500	1910	720	-460	310	-250	510	1400	3710
AUTOBRAKE 3	8230	240/-230	280	-500	1920	690	-370	300	-260	680	1340	3640

Reference distance assumes sea level, standard day, no wind or slope, VREF25 approach speed and 2 engine reverse thrust.

Reference distance for manual braking is applicable for auto spoilers only, for manual spoilers operation increase landing distance by 400 ft.

Reference distance for auto braking is applicable for auto or manual spoilers.

Includes distance from 50 ft above threshold (1000 ft of air distance).

Actual (unfactored) distances are shown.

767 Flight Crew Operations Manual

767-300/PW4060 Category C & D Brake

ADVISORY INFORMATION

Normal Configuration Landing Distance Flaps 30 Dry Runway

	· ·												
			L	ANDING	DISTA	NCE A	AND AD	JUST	MENT	(FT)			
		REF DIST	WT ADJ	ALT ADJ		O ADJ 0 KTS	SLOPE PER			P ADJ 10°C	APP SPD ADJ	REVE THR AI	UST
	BRAKING CONFIGURATION	340000 LB LANDING WEIGHT	PER 10000 LB ABV/ BLW 340000 LB	AROVE		TAIL WIND	DOWN HILL	UP HILL	ABO VE ISA	OW	PER 10 KTS ABOVE VREF30	REV	NO REV
	MAX MANUAL	3250	140/-70	80	-130	440	50	-50	80	-80	260	60	130
	MAX AUTO	5380	210/-140	150	-240	830	0	0	150	-150	600	0	0
	AUTOBRAKE 4	5550	220/-140	150	-250	870	0	0	160	-160	620	0	0
	AUTOBRAKE 3	6380	260/-170	180	-300	1020	0	0	190	-190	730	0	0
1	AUTOBRAKE 2	7200	280/-200	210	-350	1180	10	-100	220	-210	670	30	30
1	AUTOBRAKE 1	7920	300/-220	250	-400	1360	160	-210	260	-230	580	350	440

Good Reported Braking Action

MAX MANUAL	4520	160/-110	120	-210	740	130	-110	130	-120	350	220	480
MAX AUTO	5390	210/-140	150	-250	850	20	-10	150	-150	600	20	80
AUTOBRAKE 4	5560	220/-140	160	-250	870	10	0	160	-160	620	10	50
AUTOBRAKE 3	6380	260/-170	180	-300	1020	0	0	190	-190	730	0	0

Medium Reported Braking Action

	_		_										
j	MAX MANUAL	6260	230/-170	200	-330	1220	320	-250	210	-180	450	600	1430
	MAX AUTO	6260	250/-170	190	-330	1220	310	-190	210	-180	550	600	1420
	AUTOBRAKE 4	6270	250/-170	200	-330	1220	290	-160	200	-190	600	550	1380
	AUTOBRAKE 3	6760	280/-190	210	-350	1280	180	-100	210	-200	730	360	1030

Poor Reported Braking Action

MAX MANUAI	8180	310/-240	280	-500	1920	730	-470	300	-250	520	1320	3420
MAX AUTO	8180	310/-240	280	-500	1910	730	-470	300	-250	520	1320	3430
AUTOBRAKE 4	8180	310/-240	280	-500	1910	730	-470	300	-250	520	1320	3430
AUTOBRAKE 3	8180	330/-240	280	-500	1920	720	-380	300	-260	670	1290	3390

Reference distance assumes sea level, standard day, no wind or slope, VREF30 approach speed and 2 engine reverse thrust.

Reference distance for manual braking is applicable for auto spoilers only, for manual spoilers operation increase landing distance by 400 ft.

Reference distance for auto braking is applicable for both auto and manual spoilers.

Includes distance from 50 ft above threshold (1000 ft of air distance).

Actual (unfactored) distances are shown.

Performance Inflight -Advisory Information

767 Flight Crew Operations Manual

ADVISORY INFORMATION

Non-Normal Configuration Landing Distance Dry Runway

			LANDIN	G DIST	ANCES A	ND ADJU	JSTMENT	S (FT)		
	,	REF DIST	WT ADJ	ALT ADJ	WIND ADJ	SLOPE ADJ	TEMP ADJ	APP SPD ADJ		ERSE .UST DJ
LANDING CONFIGURATION	VREF	340000 LB LDG WT	PER 10000 LB ABV/BLW 340000 LB	PER 1000 FT ABV S.L.	PER 10 KTS HEAD/ TAIL WIND	PER 1% DOWN/ UP HILL	PER 10°C ABV/ BLW ISA	PER 10 KTS ABV VREF	ONE REV	
AIR/GRD SYS (FLAPS 25)	VREF25	4260	80/-90	110	-170/560	80/-70	100/-100	420	0	0
AIR/GRD SYS (FLAPS 30)	VREF30	4230	150/-90	110	-170/570	90/-80	100/-100	440	0	0
ALL FLAPS AND SLATS UP LANDING	VREF30+50	4780	240/-100	130	-170/570	80/-70	130/-130	330	180	390
ANTI-SKID OFF (FLAPS 25)	VREF25	6150	140/-140	170	-300/1040	200/-170	170/-160	450	380	870
ANTI-SKID OFF (FLAPS 30)	VREF30	6060	210/-140	160	-290/1030	200/-170	170/-160	450	350	800
ENGINE FAILURE (FLAPS 20)	VREF20	3550	130/-70	90	-140/470	60/-50	90/-90	280	0	90
HYD SYS PRESS (C ONLY) (FLAPS 20)	VREF20	4260	100/-90	100	-160/540	70/-60	110/-100	390	120	260
HYD SYS PRESS (L ONLY) (FLAPS 25)	VREF25	3530	80/-70	90	-140/480	60/-60	90/-80	300	0	90
HYD SYS PRESS (L ONLY) (FLAPS 30)	VREF30	3510	120/-70	90	-140/480	60/-60	90/-80	310	0	80
HYD SYS PRESS (R ONLY) (FLAPS 25)	VREF25	3910	80/-80	100	-160/560	80/-70	100/-100	340	0	130
HYD SYS PRESS (R ONLY) (FLAPS 30)	VREF30	3890	130/-80	100	-160/560	80/-80	100/-100	350	0	130
HYD SYS PRESS (L AND C) (FLAPS 20)	VREF30+20	5310	180/-110	140	-190/640	120/-110	140/-140	570	0	250
HYD SYS PRESS (L AND R) (FLAPS 20)	VREF30+20	5280	180/-110	140	-210/700	150/-130	150/-140	520	0	0
HYD SYS PRESS (R AND C) (FLAPS 20)	VREF30+20	6470	230/-140	180	-250/850	210/-180	190/-180	670	0	510

^{*}Reference distance assumes sea level, standard day with no wind or slope.

Actual (unfactored) distances are shown.

Includes distance from 50 ft above runway threshold (1000 ft of air distance).

767 Flight Crew Operations Manual

767-300/PW4060 FAA Category C & D Brake

ADVISORY INFORMATION

Non-Normal Configuration Landing Distance Dry Runway

Diy Kunway										
		LANDING DISTANCES AND ADJUSTMENTS (FT)								
		REF DIST	WT ADJ	ALT ADJ	WIND ADJ	SLOPE ADJ	TEMP ADJ	APP SPD ADJ	REVERSE THRUST ADJ	
LANDING CONFIGURATION	VREF	340000 LB LDG WT	PER 10000 LB ABV/BLW 340000 LB	ABV	PER 10 KTS HEAD/ TAIL WIND	PER 1% DOWN/ UP HILL	PER 10°C ABV/ BLW ISA	PER 10 KTS ABV VREF	ONE REV	
LE SLAT ASYM (FLAPS > 20)	VREF30+20	3820	160/-80	100	-140/490	60/-50	100/-90	280	100	220
LE SLAT ASYM (FLAPS = 20)	VREF30+30	4300	150/-90	110	-160/520	70/-60	120/-110	310	140	290
LE SLAT ASYM (5 < FLAPS < 20)	VREF30+40	4610	160/-90	120	-160/540	80/-70	130/-120	320	160	340
LE SLAT DISAGREE (FLAPS > 20)	VREF20	3490	130/-70	80	-130/460	50/-50	90/-80	270	80	180
LE SLAT DISAGREE - ALTN FLAP EXT ACOMPLISHED (FLAPS = 20)	VREF20	3490	130/-70	80	-130/460	50/-50	90/-80	270	80	180
LE SLAT DISAGREE - ALTN FLAP EXT FAILED (FLAPS = 20)	VREF30+30	4090	170/-80	100	-150/500	60/-60	110/-100	280	120	250
REVERSER UNLOCKED (FLAPS 20)	VREF30+30	4410	160/-90	110	-160/540	80/-70	120/-110	330	0	150
TE FLAP ASYM (FLAPS ≥ 20)	VREF20	3490	130/-70	80	-130/460	50/-50	90/-80	270	80	180
TE FLAP ASYM (5 < FLAPS < 20)	VREF30+20	3820	160/-80	100	-140/490	60/-50	100/-90	280	100	220
TE FLAP ASYM (FLAPS ≤ 5)	VREF30+30	4040	200/-80	100	-150/500	60/-60	110/-100	270	110	250
TE FLAP DISAGREE (FLAPS \geq 20)	VREF20	3490	130/-70	80	-130/460	50/-50	90/-80	270	80	180
TE FLAP DISAGREE (5 < FLAPS < 20)	VREF30+20	3820	160/-80	100	-140/490	60/-50	100/-90	280	100	220
TE FLAP DISAGREE (FLAPS ≤ 5)	VREF30+30	4040	200/-80	100	-150/500	60/-60	110/-100	270	110	250

^{*}Reference distance assumes sea level, standard day with no wind or slope.

Actual (unfactored) distances are shown.

Includes distance from 50 ft above runway threshold (1000 ft of air distance).

Performance Inflight -Advisory Information

767 Flight Crew Operations Manual

ADVISORY INFORMATION

Non-Normal Configuration Landing Distance Good Reported Braking Action

		LANDING DISTANCES AND ADJUSTMENTS (FT)								
		REF DIST	WT ADJ	ALT ADJ	WIND ADJ	SLOPE ADJ	TEMP ADJ	APP REVERSE SPD THRUST ADJ ADJ		UST
LANDING CONFIGURATION	VREF	340000 LB LDG WT	PER 10000 LB ABV/BLW 340000 LB	PER 1000 FT ABV S.L.	PER 10 KTS HEAD/ TAIL WIND	PER 1% DOWN/ UP HILL	PER 10°C ABV/ BLW ISA	PER 10 KTS ABV VREF		NO REV
AIR/GRD SYS (FLAPS 25)	VREF25	6270	140/-140	180	-290/990	260/-220	170/-170	620	0	0
AIR/GRD SYS (FLAPS 30)	VREF30	6210	230/-140	180	-290/990	270/-220	170/-170	630	0	0
ALL FLAPS AND SLATS UP LANDING	VREF30+50	6500	200/-140	200	-260/870	170/-150	210/-180	380	490	1120
ANTI-SKID OFF (FLAPS 25)	VREF25	6960	170/-170	200	-360/1280	300/-240	210/-190	490	590	1410
ANTI-SKID OFF (FLAPS 30)	VREF30	6860	240/-170	200	-360/1280	310/-240	200/-180	490	550	1290
ENGINE FAILURE (FLAPS 20)	VREF20	5140	140/-120	140	-230/810	160/-140	150/-140	410	0	360
HYD SYS PRESS (C ONLY) (FLAPS 20)	VREF20	5820	160/-140	170	-250/860	180/-150	170/-150	510	400	920
HYD SYS PRESS (L ONLY) (FLAPS 25)	VREF25	5060	120/-120	140	-240/820	170/-140	140/-140	430	0	330
HYD SYS PRESS (L ONLY) (FLAPS 30)	VREF30	5030	180/-120	140	-240/820	170/-150	140/-140	440	0	310
HYD SYS PRESS (R ONLY) (FLAPS 25)	VREF25	5060	120/-120	140	-240/820	170/-140	140/-140	430	0	330
HYD SYS PRESS (R ONLY) (FLAPS 30)	VREF30	5030	180/-120	140	-240/820	170/-150	140/-140	440	0	310
HYD SYS PRESS (L AND C) (FLAPS 20)	VREF30+20	7530	280/-170	220	-310/1050	310/-260	230/-210	750	0	850
HYD SYS PRESS (L AND R) (FLAPS 20)	VREF30+20	7210	250/-160	210	-310/1050	330/-270	210/-210	690	0	0
HYD SYS PRESS (R AND C) (FLAPS 20)	VREF30+20	7530	280/-170	220	-310/1050	310/-260	230/-210	750	0	850

^{*}Reference distance assumes sea level, standard day with no wind or slope.

Actual (unfactored) distances are shown.

Includes distance from 50 ft above runway threshold (1000 ft of air distance).

767 Flight Crew Operations Manual

767-300/PW4060 FAA Category C & D Brake

ADVISORY INFORMATION

Non-Normal Configuration Landing Distance Good Reported Braking Action

LANDING DISTANCES AND ADJUSTMENTS (ET)										
		LANDING DISTANCES AND ADJUSTMENTS (FT)								
	_	REF DIST	WT ADJ	ALT ADJ	WIND ADJ	SLOPE ADJ	TEMP ADJ	APP SPD ADJ	REVERSE THRUST ADJ	
LANDING CONFIGURATION	VREF	340000 LB LDG WT	PER 10000 LB ABV/BLW 340000 LB	ABV	PER 10 KTS HEAD/ TAIL WIND	PER 1% DOWN/ UP HILL	PER 10°C ABV/ BLW ISA	PER 10 KTS ABV VREF		NO REV
LE SLAT ASYM (FLAPS > 20)	VREF30+20	5370	180/-120	160	-230/800	150/-130	160/-150	380	340	770
LE SLAT ASYM (FLAPS = 20)	VREF30+30	6040	200/-140	180	-250/860	180/-150	190/-170	430	430	990
LE SLAT ASYM (5 < FLAPS < 20)	VREF30+40	6470	210/-140	200	-260/890	190/-160	210/-180	430	480	1100
LE SLAT DISAGREE (FLAPS > 20)	VREF20	4910	130/-110	140	-220/770	140/-120	140/-130	380	290	670
LE SLAT DISAGREE - ALTN FLAP EXT ACOMPLISHED (FLAPS = 20)	VREF20	4910	130/-110	140	-220/770	140/-120	140/-130	380	290	670
LE SLAT DISAGREE - ALTN FLAP EXT FAILED (FLAPS = 20)	VREF30+30	5760	180/-130	170	-240/830	160/-140	180/-160	390	380	860
REVERSER UNLOCKED (FLAPS 20)	VREF30+30	6400	210/-150	190	-270/910	210/-180	200/-180	470	0	540
TE FLAP ASYM (FLAPS ≥ 20)	VREF20	4910	130/-110	140	-220/770	140/-120	140/-130	380	290	670
TE FLAP ASYM (5 < FLAPS < 20)	VREF30+20	5390	180/-120	160	-230/800	150/-130	160/-150	380	350	790
TE FLAP ASYM (FLAPS \leq 5)	VREF30+30	5730	180/-130	170	-240/820	150/-140	180/-160	380	390	890
TE FLAP DISAGREE (FLAPS ≥ 20)	VREF20	4910	130/-110	140	-220/770	140/-120	140/-130	380	290	670
TE FLAP DISAGREE (5 < FLAPS < 20)	VREF30+20	5390	180/-120	160	-230/800	150/-130	160/-150	380	350	790
TE FLAP DISAGREE (FLAPS ≤ 5)	VREF30+30	5730	180/-130	170	-240/820	150/-140	180/-160	380	390	890

^{*}Reference distance assumes sea level, standard day with no wind or slope.

Actual (unfactored) distances are shown.

Includes distance from 50 ft above runway threshold (1000 ft of air distance).

Performance Inflight -Advisory Information

767 Flight Crew Operations Manual

ADVISORY INFORMATION

Non-Normal Configuration Landing Distance Medium Reported Braking Action

		LANDING DISTANCES AND ADJUSTMENTS (FT)											
		REF DIST	WT ADJ	ALT ADJ	WIND ADJ	SLOPE ADJ	TEMP ADJ	APP SPD ADJ	REVI THR Al				
LANDING CONFIGURATION	VREF	340000 LB LDG WT	PER 10000 LB ABV/ BLW 340000 LB	PER 1000 FT ABV S.L.	PER 10 KTS HEAD/ TAIL WIND	PER 1% DOWN/ UP HILL	PER 10°C ABV/ BLW ISA	PER 10 KTS ABV VREF	ONE REV	NO REV			
AIR/GRD SYS (FLAPS 25)	VREF25	9830	220/-210	330	-530/1860	920/-630	290/-300	850	0	0			
AIR/GRD SYS (FLAPS 30)	VREF30	9660	340/-220	330	-530/1850	910/-620	290/-290	860	0	0			
ALL FLAPS AND SLATS UP LANDING	VREF30+50	9300	310/-230	320	-410/1450	430/-350	340/-280	520	1370	3500			
ANTI-SKID OFF (FLAPS 25)	VREF25	8860	240/-230	280	-530/1980	720/-470	290/-260	560	1310	3460			
ANTI-SKID OFF (FLAPS 30)	VREF30	8750	320/-230	280	-530/1980	730/-480	290/-260	570	1230	3170			
ENGINE FAILURE (FLAPS 20)	VREF20	7540	220/-200	240	-390/1390	450/-350	250/-220	570	0	1150			
HYD SYS PRESS (C ONLY) (FLAPS 20)	VREF20	7910	240/-210	260	-390/1390	420/-330	270/-230	630	1060	2730			
HYD SYS PRESS (L ONLY) (FLAPS 25)	VREF25	7350	190/-180	230	-400/1410	470/-350	240/-210	560	0	1030			
HYD SYS PRESS (L ONLY) (FLAPS 30)	VREF30	7280	270/-190	230	-400/1410	470/-360	230/-210	570	0	950			
HYD SYS PRESS (R ONLY) (FLAPS 25)	VREF25	7350	190/-180	230	-400/1410	470/-350	240/-210	560	0	1030			
HYD SYS PRESS (R ONLY) (FLAPS 30)	VREF30	7280	270/-190	230	-400/1410	470/-360	230/-210	570	0	950			
HYD SYS PRESS (L AND C) (FLAPS 20)	VREF30+20	10730	400/-270	350	-510/1750	790/-580	370/-320	920	0	2440			
HYD SYS PRESS (L AND R) (FLAPS 20)	VREF30+20	11520	400/-260	350	-570/1950	1090/-760	360/-350	960	0	0			
HYD SYS PRESS (R AND C) (FLAPS 20)	VREF30+20	10730	400/-270	350	-510/1750	790/-580	370/-320	920	0	2440			

^{*}Reference distance assumes sea level, standard day with no wind or slope.

Actual (unfactored) distances are shown.

Includes distance from 50 ft above runway threshold (1000 ft of air distance).

Assumes max manual braking and maximum reverse thrust when available on operating engine(s).

767 Flight Crew Operations Manual

767-300/PW4060 FAA Category C & D Brake

ADVISORY INFORMATION

Non-Normal Configuration Landing Distance Medium Reported Braking Action

	1	8	T AND D	I DIOT	ANIGEG A	UD A DII	IOTEL CENT	ac (mm)		-
			LANDIN	G DIST	ANCES A	ND ADJU	ISTMENT			
		REF DIST	WT ADJ	ALT ADJ	WIND ADJ	SLOPE ADJ	TEMP ADJ	APP SPD ADJ		ERSE UST DJ
LANDING CONFIGURATION	VREF	340000 LB LDG WT	PER 10000 LB ABV/BLW 340000 LB	ABV	PER 10 KTS HEAD/ TAIL WIND	PER 1% DOWN/ UP HILL	PER 10°C ABV/ BLW ISA	PER 10 KTS ABV VREF	ONE REV	
LE SLAT ASYM (FLAPS > 20)	VREF30+20	7480	270/-190	250	-370/1320	370/-290	260/-220	490	920	2270
LE SLAT ASYM (FLAPS = 20)	VREF30+30	8340	290/-210	280	-400/1390	410/-330	300/-250	530	1110	2770
LE SLAT ASYM (5 < FLAPS < 20)	VREF30+40	8920	300/-220	310	-410/1430	430/-350	320/-270	540	1280	3250
LE SLAT DISAGREE (FLAPS > 20)	VREF20	6870	200/-180	220	-360/1270	350/-280	230/-200	490	830	2040
LE SLAT DISAGREE - ALTN FLAP EXT ACOMPLISHED (FLAPS = 20)	VREF20	6870	200/-180	220	-360/1270	350/-280	230/-200	490	830	2040
LE SLAT DISAGREE - ALTN FLAP EXT FAILED (FLAPS = 20)	VREF30+30	7970	270/-200	260	-380/1360	380/-310	280/-240	490	1000	2460
REVERSER UNLOCKED (FLAPS 20)	VREF30+30	9270	320/-230	300	-440/1530	550/-430	320/-280	620	0	1580
TE FLAP ASYM (FLAPS ≥ 20)	VREF20	6870	200/-180	220	-360/1270	350/-280	230/-200	490	830	2040
TE FLAP ASYM (5 < FLAPS < 20)	VREF30+20	7540	270/-190	250	-370/1320	370/-290	260/-220	490	950	2370
TE FLAP ASYM (FLAPS \leq 5)	VREF30+30	8030	280/-200	270	-380/1360	380/-310	280/-240	490	1050	2640
TE FLAP DISAGREE (FLAPS \geq 20)	VREF20	6870	200/-180	220	-360/1270	350/-280	230/-200	490	830	2040
TE FLAP DISAGREE (5 < FLAPS < 20)	VREF30+20	7540	270/-190	250	-370/1320	370/-290	260/-220	490	950	2370
TE FLAP DISAGREE (FLAPS ≤ 5)	VREF30+30	8030	280/-200	270	-380/1360	380/-310	280/-240	490	1050	2640

^{*}Reference distance assumes sea level, standard day with no wind or slope.

Actual (unfactored) distances are shown.

Includes distance from 50 ft above runway threshold (1000 ft of air distance).

Assumes max manual braking and maximum reverse thrust when available on operating engine(s).

Performance Inflight -Advisory Information

767 Flight Crew Operations Manual

ADVISORY INFORMATION

Non-Normal Configuration Landing Distance Poor Reported Braking Action

		LANDING DISTANCES AND ADJUSTMENTS (FT) REF WT ALT WIND SLOPE TEMP APP REVERSE									
		REF DIST	WT ADJ	ALT ADJ	WIND ADJ	SLOPE ADJ	TEMP ADJ	APP SPD ADJ	THE	ERSE LUST DJ	
LANDING CONFIGURATION	VREF	340000 LB LDG WT	PER 10000 LB ABV/BLW 340000 LB	ABV	PER 10 KTS HEAD/ TAIL WIND	PER 1% DOWN/ UP HILL	PER 10°C ABV/ BLW ISA	PER 10 KTS ABV VREF		NO REV	
AIR/GRD SYS (FLAPS 25)	VREF25	15630	310/-270	640	-1010/3750	4210/-1740	490/-490	1060	0	0	
AIR/GRD SYS (FLAPS 30)	VREF30	15230	460/-270	620	-990/3710	4120/-1700	480/-480	1050	0	0	
ALL FLAPS AND SLATS UP LANDING	VREF30+50	12380	440/-330	470	-620/2260	990/-680	500/-390	640	2960	8700	
ANTI-SKID OFF (FLAPS 25)	VREF25	11990	350/-340	420	-890/3770	4840/-1110	430/-410	630	3680	14100	
ANTI-SKID OFF (FLAPS 30)	VREF30	11880	440/-340	410	-890/3770	4800/-1120	420/-410	630	3500	13210	
ENGINE FAILURE (FLAPS 20)	VREF20	10460	330/-290	360	-620/2270	1170/-740	370/-330	700	0	2870	
HYD SYS PRESS (C ONLY) (FLAPS 20)	VREF20	10190	330/-290	370	-580/2140	950/-620	380/-310	720	2220	6470	
HYD SYS PRESS (L ONLY) (FLAPS 25)	VREF25	10200	280/-270	340	-640/2380	1280/-760	360/-310	670	0	2580	
HYD SYS PRESS (L ONLY) (FLAPS 30)	VREF30	10090	370/-270	340	-640/2380	1290/-760	350/-310	670	0	2360	
HYD SYS PRESS (R ONLY) (FLAPS 25)	VREF25	10200	280/-270	340	-640/2380	1280/-760	360/-310	670	0	2580	
HYD SYS PRESS (R ONLY) (FLAPS 30)	VREF30	10090	370/-270	340	-640/2380	1290/-760	350/-310	670	0	2360	
HYD SYS PRESS (L AND C) (FLAPS 20)	VREF30+20	14580	550/-390	520	-800/2860	1980/-1170	550/-450	1040	0	5800	
HYD SYS PRESS (L AND R) (FLAPS 20)	VREF30+20	17950	570/-390	550	-1020/3640	3920/-1910	580/-540	1190	0	0	
HYD SYS PRESS (R AND C) (FLAPS 20)	VREF30+20	14580	550/-390	520	-800/2860	1980/-1170	550/-450	1040	0	5800	

^{*}Reference distance assumes sea level, standard day with no wind or slope.

Actual (unfactored) distances are shown.

Includes distance from 50 ft above runway threshold (1000 ft of air distance).

Assumes max manual braking and maximum reverse thrust when available on operating engine(s).

767 Flight Crew Operations Manual

767-300/PW4060 FAA Category C & D Brake

ADVISORY INFORMATION

Non-Normal Configuration Landing Distance Poor Reported Braking Action

			LANDI	NG DIS	TANCES A	AND ADJU	JSTMENT	S (FT)		
		REF DIST	WT ADJ	ALT ADJ	WIND ADJ	SLOPE ADJ	TEMP ADJ	APP SPD ADJ	THR	ERSE UST DJ
LANDING CONFIGURATION	VREF	340000 LB LDG WT	PER 10000 LB ABV/BLW 340000 LB	PER 1000 FT ABV S.L.	PER 10 KTS HEAD/ TAIL WIND	PER 1% DOWN/ UP HILL	PER 10°C ABV/ BLW ISA	PER 10 KTS ABV VREF		
LE SLAT ASYM (FLAPS > 20)	VREF30+20	9770	360/-270	350	-550/2060	850/-560	370/-310	570	1940	5350
LE SLAT ASYM (FLAPS = 20)	VREF30+30	10790	390/-290	400	-580/2150	920/-620	420/-340	610	2250	6270
LE SLAT ASYM (5 < FLAPS < 20)	VREF30+40	11640	420/-320	440	-610/2210	970/-650	460/-370	630	2640	7610
LE SLAT DISAGREE (FLAPS > 20)	VREF20	9060	290/-250	320	-540/2010	820/-540	340/-280	580	1800	4970
LE SLAT DISAGREE - ALTN FLAP EXT ACOMPLISHED (FLAPS = 20)	VREF20	9060	290/-250	320	-540/2010	820/-540	340/-280	580	1800	4970
LE SLAT DISAGREE - ALTN FLAP EXT FAILED (FLAPS = 20)	VREF30+30	10340	370/-280	370	-570/2100	870/-580	390/-330	560	2050	5650
REVERSER UNLOCKED (FLAPS 20)	VREF30+30	12610	450/-340	440	-680/2450	1340/-860	470/-400	730	0	3680
TE FLAP ASYM (FLAPS ≥ 20)	VREF20	9060	290/-250	320	-540/2010	820/-540	340/-280	580	1800	4970
TE FLAP ASYM (5 < FLAPS < 20)	VREF30+20	9930	370/-270	360	-560/2070	850/-570	380/-310	590	2100	5920
TE FLAP ASYM (FLAPS ≤ 5)	VREF30+30	10520	380/-280	380	-570/2120	870/-590	410/-330	580	2220	6260
TE FLAP DISAGREE (FLAPS ≥ 20)	VREF20	9060	290/-250	320	-540/2010	820/-540	340/-280	580	1800	4970
TE FLAP DISAGREE (5 < FLAPS < 20)	VREF30+20	9930	370/-270	360	-560/2070	850/-570	380/-310	590	2100	5920
TE FLAP DISAGREE (FLAPS ≤ 5)	VREF30+30	10520	380/-280	380	-570/2120	870/-590	410/-330	580	2220	6260

^{*}Reference distance assumes sea level, standard day with no wind or slope.

Actual (unfactored) distances are shown.

Includes distance from 50 ft above runway threshold (1000 ft of air distance).

Assumes max manual braking and maximum reverse thrust when available on operating engine(s).

Performance Inflight -Advisory Information

767 Flight Crew Operations Manual

ADVISORY INFORMATION

Recommended Brake Cooling Schedule Reference Brake Energy Per Brake (Millions of Foot Pounds)

									BRA	KES	ON S	SPEE	D (KI	(AS)						
				80			100			120			140			160			180	
WEIGHT	O.	AΤ						PF	RESS	URE	ALT	ITUE	E (10	000 F	T)					
(1000 LB)	°F	°C	0	2	4	0	2	4	0	2	4	0	2	4	0	2	4	0	2	4
	40	4	15.9	16.9	17.9	24.0	25.5	27.1	33.4	35.7	37.9	44.0	47.1	50.1	55.6	59.5	63.4			
	60	16			l		l	l		l .				l	57.7					
420	80	27			l		l	l		l .				l	59.9					
	100	38			l		l	l		l .				l	61.7					
	120	49			_		_	_								_	72.3			
	40	4			l .		l .										57.8			
	60	16			l		l	l		l .				l			60.0			
380	80	27			l		l	l		l .				l			62.2			
	100	38			l		l	l						l			64.2			
	120	49															65.8			
	40	4			l .		l .										52.0			
	60	16			l		l	l						l			54.0			
340	80	27															56.0			
	100	38			l		l	l						l			57.7			
	120	49															59.1		_	_
	40	4			l .		l .										46.0			
***	60	16			l .		l .										47.7			
300	80	27			l		l	l		l .				l			49.5			1
	100	38			l		l	l						l			51.0			
	120	49															52.2		_	_
	40	4			l		l	l		l .				l			39.8			1
260	60	16															41.3	-		
260	80	27			l		l	l		l .				l			42.8			1
	100	38			l		l	l						l			44.1			
	120	49															45.1			_
	40	4	9.3	9.9	l		l	l						l			33.4			1
220	60	16	9.6		l		l	l		l .				l			34.7			1
220	80	27															36.0			
	100	38 49			l		l	l		l .				l			37.0			1
*То сонио	120		10.3														37.8			

^{*}To correct for wind, enter table with the brakes on speed minus one half the headwind or plus 1.5 times the tailwind.

If ground speed is used for brakes on speed, ignore wind, altitude, and OAT effects.

Adjusted Brake Energy Per Brake (Millions of Foot Pounds) No Reverse Thrust

		REF	EREN	CE BRA	KE EN	ERGY	PER B	RAKE (MILLI	ONS O	F FOOT	POUN	DS)
	EVENT	5	10	15	20	25	30	35	40	45	50	55	60
R	TO MAX MAN	5.0	10.0	15.0	20.0	25.0	30.0	35.0	40.0	45.0	50.0	55.0	60.0
	MAX MAN	1.6	6.6	11.6	16.5	21.3	26.1	30.8	35.5	40.2	44.8	49.5	54.2
5	MAX AUTO	2.3	6.6	10.7	14.9	19.1	23.3	27.5	31.8	36.0	40.3	44.7	49.0
	AUTOBRAKE 4	2.5	6.4	10.4	14.3	18.3	22.2	26.1	30.1	34.0	38.0	42.0	46.1
ANDING	AUTOBRAKE 3	2.4	6.1	9.8	13.5	17.1	20.8	24.5	28.1	31.8	35.5	39.2	43.0
Ľ	AUTOBRAKE 2	2.4	5.8	9.3	12.7	16.0	19.4	22.8	26.2	29.6	33.0	36.4	39.9
	AUTOBRAKE 1	2.3	5.4	8.4	11.5	14.4	17.4	20.3	23.3	26.2	29.2	32.2	35.2

767 Flight Crew Operations Manual

767-300/PW4060 FAA Category C & D Brake

ADVISORY INFORMATION

Recommended Brake Cooling Schedule Two Engines Reverse Thrust

		REF	EREN	CE BRA	KE EN	ERGY	PER B	RAKE (MILLI	ONS O	F FOOT	POUN	IDS)
	EVENT	5	10	15	20	25	30	35	40	45	50	55	60
	MAX MAN	0.7	5.7	10.5	15.3	19.9	24.5	29.0	33.5	37.9	42.3	46.6	51.0
Ð	MAX AUTO	1.0	4.6	8.2	11.8	15.4	19.0	22.7	26.4	30.1	33.9	37.8	41.7
NDING	AUTOBRAKE 4	0.6	3.8	6.9	10.0	13.2	16.3	19.5	22.7	26.0	29.3	32.6	36.0
Į	AUTOBRAKE 3	0.0	2.6	5.3	8.0	10.7	13.5	16.2	19.0	21.8	24.7	27.6	30.6
Ľ	AUTOBRAKE 2	0.0	1.2	3.5	5.7	8.0	10.3	12.6	15.0	17.3	19.8	22.2	24.8
	AUTOBRAKE 1	0.0	0.7	2.2	3.8	5.3	6.9	8.4	10.0	11.7	13.4	15.1	16.9

Cooling Time (Minutes)

Category "C" and "D" Brakes

	ADJUSTEI) BRA	KE E	NERC	Y PE	R BR	AKE (MILL	IONS OF FOO	T POUNDS)
	14 & BELOW	15	16	18	20	24	28	34	35 TO 42	43 & ABOVE
	BRAKE	TEM	PERA	ΓURE	MON	IITOR	SYS	TEM I	NDICATION O	N EICAS
	UP TO 1	1	1	2	2	3	4	5	5 TO 6	7 & ABOVE
INFLIGHT GEAR DOWN	NO SPECIAL PROCEDURE	1	1	2	2	3	4	6	CAUTION	FUSE PLUG MELT ZONE
GROUND	REQUIRED	11	15	19	24	34	44	59		MELI ZONE

Observe maximum quick turnaround limit.

Table shows energy per brake added by a single stop with all brakes operating. Energy is assumed to be equally distributed among the operating brakes. Total energy is the sum of residual energy plus energy added.

Add 1.0 million foot pounds per brake for each taxi mile.

For one brake deactivated, increase brake energy by 15 percent.

When in caution zone, wheel fuse plugs may melt. Delay takeoff and inspect after one hour. If overheat occurs after takeoff, extend gear soon for at least 6 minutes.

When in fuse plug melt zone, clear runway immediately. Unless required, do not set parking brake. Do not approach gear or attempt to taxi for one hour. Tire, wheel and brake replacement may be required. If overheat occurs after takeoff, extend gear soon for at least 10 minutes.

Brake temperature monitor system (BTMS) indication on EICAS may be used 10 to 15 minutes after airplane has come to a complete stop, or inflight with gear retracted, to determine recommended cooling schedule.

767 Flight Crew Operations Manual

Performance Inflight - Engine Inoperative

Chapter PI Section 23

ENGINE INOP

Initial Max Continuous EPR Based on engine bleed for one pack on and APU off

Pl	RESSURE	(CRUISE MACH NUMBER	}
ALT	TTUDE (FT)	.72	.76	.80
	EPR	1.69	1.69	1.69
39000	MAX TAT	-14	-11	-10
	EPR CORR	0.09	0.09	0.10
	EPR	1.70	1.69	1.69
37000	MAX TAT	-14	-11	-10
	EPR CORR	0.09	0.09	0.10
	EPR	1.70	1.69	1.69
35000	MAX TAT	-13	-11	-9
	EPR CORR	0.09	0.09	0.10
	EPR	1.70	1.70	1.69
33000	MAX TAT	-9	-8	-5
	EPR CORR	0.09	0.09	0.10
	EPR	1.70	1.70	1.68
31000	MAX TAT	-5	-4	0
	EPR CORR	0.10	0.10	0.11
	EPR	1.70	1.69	1.68
29000	MAX TAT	-2	1	3
	EPR CORR	0.09	0.10	0.10
	EPR	1.71	1.70	1.68
27000	MAX TAT	1	3	7
	EPR CORR	0.10	0.10	0.10

Decrease EPR by the EPR CORR for every 10°C above the MAX TAT shown.

767 Flight Crew Operations Manual

767-300/PW4060 FAA Category C & D Brake

ENGINE INOP

Max Continuous EPR 39000 FT to 22000 FT Pressure Altitudes

Based on engine bleed for one pack on and anti-ice off

PRESSU	RE ALTITUDE		KI	AS			1	MACH N	NUMBER	3	
	(FT)	150	200	250	300	.70	.72	.74	.76	.78	.80
	EPR		1.72	1.68		1.70	1.69	1.69	1.69	1.69	1.69
39000	MAX TAT		-17	-9		-14	-14	-12	-11	-10	-10
	EPR CORR		0.09	0.10		0.09	0.09	0.09	0.09	0.10	0.10
	EPR		1.73	1.69		1.70	1.70	1.69	1.69	1.69	1.69
37000	MAX TAT		-18	-10		-14	-14	-12	-11	-10	-10
	EPR CORR		0.08	0.10		0.09	0.09	0.09	0.09	0.10	0.10
	EPR	1.76	1.75	1.70		1.70	1.70	1.70	1.69	1.69	1.69
35000	MAX TAT	-21	-20	-13		-14	-13	-13	-11	-10	-9
	EPR CORR	0.07	0.08	0.09		0.09	0.09	0.09	0.09	0.10	0.10
	EPR	1.74	1.76	1.70	1.66	1.70	1.70	1.70	1.70	1.69	1.69
33000	MAX TAT	-12	-18	-10	-2	-10	-9	-8	-8	-6	-5
	EPR CORR	0.09	0.08	0.09	0.11	0.09	0.09	0.10	0.09	0.10	0.10
	EPR	1.75	1.76	1.71	1.68	1.70	1.70	1.70	1.70	1.69	1.68
31000	MAX TAT	-11	-14	-7	0	-6	-5	-5	-4	-2	0
	EPR CORR	0.09	0.09	0.09	0.10	0.09	0.10	0.10	0.10	0.10	0.11
	EPR	1.75	1.77	1.73	1.69	1.71	1.70	1.70	1.69	1.69	1.68
29000	MAX TAT	-10	-13	-6	1	-4	-2	-1	1	2	3
	EPR CORR	0.09	0.09	0.09	0.10	0.09	0.09	0.10	0.10	0.11	0.10
	EPR	1.75	1.78	1.74	1.70	1.71	1.71	1.70	1.70	1.69	1.68
27000	MAX TAT	-10	-12	-4	3	0	1	3	3	5	7
	EPR CORR	0.09	0.09	0.09	0.10	0.10	0.10	0.10	0.10	0.10	0.10
	EPR	1.75	1.77	1.76	1.71	1.71	1.71	1.71	1.70	1.69	1.68
25000	MAX TAT	-10	-11	-3	4	3	4	5	7	9	10
	EPR CORR	0.09	0.09	0.10	0.09	0.09	0.09	0.10	0.10	0.10	0.10
	EPR	1.75	1.75	1.76	1.71	1.71	1.71	1.70	1.69	1.68	1.67
24000	MAX TAT	-10	-8	-2	4	4	5	7	9	10	12
	EPR CORR	0.09	0.09	0.10	0.09	0.09	0.09	0.10	0.10	0.10	0.10
	EPR	1.75	1.74	1.77	1.71	1.70	1.69	1.68	1.67	1.66	1.65
22000	MAX TAT	-11	-7	-1	6	7	9	11	12	14	16
	EPR CORR	0.08	0.09	0.10	0.09	0.09	0.09	0.09	0.09	0.09	0.10

Decrease EPR by the EPR CORR for every 10°C above the MAX TAT shown.

• 0					
BLEED		PRESS	URE ALTITUE	DE (FT)	
CONFIGURATION	0	10000	20000	30000	40000
PACKS OFF	0.01	0.01	0.01	0.01	0.02
ENGINE ANTI-ICE ON	-0.01	-0.02	-0.03	-0.04	-0.05
ENGINE & WING ANTI-ICE ON	-0.04	-0.06	-0.09	-0.10	-0.13

Performance Inflight -Engine Inoperative

767 Flight Crew Operations Manual

ENGINE INOP

Max Continuous EPR 20000 FT to Sea Level Pressure Altitudes

Based on engine bleed for one pack on and anti-ice off

PRESSU	RE ALTITUDE		KIAS MACH NUMBER 200 250 300 .70 .72 .74 .76 .78 .80 1.73 1.77 1.72 1.69 1.68 1.67 1.66 1.65 1.63 -5 1 7 10 12 14 15 17 19								
	(FT)	150	200	250	300	.70	.72	.74	.76	.78	.80
	EPR	1.75	1.73	1.77	1.72	1.69	1.68	1.67	1.66	1.65	1.63
20000	MAX TAT	-9	-5	1	7	10	12	14	15	17	19
	EPR CORR	0.09	0.09	0.10	0.09	0.09	0.09	0.09	0.09	0.09	0.09
	EPR	1.72	1.70	1.77	1.72	1.66	1.65	1.64	1.63	1.61	
18000	MAX TAT	-6	-1	4	10	15	17	18	20	22	
	EPR CORR	0.09	0.09	0.09	0.09	0.08	0.08	0.08	0.08	0.08	
	EPR	1.68	1.66	1.76	1.71	1.64	1.62	1.61	1.60		
16000	MAX TAT	-1	2	7	13	19	22	23	24		
	EPR CORR	0.09	0.09	0.09	0.09	0.08	0.08	0.08	0.08		
	EPR	1.65	1.62	1.70	1.68	1.59	1.58	1.56			
14000	MAX TAT	2	5	10	16	24	25	27			
	EPR CORR	0.09	0.09	0.09	0.09	0.07	0.07	0.07			
	EPR	1.62	1.58	1.62	1.63	1.53					
12000	MAX TAT	5	9	13	18	28					
	EPR CORR	0.08	0.09	0.08	0.08	0.07					
	EPR	1.58	1.55	1.56	1.57						
10000	MAX TAT	10	13	16	22						
	EPR CORR	0.08	0.08	0.08	0.08						
	EPR	1.51	1.48	1.45	1.44						
5000	MAX TAT	18	22	25	29						
	EPR CORR	0.07	0.07	0.07	0.06						
	EPR	1.45	1.43	1.40	1.36						
1500	MAX TAT	26	29	31	35						
	EPR CORR	0.06	0.06	0.06	0.06						
	EPR	141	1.39	1.36	1.32						
0	MAX TAT	28	31	34	38						
	EPR CORR	0.06	0.06	0.05	0.05						

Decrease EPR by the EPR CORR for every 10°C above the MAX TAT shown.

BLEED		PRESS	URE ALTITUE	DE (FT)	
CONFIGURATION	0	10000	20000	30000	40000
PACKS OFF	0.01	0.01	0.01	0.01	0.02
ENGINE ANTI-ICE ON	-0.01	-0.02	-0.03	-0.04	-0.05
ENGINE & WING ANTI-ICE ON	-0.04	-0.06	-0.09	-0.10	-0.13

767 Flight Crew Operations Manual

767-300/PW4060 FAA Category C & D Brake

ENGINE INOP

MAX CONTINUOUS THRUST

Driftdown Speed/Level Off Altitude 100 ft/min residual rate of climb

WEIGHT	(1000 LB)	OPTIMUM	LEVI	EL OFF ALTITUDI	E (FT)
START DRIFT DOWN	LEVEL OFF	DRIFTDOWN SPEED (KIAS)	ISA + 10°C & BELOW	ISA + 15°C	ISA + 20°C
420	406	276	18600	17700	16900
400	387	270	19800	18900	18100
380	368	264	21000	20200	19400
360	349	257	22200	21600	20700
340	330	250	23500	23000	22100
320	310	243	24900	24500	23600
300	291	235	26300	26000	25200
280	271	227	27800	27600	26800
260	252	219	29300	29300	28500
240	233	211	31000	30900	30300
220	213	202	32700	32700	32100

Includes APU fuel burn.

Driftdown/LRC Cruise Range Capability Ground to Air Miles Conversion

	AIR D	ISTANCE	E (NM)		GROUND		AIR D	ISTANCE	E (NM)	
HE	HEADWIND COMPONENT (KTS)			DISTANCE					TS)	
100	80	60	40	20	(NM)	20	40	60	80	100
274	255	239	224	211	200	190	180	172	164	157
546	509	477	448	423	400	380	361	345	329	315
817	762	714	671	634	600	570	542	518	495	474
1086	1014	950	894	845	800	760	724	691	661	633
1356	1266	1187	1117	1055	1000	950	905	864	827	792
1625	1518	1423	1340	1266	1200	1140	1086	1037	992	951
1896	1771	1661	1564	1477	1400	1330	1267	1210	1158	1110
2168	2025	1899	1787	1689	1600	1520	1448	1383	1323	1268
2444	2280	2138	2012	1900	1800	1710	1628	1554	1487	1425

Driftdown/Cruise Fuel and Time

AIR		FUEL REQUIRED (1000 LB)										TIME
DIST		WEIGHT AT START OF DRIFTDOWN (1000 LB)										(HR:MIN)
(NM)	220	240	260	280	300	320	340	360	380	400	420	(IIIC.WIIIV)
200	3.8	4.0	4.3	4.5	4.9	5.1	5.4	5.8	5.9	6.3	6.7	0:33
400	8.3	8.9	9.7	10.3	11.0	11.6	12.3	13.0	13.6	14.4	15.1	1:04
600	12.6	13.6	14.6	15.6	16.7	17.6	18.7	19.8	20.7	21.8	23.0	1:36
800	16.8	18.1	19.5	20.8	22.3	23.6	25.0	26.4	27.6	29.1	30.7	2:07
1000	20.9	22.5	24.3	25.9	27.7	29.4	31.1	32.8	34.4	36.3	38.2	2:37
1200	24.9	26.9	29.0	31.0	33.1	35.0	37.1	39.2	41.1	43.3	45.6	3:08
1400	28.8	31.1	33.6	35.9	38.3	40.6	43.0	45.4	47.7	50.2	52.9	3:40
1600	32.6	35.3	38.1	40.7	43.5	46.1	48.8	51.5	54.1	57.0	60.0	4:12
1800	36.4	39.4	42.5	45.5	48.5	51.5	54.5	57.5	60.4	63.6	67.0	4:44

Includes APU fuel burn.

Driftdown at optimum driftdown speed and cruise at Long Range Cruise speed.

Performance Inflight -Engine Inoperative

767 Flight Crew Operations Manual

ENGINE INOP

MAX CONTINUOUS THRUST

Long Range Cruise Altitude Capability 100 ft/min residual rate of climb and APU on

WEIGHT		PRESSURE ALTITUDE (FT)
(1000 LB)	ISA + 10°C & BELOW	ISA + 15°C	ISA + 20°C
420	15700	14600	13300
410	16400	15400	14500
400	17100	16200	15400
390	17700	16900	16100
380	18400	17600	16800
370	19100	18300	17500
360	19900	19000	18200
350	20500	19700	19000
340	21200	20500	19700
330	21900	21300	20500
320	22600	22100	21200
310	23400	22900	22100
300	24100	23700	22900
290	24900	24600	23700
280	25700	25400	24600
270	26500	26200	25500
260	27300	27100	26300
250	28100	28000	27200
240	29000	28900	28100
230	29800	29800	29100
220	30800	30700	30100

With engine anti-ice on, decrease altitude capability by 1400 ft.

With engine and wing anti-ice on, decrease altitude capability by 3200 ft.

767 Flight Crew Operations Manual

767-300/PW4060 FAA Category C & D Brake

ENGINE INOP

MAX CONTINUOUS THRUST

Long Range Cruise Control

	WEIGHT PRESSURE ALTITUDE (1000 FT)										
		10	1.4						20	21	
(100	00 LB)	10	14	18	21	23	25	27	29	31	
	EPR	1.35	1.49								
420	MACH	.560	.608								
	KIAS	310	314								
	FF/ENG	14754	15755	1.65							
	EPR	1.32	1.45	1.65							
400	MACH KIAS	.549 305	.590 304	.657 315							
	FF/ENG	13913	14542	15791							
	EPR	1.30	1.40	1.58							
	MACH	.540	.574	.634							
380	KIAS	299	296	303							
	FF/ENG	13151	13481	14504							
	EPR	1.27	1.36	1.51							
	MACH	.531	.560	.611							
360	KIAS	294	288	292							
	FF/ENG	12433	12543	13214							
	EPR	1.25	1.32	1.45	1.60						
	MACH	.521	.548	.590	.640						
340	KIAS	289	282	282	289						
	FF/ENG	11719	11706	12089	12883						
	EPR	1.22	1.29	1.40	1.53	1.64					
320	MACH	.511	.538	.572	.614	.651					
320	KIAS	283	276	272	276	282					
	FF/ENG	11020	10943	11076	11614	12287					
	EPR	1.20	1.26	1.35	1.46	1.56	1.68				
300	MACH	.500	.527	.556	.590	.622	.662				
300	KIAS	277	271	265	265	269	276				
	FF/ENG	10340	10232	10169	10511	11012	11691				
	EPR	1.18	1.24	1.31	1.40	1.48	1.59				
280	MACH	.489	.515	.543	.569	.596	.630				
	KIAS	271	265	258	255	257	262				
	FF/ENG	9692	9528	9372	9515	9867	10367	1.61			
	EPR	1.16	1.21	1.28	1.35	1.41	1.50	1.61			
260	MACH	.478	.502	.530	.552	.572	.600	.636			
	KIAS	264	258	252	247	247	248	253			
	FF/ENG EPR	9074	8837	8648 1.24	8639	8857	9206	9697 1.51	1.62		
		1.14	1.19		1.30	1.35	1.42		1.63		
240	MACH	.465 257	.489 251	.517	.538	.553 238	.574	.603 239	.640 244		
	KIAS FF/ENG	8440	8199	245 7955	241 7858	7952	237 8190	8519	9004		
	EPR	1.13	1.16	1.21	1.26	1.30	1.36	1.42	1.52	1.64	
	MACH	.447	.476	.502	.523	.537	.553	.574	.604	.642	
220	KIAS	247	244	238	234	231	228	227	230	234	
	FF/ENG	7715	7605	7300	7176	7173	7268	7484	7805	8258	

767 Flight Crew Operations Manual

ENGINE INOP

MAX CONTINUOUS THRUST

Long Range Cruise Diversion Fuel and Time Ground to Air Miles Conversion

	AIR DISTANCE (NM)				GROUND		AIR D	ISTANCE	E (NM)	
HE	HEADWIND COMPONENT (KTS)			DISTANCE					TS)	
100	80	60	40	20	(NM)	20	40	60	80	100
291	267	246	229	213	200	190	181	173	166	160
583	535	493	458	427	400	381	363	347	333	320
877	805	741	687	641	600	572	545	521	500	480
1171	1074	989	917	855	800	762	726	694	665	639
1467	1345	1237	1147	1069	1000	953	909	868	831	798
1763	1616	1486	1377	1284	1200	1142	1089	1040	996	956
2061	1888	1736	1608	1498	1400	1333	1270	1213	1161	1114
2359	2160	1985	1838	1712	1600	1522	1451	1385	1325	1272
2659	2434	2235	2069	1927	1800	1712	1631	1557	1489	1429

Reference Fuel and Time Required at Check Point

		PRESSURE ALTITUDE (1000 FT)									
AIR DIST	1	10		4	1	8	22				
(NM)	FUEL (1000 LB)	TIME (HR:MIN)	FUEL (1000 LB)	TIME (HR:MIN)	FUEL (1000 LB)	TIME (HR:MIN)	FUEL (1000 LB)	TIME (HR:MIN)			
200	5.9	0:42	5.3	0:41	4.8	0:40	4.4	0:38			
400	12.4	1:20	11.4	1:17	10.6	1:15	10.2	1:11			
600	18.8	1:58	17.5	1:54	16.4	1:50	15.9	1:44			
800	25.1	2:36	23.5	2:31	22.1	2:26	21.4	2:18			
1000	31.3	3:15	29.4	3:08	27.7	3:02	26.9	2:52			
1200	37.5	3:54	35.2	3:46	33.3	3:38	32.3	3:26			
1400	43.6	4:34	41.0	4:24	38.7	4:14	37.6	4:01			
1600	49.6	5:13	46.6	5:02	44.0	4:51	42.8	4:36			
1800	55.5	5:53	52.2	5:40	49.3	5:28	47.9	5:12			

Fuel Required Adjustment (1000 LB)

REFERENCE FUEL REQUIRED		WEIGHT AT	CHECK POIN	T (1000 LB)	
(1000 LB)	200	250	300	350	400
5	-0.9	-0.4	0.0	0.7	1.3
10	-1.9	-0.9	0.0	1.6	3.0
15	-3.0	-1.4	0.0	2.5	4.8
20	-4.1	-1.9	0.0	3.4	6.6
25	-5.2	-2.4	0.0	4.3	8.3
30	-6.3	-2.9	0.0	5.1	10.1
35	-7.4	-3.4	0.0	6.0	11.9
40	-8.5	-3.9	0.0	6.8	13.7
45	-9.6	-4.4	0.0	7.6	15.5
50	-10.8	-4.9	0.0	8.4	17.2
55	-11.9	-5.5	0.0	9.2	19.0
60	-13.1	-6.0	0.0	9.9	20.8

Includes APU fuel burn.

767 Flight Crew Operations Manual

767-300/PW4060 FAA Category C & D Brake

ENGINE INOP

MAX CONTINUOUS THRUST

Holding Flaps Up

W	EIGHT			PRESSU	JRE ALTITU	DE (FT)		
(10	000 LB)	1500	5000	10000	15000	20000	25000	30000
	EPR	1.19	1.24	1.33	1.49			
420	KIAS	259	259	259	259			
	FF/ENG	12870	12960	13360	14350			
	EPR	1.18	1.22	1.30	1.45	1.70		
400	KIAS	252	252	252	253	255		
	FF/ENG	12200	12240	12530	13340	14490		
	EPR	1.16	1.20	1.28	1.40	1.63		
380	KIAS	246	246	246	247	248		
	FF/ENG	11550	11550	11750	12360	13320		
	EPR	1.15	1.19	1.25	1.36	1.56		
360	KIAS	239	239	239	240	241		
	FF/ENG	10890	10880	11010	11420	12200		
	EPR	1.14	1.17	1.23	1.33	1.50		
340	KIAS	231	231	232	233	234		
	FF/ENG	10250	10220	10300	10540	11190		
	EPR	1.13	1.16	1.21	1.29	1.44	1.70	
320	KIAS	225	225	225	226	227	229	
	FF/ENG	9620	9580	9620	9720	10230	11350	
	EPR	1.11	1.14	1.19	1.26	1.39	1.61	
300	KIAS	220	220	220	220	220	221	
	FF/ENG	9000	8960	8980	8990	9320	10240	
	EPR	1.10	1.13	1.17	1.23	1.34	1.52	
280	KIAS	215	215	215	215	215	215	
	FF/ENG	8400	8350	8370	8330	8460	9260	
	EPR	1.09	1.11	1.15	1.21	1.30	1.45	1.73
260	KIAS	210	210	210	210	210	210	210
	FF/ENG	7800	7760	7770	7710	7700	8330	9290
	EPR	1.08	1.10	1.13	1.18	1.26	1.38	1.62
240	KIAS	204	204	204	204	204	204	204
	FF/ENG	7200	7180	7180	7130	7030	7450	8220
	EPR	1.07	1.08	1.12	1.16	1.22	1.33	1.51
220	KIAS	199	199	199	199	199	199	199
	FF/ENG	6630	6590	6600	6560	6430	6650	7300

This table includes 5% additional fuel for holding in a racetrack pattern.

767 Flight Crew Operations Manual

Performance Inflight -Alternate EEC Mode Chapter PI Section 24

ALTERNATE EEC MODE

Takeoff Performance

	WEIGHT ADJUSTMENT (1000 LB)						
PERFORMANCE	AIRPORT OAT						
LIMIT	°F	59 & BELOW	68	77	86	91 & ABOVE	
	°C	15 & BELOW	20	25	30	33 & ABOVE	
FIELD		-27.6	-32.4	-37.7	-43.0	-45.2	
CLIMB		-44.1	-46.7	-58.9	-66.6	-68.8	
OBSTACLE		-44.5	-52.0	-60.6	-69.2	-73.8	

Takeoff Speeds Adjustment

		TAKEOFI	F SPEEDS ADJUSTMENTS ((KTS)			
TAKEOFF	AIRPORT OAT						
SPEEDS	°F	50 & BELOW	68	86 & ABOVE			
	°C 10 & BELOW		20	30 & ABOVE			
V1 (FLAPS 5)		3	4	6			
V1 (FLAPS 15)		3	4	6			
V1 (FLAPS 20)	2		3	5			
VR	2		2	2			
V2		1	1	1			

Landing Performance

	WEIGHT ADJUSTMENT (1000 LB)										
PERFORMANCE		AIRPORT OAT									
LIMIT	°F	59 & BELOW	68	77	86	91 & ABOVE					
	°C	15 & BELOW	20	25	30	33 & ABOVE					
LANDING CLIMB		-43.0	-50.9	-60.4	-69.0	-73.0					

Takeoff EPR

Based on engine bleed for packs on, engine anti-ice on or off and wing anti-ice off

AIRPO	RT OAT		AIR	PORT PRESSUI	RE ALTITUDE	(FT)	
°F	°C	-1000	0	2000	4000	6000	8000
131	55	1.37	1.37	1.36	1.36	1.35	1.36
122	50	1.41	1.41	1.41	1.40	1.40	1.40
113	45	1.43	1.43	1.43	1.43	1.43	1.43
104	40	1.46	1.46	1.46	1.46	1.46	1.46
95	35	1.49	1.49	1.48	1.48	1.48	1.48
86	30	1.51	1.51	1.51	1.51	1.51	1.51
77	25	1.53	1.54	1.54	1.53	1.53	1.54
68	20	1.53	1.56	1.57	1.56	1.56	1.56
59	15	1.53	1.56	1.58	1.59	1.59	1.59
50	10	1.53	1.56	1.58	1.60	1.62	1.62
41	5	1.53	1.56	1.58	1.60	1.62	1.64
32	0	1.53	1.56	1.58	1.60	1.62	1.64

EPR Adjustments for Engine Bleeds

BLEED	AIRPORT PRESSURE ALTITUDE (FT)								
CONFIGURATION	-1000	0	2000	4000	6000	8000			
PACKS OFF	0.01	0.01	0.01	0.01	0.01	0.01			
WING ANTI-ICE ON	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01			

767 Flight Crew Operations Manual

767-300/PW4060 FAA Category C & D Brake

ALTERNATE EEC MODE

Go-around EPR

Based on engine bleed for packs on, engine anti-ice on or off and wing anti-ice off

AIRPO	RT OAT	TAT		AIRP	ORT PRESSU	RE ALTITUD	E (FT)	
°F	°C	(°C)	-1000	0	2000	4000	6000	8000
131	55	58	1.37	1.36	1.35	1.35	1.35	1.35
122	50	53	1.41	1.40	1.40	1.40	1.40	1.40
113	45	48	1.43	1.43	1.43	1.43	1.43	1.43
104	40	43	1.46	1.46	1.46	1.46	1.46	1.46
95	35	38	1.49	1.49	1.48	1.48	1.48	1.48
86	30	33	1.52	1.52	1.51	1.51	1.51	1.51
77	25	28	1.54	1.55	1.54	1.54	1.54	1.54
68	20	23	1.54	1.57	1.57	1.57	1.57	1.57
59	15	18	1.54	1.57	1.60	1.61	1.60	1.60
50	10	13	1.54	1.57	1.60	1.62	1.63	1.63
41	5	8	1.54	1.57	1.60	1.62	1.63	1.66
32 & BELOW	0 & BELOW	3	1.54	1.57	1.60	1.62	1.63	1.66

EPR Adjustments for Engine Bleeds

	BLEED	AIRPORT PRESSURE ALTITUDE (FT)									
	CONFIGURATION	-1000	0	2000	4000	6000	8000				
1	PACKS OFF	0.01	0.01	0.01	0.01	0.02	0.02				
	WING ANTI-ICE ON	-0.01	-0.01	-0.01	-0.01	-0.02	-0.02				

Performance Inflight -Alternate EEC Mode

767 Flight Crew Operations Manual

ALTERNATE EEC MODE

Go-around %N1 No EPR available

Based on engine bleed for packs on, engine anti-ice on or off and wing anti-ice off

AIRPO	RT OAT	TAT		AIRPO	ORT PRESSU	RE ALTITUDI	E (FT)	
°F	°C	(°C)	-1000	0	2000	4000	6000	8000
131	55	58	94.6	94.6	94.5	94.5	94.4	94.4
122	50	53	96.3	96.3	96.2	96.1	96.1	96.0
113	45	48	97.2	97.1	97.0	97.0	96.9	96.9
104	40	43	97.8	97.8	97.7	97.6	97.6	97.5
95	35	38	98.4	98.3	98.2	98.2	98.1	98.1
86	30	33	99.0	98.9	98.8	98.8	98.7	98.7
77	25	28	99.3	99.5	99.4	99.4	99.3	99.3
68	20	23	98.2	100.1	100.0	100.0	99.9	99.9
59	15	18	97.4	99.2	100.4	100.8	100.5	100.5
50	10	13	96.6	98.4	99.4	100.5	101.1	101.1
41	5	8	95.7	97.5	98.6	99.5	100.2	101.5
32	0	3	94.9	96.6	97.7	98.6	99.3	100.4
23	-5	-2	94.0	95.7	96.8	97.7	98.4	99.5
14	-10	-7	93.1	94.8	95.9	96.8	97.5	98.6
5	-15	-13	92.1	93.8	94.8	95.7	96.4	97.4
-4	-20	-18	91.2	92.9	93.9	94.7	95.4	96.5
-13	-25	-23	90.3	91.9	92.9	93.8	94.5	95.5
-22	-30	-28	89.4	91.0	92.0	92.9	93.6	94.6
-31	-35	-33	88.5	90.1	91.1	91.9	92.6	93.6
-40	-40	-38	87.5	89.2	90.1	90.9	91.7	92.6
-49	-45	-43	86.6 88.1		89.1	89.1 90.0		91.6
-58	-50	-48	85.7	87.2	88.2	89.0	89.7	90.6

	<u> </u>									
Ì	BLEED	AIRPORT PRESSURE ALTITUDE (FT)								
	CONFIGURATION	-1000	0	2000	4000	6000	8000			
Ì	PACKS OFF	0.5	0.5	0.6	0.6	0.7	0.7			
	WING ANTI-ICE ON	-0.5	-0.5	-0.6	-0.6	-0.7	-0.7			

767 Flight Crew Operations Manual

767-300/PW4060 FAA Category C & D Brake

ALTERNATE EEC MODE

ENGINE INOP

Initial Max Continuous %N1 No EPR available

Based on engine bleed for one pack on and anti-ice off

TAT				PRESSURE	ALTITUD	E (1000 FT))		
(°C)	27	29	31	33	35	37	39	41	43
20	101.3	99.7	98.2	96.6	95.0	94.9	94.8	94.8	94.7
15	102.6	101.1	99.6	98.0	96.4	96.4	96.3	96.2	96.1
10	104.2	102.5	100.9	99.4	97.8	97.8	97.7	97.6	97.5
5	104.7	104.0	102.3	100.7	99.2	99.1	99.0	99.0	98.9
0	103.5	103.7	103.6	102.0	100.5	100.4	100.3	100.3	100.2
-5	102.6	102.6	102.7	102.8	101.4	101.3	101.2	101.1	101.1
-10	101.6	101.6	101.8	101.9	102.1	102.1	102.0	102.0	101.9
-15	100.7	100.6	100.8	100.9	101.0	101.1	101.0	101.0	100.9
-20	99.7	99.7	99.8	99.9	100.0	100.1	100.1	100.0	99.9
-25	98.7	98.7	98.8	98.9	99.0	99.1	99.1	99.0	98.9
-30	97.7	97.7	97.8	97.9	98.0	98.1	98.1	98.0	97.9
-35	96.7	96.7	96.8	96.9	97.0	97.1	97.0	97.0	96.9
-40	95.7	95.6	95.8	95.9	96.0	96.1	96.0	96.0	95.9

•										
BLEED	PRESSURE ALTITUDE (1000 FT)									
CONFIGURATION	27	29	31	33	35	37	39	41	43	
PACKS OFF	0.6	0.6	0.7	0.7	0.8	0.8	0.9	1.0	1.1	
ENGINE ANTI-ICE ON	-1.2	-1.2	-1.3	-1.3	-1.3	-1.4	-1.4	-1.5	-1.6	
ENGINE & WING ANTI-ICE ON	-2.9	-2.9	-3.1	-3.1	-3.1	-3.3	-3.4	-3.6	-3.9	

Performance Inflight -Alternate EEC Mode

767 Flight Crew Operations Manual

ALTERNATE EEC MODE

ENGINE INOP

Max Continuous %N1 No EPR available Based on engine bleed for one pack on and anti-ice off 37000 FT to 20000 FT Pressure Altitudes

37000 1	FT PRES	SS ALT					,	TAT (°C)				
KIAS	M	-40	-35	-30	-25	-20	-15	-10	-5	0	5	10	15
200	.63	97.3	98.3	99.4	100.4	101.5	101.6	100.6	99.2	98.1	97.0	95.9	94.6
220	.69	96.3	97.3	98.3	99.3	100.3	101.3	100.6	99.8	98.9	97.8	96.7	95.2
240	.75	96.1	97.1	98.1	99.1	100.1	101.3	101.5	100.6	99.6	98.5	97.3	95.8
260	.80	96.1	97.1	98.1	99.1	100.1	101.1	102.1	101.3	100.4	99.1	97.8	96.4
33000 FT PRESS ALT TAT (°C)													
KIAS	M	-40	-35	-30	-25	-20	-15	-10	-5	0	5	10	15
200	.58	98.1	99.2	100.2	101.2	102.2	102.5	101.4	99.6	98.5	97.4	96.4	95.3
220	.63	97.4	98.4	99.5	100.5	101.5	102.6	102.0	100.4	99.3	98.3	97.2	95.9
240	.68	96.5	97.5	98.5	99.5	100.5	101.6	102.2	101.1	100.2	99.1	98.0	96.6
260	.74	96.2	97.2	98.2	99.2	100.2	101.2	102.3	102.1	101.0	99.9	98.7	97.3
	29000 FT PRESS ALT TAT (°C)												
KIAS	M	-40	-35	-30	-25	-20	-15	-10	-5	0	5	10	15
200	.53	97.8	98.9	99.9	100.9	101.9	103.1	102.1	100.7	99.7	98.7	97.8	97.0
220	.58	98.0	99.1	100.1	101.1	102.1	103.3	103.6	101.8	100.7	99.6	98.6	97.5
240	.63	97.3	98.4	99.4	100.4	101.4	102.4	103.6	102.9	101.6	100.6	99.5	98.3
260	.68	96.6	97.7	98.7	99.7	100.7	101.7	102.7	103.6	102.6	101.6	100.5	99.1
	FT PRES							TAT (°C					
KIAS	M	-40	-35	-30	-25	-20	-15	-10	-5	0	5	10	15
200	.49	96.5	97.6	98.6	99.6	100.6	101.6	102.5	101.4	100.5	99.6	98.7	98.0
220	.53	96.8	97.8	98.9	99.9	100.9	101.9	103.1	102.9	101.7	100.8	99.8	99.0
240	.58	96.9	97.9	99.0	100.0	101.0	102.0	102.9	103.9	102.8	101.8	100.7	99.7
260	.63	96.8	97.8	98.8	99.9	100.9	101.9	102.8	104.0	104.1	102.9	101.8	100.6
	FT PRES	_						TAT (°C					
KIAS	M	-15	-10	-5	0	5	10	15	20	25	30	35	
200	.46	101.0	102.1	102.4	101.3	100.3	99.4	98.5	97.6	96.7	95.9	95.1	
240	.55	101.6	102.6	103.7	103.8	102.6	101.7	100.8	100.0	99.2	98.4	97.7	
280	.63	101.3	102.3	103.3	104.4	104.5	103.3	102.1	101.0	100.2	99.4	98.7	
	20000 FT PRESS ALT TAT (°C)												
KIAS	M	-15	-10	-5	0	5	10	15	20	25	30	35	
200	.44	101.0	101.9	103.0	102.1	101.1	100.2	99.2	98.2	97.3	96.4	95.6	
240	.53	101.5	102.5	103.5	104.4	103.4	102.5	101.7	101.0	100.2	99.4	98.7	
280	.61	101.1	102.1	103.1	104.0	104.9	103.7	102.6	101.7	100.8	100.0	99.3	

, or the real assuments for Engl	,											
BLEED	PRESSURE ALTITUDE (1000 FT)											
CONFIGURATION	20	22	25	29	33	37						
PACKS OFF	0.5	0.5	0.5	0.6	0.7	0.8						
ENGINE ANTI-ICE ON	-1.2	-1.2	-1.2	-1.2	-1.3	-1.4						
ENGINE &WING ANTI-ICE ON	-2.9	-2.9	-2.9	-2.9	-3.1	-3.3						

767 Flight Crew Operations Manual

767-300/PW4060 FAA Category C & D Brake

ALTERNATE EEC MODE

ENGINE INOP

Max Continuous %N1 No EPR available

Based on engine bleed for one pack on and anti-ice off 18000 FT to 8000 FT Pressure Altitudes

180001	FT PRES	SS ALT					TAT	(°C)				
KIAS	M	-15	-10	-5	0	5	10	15	20	25	30	35
200	.42	100.2	101.1	102.3	102.7	101.6	100.6	99.6	98.5	97.5	96.6	95.8
240	.51	101.4	102.4	103.4	104.5	104.7	103.6	103.0	102.3	101.6	100.9	100.1
280	.59	100.7	101.7	102.7	103.6	104.8	104.7	103.5	102.6	101.8	100.9	100.3
16000 FT PRESS ALT TAT (°C)												
KIAS	M	-15	-10	-5	0	5	10	15	20	25	30	35
200	.41	98.7	99.6	100.6	101.7	101.6	100.3	99.2	98.0	97.0	96.1	95.3
240	.49	100.4	101.3	102.3	103.2	104.3	103.8	103.0	102.3	101.5	100.8	100.0
280	.57	100.3	101.3	102.3	103.2	104.2	105.2	104.3	103.5	102.7	101.9	101.2
14000 1	FT PRES	SS ALT					TAT	(°C)				
KIAS	M	-15	-10	-5	0	5	10	15	20	25	30	35
200	.39	97.2	98.1	99.0	99.9	100.9	100.0	98.9	97.6	96.6	95.7	94.9
240	.47	98.0	99.0	99.9	100.8	101.7	102.5	101.6	100.7	99.9	99.1	98.3
280	.54	99.0	99.9	100.9	101.8	102.7	103.8	104.2	103.2	102.5	101.7	100.9
12000	FT PRES	SS ALT					TAT	(°C)				
KIAS	M	-10	-5	0	5	10	15	20	25	30	35	40
200	.38	96.7	97.6	98.5	99.5	100.1	98.8	97.6	96.5	95.6	94.8	94.2
240	.45	96.8	97.7	98.6	99.5	100.6	100.6	99.4	98.5	97.7	96.9	96.2
100001	FT PRES	SS ALT					TAT	(°C)				
KIAS	M	-10	-5	0	5	10	15	20	25	30	35	40
200	.36	95.3	96.2	97.1	98.0	99.1	98.9	97.6	96.5	95.6	94.8	94.1
240	.43	94.9	95.8	96.7	97.5	98.4	99.4	98.5	97.5	96.7	95.9	95.2
	T PRES						TAT					
KIAS	M	-10	-5	0	5	10	15	20	25	30	35	40
200	.35	93.9	94.8	95.6	96.5	97.4	98.4	97.6	96.4	95.5	94.7	94.0
240	.42	93.1	94.0	94.8	95.7	96.6	97.5	98.0	96.9	96.0	95.2	94.5

,						
BLEED		PRES	SSURE ALT	ITUDE (100	0 FT)	
CONFIGURATION	8	10	12	14	16	18
PACKS OFF	0.5	0.5	0.5	0.5	0.5	0.5
ENGINE ANTI-ICE ON	-0.9	-0.9	-1.0	-1.0	-1.1	-1.2
ENGINE & WING ANTI-ICE ON	-2.1	-2.1	-2.3	-2.4	-2.6	-2.8

Performance Inflight -Alternate EEC Mode

767 Flight Crew Operations Manual

ALTERNATE EEC MODE

ENGINE INOP

Max Continuous %N1 No EPR available Based on engine bleed for one pack on and anti-ice off 6000 FT to Sea Level Pressure Altitudes

6000 F	T PRES	S ALT					TAT	(°C)				
KIAS	M	-10	-5	0	5	10	15	20	25	30	35	40
200	.34	92.5	93.4	94.2	95.1	95.9	96.8	97.5	96.4	95.5	94.6	93.9
240	.40	91.6	92.5	93.3	94.2	95.0	95.9	96.9	96.8	95.6	94.9	94.2
4000 F	T PRES	S ALT	•				TAT	(°C)				-
KIAS	M	-10	-5	0	5	10	15	20	25	30	35	40
200	.32	91.2	92.0	92.9	93.7	94.6	95.4	96.4	96.6	95.4	94.6	93.9
240	.39	90.4	91.2	92.1	92.9	93.7	94.6	95.4	96.3	95.6	94.8	94.2
2000 F	T PRES	S ALT					TAT	(°C)				
KIAS	M	-10	-5	0	5	10	15	20	25	30	35	40
200	.31	89.9	90.8	91.6	92.5	93.3	94.1	94.9	95.9	95.6	94.5	93.8
240	.38	89.2	90.1	90.9	91.8	92.6	93.4	94.2	95.0	95.7	94.8	94.1
0 FT	PRESS	ALT					TAT	(°C)				-
KIAS	M	-10	-5	0	5	10	15	20	25	30	35	40
200	.30	87.4	88.2	89.1	89.9	90.7	91.5	92.3	93.1	93.9	93.1	92.4
240	.36	86.9	87.7	88.5	89.3	90.1	90.9	91.7	92.5	93.4	93.5	92.6

BLEED		PRESSURE ALT	ITUDE (1000 FT)	
CONFIGURATION	0	2	4	6
PACKS OFF	0.4	0.5	0.5	0.5
ENGINE ANTI-ICE ON	-0.6	-0.7	-0.8	-0.9
ENGINE & WING ANTI-ICE ON	-1.5	-1.7	-1.9	-2.0

Performance Inflight -Alternate EEC Mode

DO NOT USE FOR FLIGHT

767 Flight Crew Operations Manual

767-300/PW4060 FAA Category C & D Brake

Intentionally Blank

767-300/PW4060 FAA Category C & D Brake

DO NOT USE FOR FLIGHT

767 Flight Crew Operations Manual

Performance Inflight -Gear Down Chapter PI Section 25

GEAR DOWN

200 KIAS Max Climb EPR

Based on engine bleed for packs on and anti-ice off

TAT]	PRESS	URE A	LTITU	DE (10	000 FT)				
(°C)	0	5	10	12	14	16	18	20	22	24	26	28	30	32	34
55	1.27														
50	1.29	1.31													
45	1.31	1.33	1.33												
40	1.34	1.36	1.35	1.35	1.35										
35	1.36	1.38	1.38	1.38	1.38	1.38									
30	1.36	1.42	1.41	1.41	1.41	1.41	1.41								
25	1.36	1.44	1.45	1.45	1.45	1.45	1.44	1.44	1.44						
20	1.36	1.44	1.49	1.49	1.49	1.49	1.48	1.48	1.48	1.48					
15	1.36	1.44	1.51	1.53	1.53	1.53	1.53	1.52	1.52	1.52	1.51				
10	1.36	1.44	1.51	1.54	1.57	1.57	1.57	1.57	1.57	1.57	1.56	1.55			
5	1.36	1.44	1.51	1.54	1.57	1.60	1.62	1.62	1.61	1.61	1.61	1.60	1.59	1.57	
0	1.36	1.44	1.51	1.54	1.57	1.60	1.63	1.66	1.66	1.66	1.65	1.64	1.63	1.62	1.59
-5	1.36	1.44	1.51	1.54	1.57	1.60	1.63	1.66	1.69	1.70	1.70	1.69	1.68	1.66	1.64
-10	1.36	1.44	1.51	1.54	1.57	1.60	1.63	1.66	1.69	1.71	1.73	1.73	1.72	1.71	1.68
-15	1.36	1.44	1.51	1.54	1.57	1.60	1.63	1.66	1.69	1.71	1.73	1.75	1.76	1.75	1.72
-20	1.36	1.44	1.51	1.54	1.57	1.60	1.63	1.66	1.69	1.71	1.73	1.75	1.76	1.76	1.75

EPR Adjustments for Engine Bleeds

BLEED				PR	ESSU	RE A	LTITU	JDE (1000 F	T)			
CONFIGURATION	0	5	10	12	14	18	20	22	24	26	28	30	34
PACKS OFF	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.02	0.02	0.02	0.02
ENGINE ANTI-ICE ON	-0.01	-0.02	-0.02	-0.02	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.04	-0.04	-0.04
ENGINE & WING ANTI-ICE ON	-0.02	-0.03	-0.04	-0.04	-0.05	-0.05	-0.05	-0.05	-0.05	-0.05	-0.06	-0.07	-0.07

767 Flight Crew Operations Manual

767-300/PW4060 FAA Category C & D Brake

GEAR DOWN

Long Range Cruise Altitude Capability

	•	•	
WEIGHT		PRESSURE ALTITUDE (FT)	ı
WEIGHT (1000 LB)	ISA + 10°C & BELOW	ISA + 15°C	ISA + 20°C
420	18400	18400	16500
400	20200	20200	18400
380	21800	21800	20300
360	23500	23500	22000
340	25200	25200	23800
320	26900	26900	25700
300	28700	28700	27500
280	30300	30300	29200
260	32100	32000	31000
240	33700	33700	33000
220	35200	35200	34600

Performance Inflight -Gear Down

767 Flight Crew Operations Manual

GEAR DOWN

Long Range Cruise Control

	IGHT				PRESSURE ALTITUDE (1000 FT)							
(100	00 LB)	10	14	18	21	23	25	27	29	31	33	35
	EPR	1.25	1.32	1.44								
420	MACH	.473	.507	.546								
420	KIAS	261	260	260								
	FF/ENG	10970	11061	11319								
	EPR	1.23	1.30	1.40								
400	MACH	.463	.496	.534								
400	KIAS	256	255	254								
	FF/ENG	10409	10438	10609								
	EPR	1.21	1.27	1.36	1.46							
380	MACH	.454	.485	.521	.552							
300	KIAS	251	249	248	247							
	FF/ENG	9880	9825	9898	10129							
	EPR	1.20	1.25	1.33	1.42	1.49						
360	MACH	.444	.473	.509	.539	.560						
300	KIAS	245	243	241	241	241						
	FF/ENG	9357	9234	9222	9426	9649						
	EPR	1.18	1.23	1.30	1.38	1.44	1.52					
340	MACH	.434	.462	.496	.525	.546	.567					
	KIAS	240	237	235	235	235	234					
	FF/ENG	8839	8678	8596	8731	8944	9178					
	EPR	1.17	1.21	1.27	1.34	1.39	1.46					
320	MACH	.422	.451	.483	.510	.531	.552					
	KIAS	233	231	229	228	228	228					
	FF/ENG	8299	8170	7990	8034	8239	8461	4.40				
	EPR	1.15	1.19	1.25	1.30	1.35	1.41	1.49				
300	MACH	.409	.440	.469	.496	.515	.536	.558				
	KIAS	226	225	222	222	221	221	220				
	FF/ENG	7763	7671	7440	7414	7536	7749	7946	1.51			
	EPR	1.14	1.17	1.22	1.27	1.31	1.36	1.43	1.51			
280	MACH KIAS	.398 220	.427 218	.456 216	.481 215	.500 214	.519 213	.541 214	.563 213			
	FF/ENG	7263	7163	6937	6845	6900	7038	7238	7431			
	EPR	1.12	1.16	1.20	1.24	1.28	1.32	1.37	1.44	1.53		
	MACH	.385	.412	.443	.466	.483	.503	.523	.545	.568		
260	KIAS	212	211	210	208	207	206	206	206	206		
	FF/ENG	6753	6633	6450	6316	6324	6397	6527	6716	6908		
	EPR	1.11	1.14	1.18	1.21	1.24	1.28	1.32	1.38	1.45	1.55	
	MACH	.370	.398	.428	.451	.467	.485	.504	.525	.547	.571	
240	KIAS	204	204	202	201	200	199	198	198	198	198	
	FF/ENG	6217	6145	5971	5837	5797	5815	5875	6011	6189	6365	
	EPR	1.10	1.12	1.16	1.19	1.21	1.24	1.28	1.33	1.39	1.46	1.56
	MACH	.355	.383	.411	.436	.451	.467	.485	.505	.526	.549	.573
220	KIAS	196	196	194	194	193	191	191	190	190	190	189
	FF/ENG	5722	5651	5473	5377	5327	5294	5300	5354	5490	5653	5817

767 Flight Crew Operations Manual

767-300/PW4060 FAA Category C & D Brake

GEAR DOWN

Long Range Cruise Enroute Fuel and Time Ground to Air Miles Conversion

	AIR D	ISTANCE	E (NM)		GROUND		AIR D	ISTANCE	E (NM)	
HE	ADWIND	COMPO	NENT (K	TS)	DISTANCE	TA	ILWIND	COMPON	NENT (KT	TS)
100	80	60	40	20	(NM)	20	40	60	80	100
322	288	259	236	217	200	189	179	170	161	154
651	581	521	474	434	400	377	357	338	321	307
984	877	785	712	652	600	566	535	507	483	461
1321	1176	1051	952	871	800	755	713	676	642	613
1663	1477	1318	1192	1089	1000	943	891	844	802	765
2010	1782	1587	1433	1309	1200	1131	1068	1011	961	917
2363	2091	1858	1676	1528	1400	1319	1245	1179	1120	1068
2720	2403	2132	1920	1749	1600	1507	1422	1346	1278	1218
3083	2718	2407	2165	1969	1800	1694	1598	1512	1435	1368
3451	3037	2685	2411	2190	2000	1882	1775	1678	1593	1518

Reference Fuel and Time Required at Check Point

				PRESS	URE ALT	TUDE (10	00 FT)			
AIR DIST	1	10 14		4	1	8	2	2	2	8
(NM)	FUEL (1000 LB)	TIME (HR:MIN)								
200	10.8	0:50	9.8	0:48	8.8	0:46	8.0	0:44	7.4	0:42
400	22.4	1:37	20.6	1:32	18.7	1:28	17.4	1:24	16.6	1:18
600	33.7	2:25	31.2	2:17	28.5	2:11	26.5	2:04	25.5	1:55
800	44.7	3:13	41.5	3:03	38.1	2:54	35.5	2:45	34.2	2:32
1000	55.5	4:03	51.7	3:50	47.5	3:38	44.3	3:27	42.7	3:10
1200	66.0	4:54	61.6	4:38	56.6	4:23	52.8	4:09	50.8	3:48
1400	76.3	5:46	71.3	5:26	65.6	5:08	61.2	4:52	58.8	4:27
1600	86.4	6:39	80.8	6:16	74.5	5:54	69.5	5:35	66.5	5:07
1800	96.3	7:33	90.0	7:06	83.1	6:41	77.5	6:19	74.0	5:47
2000	105.9	8:28	99.1	7:58	91.6	7:29	85.5	7:04	81.3	6:27

Fuel Required Adjustment (1000 LB)

REFERENCE FUEL REQUIRED		WEIGHT AT	CHECK POIN	TT (1000 LB)	
(1000 LB)	200	250	300	350	400
10	-1.7	-0.8	0.0	1.4	2.8
20	-3.6	-1.8	0.0	2.9	6.0
30	-5.5	-2.8	0.0	4.5	9.1
40	-7.4	-3.7	0.0	6.0	12.2
50	-9.3	-4.7	0.0	7.5	15.3
60	-11.1	-5.6	0.0	9.1	18.4
70	-12.9	-6.6	0.0	10.6	21.4
80	-14.7	-7.5	0.0	12.1	24.5
90	-16.4	-8.4	0.0	13.7	27.5
100	-18.2	-9.3	0.0	15.2	30.5
110	-19.9	-10.3	0.0	16.7	33.5

Descent at VREF30 + 70

PRESSURE ALTITUDE (1000 FT)	5	10	15	17	19	21	23	25	27	29	31	33	35
DISTANCE (NM)	16	26	36	40	44	48	52	56	60	65	68	72	76
TIME (MINUTES)	7	10	12	13	14	15	16	17	17	18	19	20	20

Performance Inflight -Gear Down

767 Flight Crew Operations Manual

GEAR DOWN

Holding Flaps Up

W	EIGHT			PRESSU	JRE ALTITU	DE (FT)		
	000 LB)	1500	5000	10000	15000	20000	25000	30000
	EPR	1.14	1.18	1.24	1.33			
420	KIAS	249	249	249	249			
	FF/ENG	10890	10820	10860	11030			
	EPR	1.13	1.16	1.22	1.30	1.44		
400	KIAS	242	242	242	242	242		
	FF/ENG	10320	10230	10240	10320	10640		
	EPR	1.12	1.15	1.20	1.28	1.40		
380	KIAS	236	236	236	236	236		
	FF/ENG	9750	9660	9640	9640	9880		
	EPR	1.11	1.14	1.18	1.25	1.36		
360	KIAS	229	229	229	229	229		
	FF/ENG	9200	9110	9060	9000	9140		
	EPR	1.10	1.13	1.17	1.23	1.32	1.49	
340	KIAS	221	221	221	221	221	221	
	FF/ENG	8620	8540	8470	8390	8390	8980	
	EPR	1.09	1.12	1.16	1.21	1.29	1.43	
320	KIAS	215	215	215	215	215	215	
	FF/ENG	8110	8030	7980	7870	7790	8260	
	EPR	1.09	1.11	1.14	1.19	1.27	1.39	
300	KIAS	210	210	210	210	210	210	
	FF/ENG	7640	7580	7530	7410	7290	7620	
	EPR	1.08	1.10	1.13	1.17	1.24	1.34	1.53
280	KIAS	205	205	205	205	205	205	205
	FF/ENG	7180	7130	7070	6960	6810	7000	7540
	EPR	1.07	1.09	1.12	1.16	1.22	1.31	1.46
260	KIAS	200	200	200	200	200	200	200
	FF/ENG	6720	6660	6620	6510	6340	6430	6870
	EPR	1.06	1.08	1.10	1.14	1.19	1.27	1.40
240	KIAS	194	194	194	194	194	194	194
	FF/ENG	6300	6210	6180	6080	5910	5930	6230
	EPR	1.06	1.07	1.09	1.13	1.17	1.24	1.35
220	KIAS	189	189	189	189	189	189	189
	FF/ENG	5890	5780	5750	5660	5490	5470	5630

This table includes 5% additional fuel for holding in a racetrack pattern.

Performance Inflight -Gear Down

DO NOT USE FOR FLIGHT

767 Flight Crew Operations Manual

767-300/PW4060 FAA Category C & D Brake

Intentionally Blank

767 Flight Crew Operations Manual

Performance Inflight - Gear Down, Engine Inop

Chapter PI Section 26

GEAR DOWN ENGINE INOP

Initial Max Continuous EPR Based on engine bleed for one pack on and APU off

P	RESSURE		CRUISE MACH NUMBER					
	TTUDE (FT)	.40	.50	.60				
	EPR	1.75	1.78	1.75				
29000	MAX TAT	-10	-15	-8				
	EPR CORR	0.09	0.09	0.09				
	EPR	1.75	1.78	1.76				
27000	MAX TAT	-10	-12	-6				
	EPR CORR	0.09	0.09	0.09				
	EPR	1.75	1.78	1.76				
25000	MAX TAT	-10	-10	-3				
	EPR CORR	0.09	0.09	0.09				
	EPR	1.75	1.78	1.76				
23000	MAX TAT	-11	-6	-1				
	EPR CORR	0.08	0.09	0.09				
	EPR	1.73	1.78	1.75				
21000	MAX TAT	-7	-3	3				
	EPR CORR	0.09	0.09	0.09				
	EPR	1.71	1.78	1.74				
19000	MAX TAT	-4	0	7				
	EPR CORR	0.10	0.09	0.09				
	EPR	1.63	1.76	1.70				
15000	MAX TAT	4	9	15				
	EPR CORR	0.09	0.09	0.09				
	EPR	1.54	1.59	1.54				
10000	MAX TAT	14	20	25				
	EPR CORR	0.08	0.08	0.07				

Decrease EPR by the EPR CORR for every 10°C above the MAX TAT shown.

767 Flight Crew Operations Manual

767-300/PW4060 FAA Category C & D Brake

MAX CONTINUOUS THRUST

Driftdown Speed/Level Off Altitude 100 ft/min residual rate of climb

WEIGHT	(1000 LB)	OPTIMUM	LEVEL OFF ALTITUDE (FT)				
START DRIFT DOWN	LEVEL OFF	DRIFTDOWN SPEED (KIAS)	ISA + 10°C & BELOW	ISA + 15°C	ISA + 20°C		
380	362	233	4900	3100			
360	344	226	7400	5700	3700		
340	326	218	9700	8200	6400		
320	306	213	11700	10500	8900		
300	288	208	13600	12800	11200		
280	270	203	15500	15100	13800		
260	250	198	17100	17000	16100		
240	231	193	19100	19000	18400		
220	212	187	21000	20900	20400		

Includes APU fuel burn.

Long Range Cruise Altitude Capability 100 ff/min residual rate of climb

WEIGHT		PRESSURE ALTITUDE (FT)						
(1000 LB)	ISA + 10°C & BELOW	ISA + 15°C	ISA + 20°C					
340	3300							
330	4800							
320	6400	3700						
310	7900	5500	2700					
300	9400	7100	4500					
290	10900	8800	6300					
280	12300	10500	8100					
270	13700	12100	9800					
260	15100	13600	11600					
250	16500	15000	13400					
240	17800	16300	14900					
230	19000	17800	16300					
220	20200	19100	17700					

Performance Inflight -Gear Down, Engine Inop

767 Flight Crew Operations Manual

GEAR DOWN ENGINE INOP

MAX CONTINUOUS THRUST

Long Range Cruise Control

WE	IGHT			PRES	SURE ALT	ITUDE (100	00 FT)		
(100	00 LB)	6	8	10	12	14	16	18	20
Î	EPR	1.42	1.48						
320	MACH	.379	.388						
320	KIAS	225	222						
	FF/ENG	16096	16186						
	EPR	1.39	1.43	1.50					
300	MACH	.371	.381	.390					
300	KIAS	220	218	215					
	FF/ENG	14960	15019	15130					
	EPR	1.35	1.39	1.44	1.51	1.60			
280	MACH	.362	.372	.381	.391	.405			
280	KIAS	215	213	210	208	207			
	FF/ENG	13914	13887	13939	14085	14556			
	EPR	1.32	1.36	1.40	1.44	1.51	1.61		
260	MACH	.352	.363	.372	.382	.392	.407		
200	KIAS	209	208	205	203	200	200		
	FF/ENG	12889	12845	12824	12896	13012	13438		
	EPR	1.29	1.32	1.35	1.40	1.45	1.52	1.62	
240	MACH	.341	.351	.362	.372	.382	.396	.412	
240	KIAS	202	201	200	197	195	194	194	
	FF/ENG	11880	11827	11789	11788	11798	12047	12471	
	EPR	1.25	1.28	1.32	1.35	1.39	1.45	1.53	1.64
220	MACH	.328	.339	.350	.361	.371	.385	.400	.416
220	KIAS	195	194	193	191	189	189	189	189
	FF/ENG	10861	10825	10779	10757	10685	10819	11087	11527

767 Flight Crew Operations Manual

767-300/PW4060 FAA Category C & D Brake

MAX CONTINUOUS THRUST

Long Range Cruise Diversion Fuel and Time Ground to Air Miles Conversion

	AIR D	ISTANCE	E (NM)		GROUND	AIR DISTANCE (NM)				
HEADWIND COMPONENT (KTS)				DISTANCE	TAILWIND COMPONENT (KTS)					
100	80	60	40	20	(NM)	20	40	60	80	100
166	147	131	119	109	100	94	89	84	79	75
338	299	266	239	218	200	187	175	165	156	148
512	452	400	360	328	300	280	262	246	233	221
686	604	535	481	438	400	374	350	329	310	294
862	758	670	602	547	500	467	437	410	387	367
1038	913	806	724	657	600	560	524	491	463	439
1216	1068	942	845	767	700	653	610	573	540	512
1395	1224	1079	967	877	800	746	697	654	616	584
1575	1381	1216	1089	988	900	839	784	735	693	656
1757	1539	1354	1211	1098	1000	932	870	816	768	728

Reference Fuel and Time Required at Check Point

A ID	PRESSURE ALTITUDE (1000 FT)							
AIR DIST	6		10		14		18	
(NM)	FUEL (1000 LB)	TIME (HR:MIN)	FUEL (1000 LB)	TIME (HR:MIN)	FUEL (1000 LB)	TIME (HR:MIN)	FUEL (1000 LB)	TIME (HR:MIN)
100	5.6	0:28	5.1	0:27	4.7	0:26	4.3	0:26
200	11.8	0:53	11.1	0:52	10.8	0:50	10.5	0:48
300	17.9	1:18	17.0	1:16	16.7	1:13	16.5	1:10
400	23.9	1:44	22.8	1:41	22.5	1:37	22.4	1:32
500	29.8	2:10	28.5	2:06	28.2	2:00	28.2	1:55
600	35.7	2:36	34.1	2:30	33.7	2:24	33.9	2:17
700	41.4	3:02	39.7	2:56	39.2	2:49	39.4	2:40
800	47.1	3:29	45.1	3:21	44.5	3:13	44.8	3:03
900	52.8	3:55	50.5	3:47	49.7	3:38	50.0	3:27
1000	58.3	4:22	55.8	4:12	54.8	4:02	55.2	3:50

Fuel Required Adjustment (1000 LB)

REFERENCE FUEL REQUIRED	WEIGHT AT CHECK POINT (1000 LB)						
(1000 LB)	200	250	300	350	400		
5	-1.0	-0.5	0.0	0.7	1.3		
10	-2.0	-1.0	0.0	1.5	2.9		
15	-3.1	-1.6	0.0	2.3	4.4		
20	-4.2	-2.1	0.0	3.1	6.0		
25	-5.3	-2.7	0.0	4.0	7.6		
30	-6.3	-3.2	0.0	4.8	9.2		
35	-7.4	-3.7	0.0	5.7	10.9		
40	-8.5	-4.3	0.0	6.5	12.6		
45	-9.5	-4.8	0.0	7.4	14.3		
50	-10.6	-5.3	0.0	8.3	16.0		
55	-11.6	-5.8	0.0	9.2	17.7		
60	-12.7	-6.4	0.0	10.1	19.5		

Includes APU fuel burn.

Performance Inflight -Gear Down, Engine Inop

767 Flight Crew Operations Manual

GEAR DOWN ENGINE INOP

MAX CONTINUOUS THRUST

Holding Flaps Up

W	EIGHT		PRES	SSURE ALTITUDE	E (FT)	
(10	000 LB)	1500	5000	10000	15000	20000
	EPR	1.37				
360	KIAS	229				
	FF/ENG	18020				
	EPR	1.34	1.42			
340	KIAS	221	221			
	FF/ENG	16760	17100			
	EPR	1.31	1.38			
320	KIAS	215	215			
	FF/ENG	15670	15850			
	EPR	1.28	1.34	1.48		
300	KIAS	210	210	210		
	FF/ENG	14690	14780	15420		
	EPR	1.26	1.31	1.42		
280	KIAS	205	205	205		
	FF/ENG	13730	13770	14180		
	EPR	1.23	1.28	1.38	1.55	
260	KIAS	200	200	200	200	
	FF/ENG	12790	12790	13000	13860	
	EPR	1.21	1.26	1.34	1.48	
240	KIAS	194	194	194	194	
	FF/ENG	11890	11850	11960	12470	
	EPR	1.19	1.23	1.30	1.42	1.64
220	KIAS	189	189	189	189	189
	FF/ENG	11010	10960	11000	11250	12100

This table includes 5% additional fuel for holding in a racetrack pattern.

Performance Inflight -Gear Down, Engine Inop

DO NOT USE FOR FLIGHT

767 Flight Crew Operations Manual

767-300/PW4060 FAA Category C & D Brake

Intentionally Blank

767-300/PW4060 FAA Category C & D Brake

DO NOT USE FOR FLIGHT

767 Flight Crew Operations Manual

Performance Inflight Text

Chapter PI Section 27

Introduction

This chapter contains information to supplement performance data from the Flight Management Computer (FMC). In addition, sufficient inflight data is provided to complete a flight with the FMC inoperative. In the event of conflict between data presented in this chapter and that contained in the approved Airplane Flight Manual, the Flight Manual shall always take precedence.

Takeoff Speeds

The speeds presented in the Takeoff Speeds table can be used for all performance conditions except where adjustments must be made to V1 for clearway, stopway, anti-skid inoperative, brakes deactivated, improved climb, contaminated runway situations, brake energy limits, or obstacle clearance with unbalanced V1. These speeds may be used for weights less than or equal to the performance limited weight.

Normal takeoff speeds, V1, VR, and V2, with anti-skid on and all brakes operative, are read from the table by entering with takeoff flap setting, brake release weight and appropriate column. The appropriate column is obtained by entering the Column Reference chart with the airport pressure altitude and the actual temperature or assumed temperature for reduced thrust takeoffs. Slope and wind adjustments to V1 are obtained by entering the V1 Adjustment chart. Adjusted V1 must not exceed VR. These takeoff speeds are not valid when the brake release weight is based on clearway, stopway, improved climb or is limited by tire speed or brake energy.

V1(MCG)

Regulations prohibit scheduling takeoff with a V1 less than minimum V1 for control on the ground, V1(MCG). Therefore compare the adjusted V1 to the V1(MCG). To find V1(MCG) enter the V1(MCG) table with the airport pressure altitude and actual OAT. If the adjusted V1 is less than V1(MCG), set V1 equal to V1(MCG). If VR is less than V1(MCG), set VR equal to V1(MCG), and determine a new V2 by adding the difference between the normal VR and V1(MCG) to the normal V2. No takeoff weight adjustment is necessary provided that the actual field length exceeds the minimum field length.

767 Flight Crew Operations Manual

767-300/PW4060 FAA Category C & D Brake

Clearway and Stopway V1 Adjustments

Takeoff speed adjustments are to be applied to V1 speed when using takeoff weights based on the use of clearway and stopway.

Adjust V1 speed by the amount shown in the table. The adjusted V1 speed must not exceed VR.

Maximum allowable clearway limits are provided for guidance when more precise data is not available.

Stab Trim

To find takeoff stabilizer trim setting, enter Stab Trim Setting table with anticipated brake release weight and center of gravity (C.G. % MAC) and read required stabilizer trim units.

VREF

This table contains flaps 30, 25 and 20 reference speeds for a given weight.

Flap Maneuver Speeds

This table provides the flap speed schedule for recommended maneuver speeds. Using VREF as the basis for the schedule makes it variable as a function of weight and will provide adequate maneuver margin above stall at all weights.

During flap retraction/extension, movement of the flap to the next position should be initiated when within 20 knots of the recommended speed for that position.

Slush/Standing Water Takeoff

Experience has shown that aircraft performance may deteriorate significantly on runways covered with snow, slush, standing water or ice. Therefore a reduction in runway/obstacle limited takeoff weight and revised takeoff speeds are necessary. The following information is intended for guidance in accordance with advisory material and is based on all engines operating throughout the takeoff.

The entire runway is assumed to be completely covered by a contaminant of uniform thickness and density. Therefore this information is conservative when operating under typical colder weather conditions where patches of slush exist and some degree of sanding is common. Takeoffs in slush depths greater than 0.5 inches (13 mm) are not recommended because of possible airplane damage as a result of slush impingement on the airplane structure. The use of assumed temperature for reduced thrust is not allowed on contaminated runways. Interpolation for slush/standing water depths between the values shown is permitted.

Performance Inflight -Text

767 Flight Crew Operations Manual

Takeoff weight is determined as follows:

- 1. Determine the field/obstacle limit weight for the takeoff flap setting.
- 2. Enter the Weight Adjustment table with the field/obstacle limit weight to obtain the weight reduction for the slush/standing water depth and airport pressure altitude.
- 3. Determine takeoff speeds VR and V2 for the actual brake release weight from the Takeoff Speeds chart.

Interpolate for intermediate slush depths as required using the dry runway conditions as zero slush depth.

Anti-Skid Inoperative

When operating with anti-skid inoperative, the field limit weight and V1 must be reduced to account for the effect on accelerate-stop performance. A simplified method which conservatively accounts for the effects of anti-skid inoperative is to reduce the normal runway/obstacle limited weight and the V1 associated with the reduced weight by the amount shown in the table below.

ANTI-SKID INOPERATIVE ADJUSTMENT				
FIELD LENGTH (FT)	WEIGHT (1000 LB)	V1 ADJUSTMENT (KTS)		
8000	-131.6	-40		
8100	-131.6	-40		
8900	-98.3	-38		
10000	-71.0	-35		
12000	-53.6	-31		
14000	-53.6	-27		

If the resulting V1 is less than V1(MCG), takeoff is permitted with V1 set equal to V1(MCG) provided the accelerate-stop distance adjusted for wind and slope exceeds approximately 8100 ft.

Detailed analysis for the specific case from the Airplane Flight Manual may yield a less restrictive penalty.

Brakes Deactivated

When operating with brakes deactivated, the field and brake energy limit weights and the V1 and VMBE must be reduced to allow for reduced braking capability. A simplified method which conservatively accounts for

767 Flight Crew Operations Manual

767-300/PW4060 FAA Category C & D Brake

the reduced braking capability of one brake deactivated is to reduce the normal runway/obstacle limited weight by 6400 lb and the V1 associated with the reduced weight by the amount shown in the table below.

ONE BRAKE DEACTIVATED SPEED ADJUSTMENT		
FIELD LENGTH (FT)	V1 ADJUSTMENT (KTS)	
4000	-4	
6000	-3	
8000	-3	
10000	-2	
12000	-2	
14000	-2	

If the resulting V1 is less than V1(MCG), takeoff is permitted with V1 set equal to V1(MCG) provided the accelerate-stop distance exceeds approximately 3800 ft for one brake deactivated.

Assumed Temperature Reduced Thrust

Regulations permit the use of up to 25% takeoff thrust reduction for operation with assumed temperature reduced thrust. Use of reduced thrust is not allowed on runways contaminated with water, ice, slush or snow. Use of assumed temperature reduced thrust is not recommended if potential windshear conditions exist. The assumed temperature reduced takeoff EPR is read from the Takeoff EPR table at the assumed temperature. The minimum allowable EPR for reduced thrust, based on 25% takeoff thrust reduction, is also shown. It is not recommended to set takeoff EPR lower than the scheduled climb EPR

Max Climb EPR

This table shows Max Climb EPR for a 250/290/.78 climb speed schedule, normal engine bleed for packs on and anti-ice off. Enter the table with airport pressure altitude and TAT and read EPR. EPR adjustments are shown for packs off and anti-ice operation.

Go-around EPR

To find Max Go-around EPR based on normal engine bleed for packs on, enter the Go-around EPR table with airport pressure altitude and reported OAT or TAT and read EPR. EPR adjustments are shown for packs off and wing anti-ice on.

Flight with Unreliable Airspeed / Turbulent Air Penetration

Pitch attitude and average EPR information is provided for use in all phases of flight in the event of unreliable airspeed/Mach indications resulting from blocking or freezing of the pitot system. Loss of radome or turbulent air may also cause unreliable airspeed/Mach indications. The cruise table in this section may also be used for turbulent air penetration.

Performance Inflight -Text

767 Flight Crew Operations Manual

Pitch attitude is shown in bold type for emphasis since altitude and/or vertical speed indications may also be unreliable.

All Engines

Long Range Cruise Maximum Operating Altitude

These tables provide the maximum operating altitude in the same manner as the FMC. Maximum altitudes are shown for a given cruise weight and maneuver capability. Note that these tables consider both thrust and buffet limits, providing the more limiting of the two. Any data that is thrust limited is denoted by an asterisk and represents only a thrust limited condition in level flight with maximum cruise thrust at 0 ft/min residual rate of climb or maximum climb thrust at 100 ft/min residual rate of climb. Flying above these altitudes with sustained banks in excess of approximately 12° may cause the airplane to lose speed and/or altitude.

Note that optimum altitudes shown in the tables result in buffet related maneuver margins of 1.5g (48° bank) or more. The altitudes shown in the table are limited to the maximum certified altitude of 43100 ft.

Long Range Cruise Control

These tables provide target EPR, Long Range Cruise Mach number, IAS and standard day fuel flow per engine for the airplane weight and pressure altitude. As indicated by the shaded area, at optimum altitude .80M approximates the Long Range Cruise Mach schedule.

APU Operation During Flight

For APU operation during flight, increase fuel flow according to the table in the Engine Inoperative text section.

Long Range Cruise Enroute Fuel and Time

Long Range Cruise Enroute Fuel and Time tables are provided to determine remaining time and fuel required to destination. The data is based on Long Range Cruise and .78/290/250 descent. Tables are presented for low altitudes and high altitudes.

To determine remaining fuel and time required, first enter the Ground to Air Miles Conversion table to convert ground distance and enroute wind to an equivalent still air distance for use with the Reference Fuel and Time tables. Next, enter the Reference Fuel and Time table with air distance from the Ground to Air Miles Conversion table and the desired altitude and read Reference Fuel and Time Required. Lastly, enter the Fuel Required Adjustment Table with the Reference Fuel and the actual weight at checkpoint to obtain fuel required to destination.

767 Flight Crew Operations Manual

767-300/PW4060 FAA Category C & D Brake

Long Range Cruise Wind-Altitude Trade

Wind is a factor which may justify operations considerably below optimum altitude. For example, a favorable wind component may have an effect on ground speed which more than compensates for the loss in air range.

Using this table, it is possible to determine the break-even wind (advantage necessary or disadvantage that can be tolerated) to maintain the same range at another altitude and long range cruise speed. The table makes no allowance for climb or descent time, fuel or distance, and are based on comparing ground fuel mileage.

Descent

Distance and time for descent are shown for a .78/290/250 descent speed schedule. Enter the table with top of descent pressure altitude and read distance in nautical miles and time in minutes. Data is based on flight idle thrust descent in zero wind. Allowances are included for a straight-in approach with gear down and landing flaps at the outer marker.

Holding

Target EPR, indicated airspeed and fuel flow per engine information is tabulated for holding with flaps up based on the FMC optimum holding speed schedule. This is the higher of the maximum endurance speed and the maneuvering speed. Small variations in airspeed will not appreciably affect the overall endurance time. Enter the table with weight and pressure altitude to read EPR, IAS and fuel flow per engine.

Advisory Information

Normal Configuration Landing Distance

Tables are provided as advisory information for normal configuration landing distances on dry runways and slippery runways with good, medium, and poor reported braking action. These values are actual landing distances and do not include the 1.67 regulatory factor. Therefore, they cannot be used to determine the dispatch required landing field length.

To use these tables, determine the reference landing distance for the selected braking configuration. Then adjust the reference distance for landing weight, altitude, wind, slope, temperature, approach speed, and the number of operative thrust reversers to obtain the actual landing distance.

When landing on slippery runways or runways contaminated with ice, snow, slush, or standing water, the reported braking action must be considered. If the surface is affected by water, snow, or ice, and the braking action is reported as "good", conditions should not be expected to

Performance Inflight -Text

767 Flight Crew Operations Manual

be as good as on clean, dry runways. The value "good" is comparative and is intended to mean that airplanes should not experience braking or directional control difficulties when landing. The performance level used to calculate the "good" data is consistent with wet runway testing done on early Boeing jets. The performance level used to calculate "poor" data reflects runways covered with wet ice.

Use of the autobrake system commands the airplane to a constant deceleration rate. In some conditions, such as a runway with "poor" braking action, the airplane may not be able to achieve these deceleration rates. In these cases, runway slope and inoperative reversers influence the stopping distance. Since it cannot be determined quickly when this becomes a factor, it is appropriate to add the effects of slope and inoperative reversers when using the autobrake system.

Non-normal Configuration Landing Distance

Advisory information is provided to support non-normal configurations that affect the landing performance of the airplane. Landing distances and adjustments are provided for dry runways and runways with good, medium, and poor reported braking action.

Enter the table with the applicable non-normal configuration and read the normal approach speed. The reference landing distance is a reference distance from 50 ft above the threshold to stop based on a reference landing weight and speed at sea level, zero wind, and zero slope. Subsequent columns provide adjustments for off-reference landing weight, altitude, wind, slope, temperature, and speed conditions as well as thrust reverser configuration. Each adjustment is independently added to the reference landing distance. Landing distance includes the effects of max manual braking and reverse thrust.

Recommended Brake Cooling Schedule

Advisory information is provided to assist in avoiding the problems associated with hot brakes. For normal operation, most landings are at weights below the AFM quick turnaround limit weight.

Use of the recommended cooling schedule will help avoid brake overheat and fuse plug problems that could result from repeated landing at short time intervals or a rejected takeoff.

Enter the Recommended Brake Cooling Schedule table with the airplane weight, the brakes on speed adjusted for wind and the appropriate temperature and altitude condition. Instructions for applying wind adjustments are included below the table. Linear interpolation may be used

767 Flight Crew Operations Manual

767-300/PW4060 FAA Category C & D Brake

to obtain intermediate values. The resulting number is the reference brake energy per brake in millions of foot-pounds, and represents the amount of energy absorbed by each brake during a rejected takeoff.

To determine the energy per brake absorbed during landing, enter the appropriate Adjusted Brake Energy Per Brake table (No Reverse Thrust or 2 Engine Reverse Thrust) with the reference brake energy per brake and the type of braking used during landing (Max Manual, Max Auto, or Autobrake). The resulting number is the adjusted brake energy per brake and represents the energy absorbed in each brake during the landing.

The recommended cooling time is found in the final table by entering with the adjusted brake energy per brake or brake temperature monitor system (BTMS) indication on EICAS. Times are provided for ground cooling and inflight gear down cooling.

If brake temperature monitor indication on EICAS is available, the hottest brake indication 10 to 15 minutes after the airplane has come to a complete stop, or inflight with gear retracted, may be used to determine the recommended cooling schedule by entering at the bottom of the chart. The brake temperature light illuminates when the hottest brake is registering 5 on the EICAS indication and extinguishes as the hottest brake cools with an EICAS indication of 4

Engine Inoperative

Initial Max Continuous EPR

The Initial Max Continuous EPR setting for use following an engine failure is shown. The table shows a range of Cruise Mach numbers to provide a target EPR setting at the start of driftdown. Also shown is the maximum TAT at which the limit EPR can be set. Once driftdown is established, the Max Continuous EPR table should be used to determine EPR for the given conditions.

Max Continuous EPR

Power setting is based on one engine operating with one A/C pack operating and all anti-ice bleeds off. Enter the table with pressure altitude and IAS or Mach to read EPR.

It is desirable to maintain engine thrust level within the limits of the Max Cruise Thrust rating. However, where thrust level in excess of Max Cruise rating is required, such as for meeting terrain clearance, ATC altitude assignments, or to attain maximum range capability, it is permissible to use the thrust needed up to the Max Continuous Thrust rating. The Max

767 Flight Crew Operations Manual

Performance Inflight -Text

Continuous Thrust rating is intended primarily for emergency use at the discretion of the pilot and is the maximum thrust that may be used continuously.

Driftdown Speed/Level Off Altitude

The table shows optimum driftdown speed as a function of cruise weight at start of driftdown. Also shown are the approximate weight and pressure altitude at which the airplane will level off considering 100 ft/min residual rate of climb.

The level off altitude is dependent on air temperature (ISA deviation).

Driftdown/LRC Range Capability

This table shows the range capability from the start of driftdown. Driftdown is continued to level off altitude. As weight decreases due to fuel burn, the airplane is accelerated to Long Range Cruise speed. The cruise segment is at a level off altitude which is based on 100 ft/min residual rate of climb.

To determine fuel required, enter the Ground to Air Miles Conversion table with the desired ground distance and adjust for anticipated winds to obtain air distance to destination. Then enter the Driftdown/Cruise Fuel and Time table with air distance and weight at start of driftdown to determine fuel and time required. If altitudes other than the level off altitude are used, fuel and time required may be obtained by using the Engine Inoperative Long Range Cruise Enroute Fuel and Time table.

Long Range Cruise Altitude Capability

The table shows the maximum altitude that can be maintained at a given weight and air temperature (ISA deviation), based on Long Range Cruise speed, Max Continuous thrust, and 100 ft/min residual rate of climb.

Long Range Cruise Control

The table provides target EPR, engine inoperative Long Range Cruise Mach number, IAS and fuel flow for the airplane weight and pressure altitude. The fuel flow values in this table reflect single engine fuel burn.

767 Flight Crew Operations Manual

767-300/PW4060 FAA Category C & D Brake

APU Operation During Flight

For APU operation during flight, increase fuel flow according to the following table. These increments include the APU fuel flow and the effect of increased drag from the APU door.

PRESSURE	APU FUEL FLOW PENALTY (LB/HR) GROSS WEIGHT (1000 LB)					
ALTITUDE						
(1000 FT)	420	380	340	300	260	220
43					135	125
39				140	135	130
35		160	155	150	145	140
31	170	165	165	160	155	150
27	185	180	175	170	165	155
25	190	185	180	180	165	160
20	205	200	195	185	175	170
15	235	225	215	205	200	195
10	255	250	240	230	225	215
5	275	275	260	255	250	245

Long Range Cruise Diversion Fuel and Time

Tables are provided for crews to determine the fuel and time required to proceed to an alternate airfield with one engine inoperative. The data is based on single engine Long Range Cruise speed and .78/290/250 descent. Enter with Air Distance as determined from the Ground to Air Miles Conversion table and read Fuel and Time required at the cruise pressure altitude. Adjust the fuel obtained for deviation from the reference weight at checkpoint as required by entering the Fuel Required Adjustment table with the fuel required for the reference weight and the actual weight at checkpoint. Read fuel and time required for the actual weight.

Holding

Single engine holding data is provided in the same format as the all engine holding data and is based on the same assumptions.

Alternate EEC Mode

Introduction

This section contains performance data for airplane operation using with the Electronic Engine Controls (EEC) in the ALTERNATE Mode. The data includes engine bleed effects for normal air conditioning operation; i.e., two packs on at normal flow all engines operating, and one pack on at normal flow with engine inoperative.

Performance Inflight -Text

767 Flight Crew Operations Manual

Takeoff thrust setting with EEC's in ALTERNATE Mode is achieved by advancing both throttles together and setting the target EPR on the engine with EPR available. During takeoff roll, minor adjustments to the non-EPR engine throttle may be made prior to 80 kts to match %N1 to the %N1 on the engine set to EPR.

Takeoff Performance

A simplified method which conservatively accounts for the effects of EEC in the ALTERNATE Mode is to reduce the normal limit weights. The Takeoff Performance table provides takeoff field, climb and obstacle limit weight adjustments. To determine limit weight for operations enter the table with airport OAT and apply the weight reduction to the normal full rate limit weight. The most limiting of the takeoff weights must be used.

Improved climb performance procedure and reduced thrust operation using assumed temperature method is not permitted. Derate 1 and Derate 2 operation is not permitted. Use of autothrottle is not permitted.

Takeoff Speeds

Takeoff speeds for the reduced weights should be adjusted by the amount shown in the Takeoff Speeds table. The adjusted V1 should not exceed the adjusted VR.

NOTE: The FMC does not incorporate Alternate EEC Mode performance in its takeoff speeds calculations.

Landing Performance

The Landing Performance table provides the weight adjustment that must be applied to the Approach/Landing Climb limit weight. Enter the table with airport OAT and apply the weight reduction to the normal full rate limit weight. The ALTERNATE Mode EEC Approach/Landing Climb limit must be compared to the Landing Field Length limit and the most limiting of the two be used as the landing limit weight.

Takeoff EPR/Go-around EPR/Go-around %N1

Takeoff and Go-around power setting are presented for normal air conditioning bleed. Max Takeoff or Go-around EPR may be read directly from the tables for the desired pressure altitude and airport OAT. Go-around %N1 is provided in the event that EPR becomes unavailable during the flight.

Thrust protection is not provided in the Alternate EEC Mode and maximum rated thrust is reached at a thrust lever position less than full forward. As a result, thrust overboost can occur at full forward thrust lever positions.

767 Flight Crew Operations Manual

767-300/PW4060 FAA Category C & D Brake

Alternate EEC Mode, Engine Inoperative

Initial Max Continuous %N1

The Initial Max Continuous %N1 setting, with normal engine bleed for packs on and anti-ice off, following engine failure in cruise is shown for a range of altitudes and TAT.

Max Continuous %N1

Max Continuous %N1 which can be set during engine out cruise conditions is presented. Enter the appropriate table with pressure altitude, TAT, and KIAS to obtain Maximum Continuous %N1. Intermediate airspeeds may be interpolated. Appropriate bleed adjustments are shown.

Gear Down

This section contains performance for airplane operation with the landing gear extended for all phases of flight. The data is based on engine bleeds for normal air conditioning.

NOTE: The Flight Management Computer System (FMCS) does not contain special provisions for operation with landing gear extended. As a result, the FMCS will generate inaccurate enroute speed schedules, display non-conservative predictions of fuel burn, estimated time of arrival (ETA), maximum altitude, and compute overly shallow descent path. To obtain accurate ETA predictions, gear down cruise speed and altitude should be entered on the CLB and CRZ pages. Gear down cruise speed should also be entered on the DES page and a STEP SIZE of zero should be entered on the PERF INIT or CRZ page. Use of the VNAV during descent under these circumstances is not recommended.

Tables for gear down performance in this section are identical in format and used in the same manner as tables for the gear up configuration previously described.

767 Flight Crew Operations Manual

Airplane General, Emergency	Chapter 1
Equipment, Doors, Windows	0.4.0
Table of Contents	Section 0
Dimensions	
Principal Dimensions	
Turning Radius	1.10.3
Instrument Panels	1.20
Flight Deck Panels	1.20.1
Left Overhead Panel	1.20.2
Right Overhead Panel	1.20.3
Instrument Panels	1.21
Left Forward Panel	1.21.1
Right Forward Panel	1.21.2
Glareshield Panel	1.21.3
Center Forward Panel	1.21.4
Forward Aisle Stand	1.21.5
Instrument Panels	1.22
Control Stand	1.22.1
Aft Aisle Stand	1.22.2
Right Sidewall, Accessory Panel	1.22.3
Left, Right Sidewall, and Observer Panels	1.22.4
Controls and Indicators	1.30
Push–Button Switches	1.30.1
Alternate Action Switches	1.30.1
Momentary Action Switches	1.30.2
Passenger Cabin Signs	1.30.2
Passenger Sign Selectors	
Lighting	
Flight Deck Lighting	
Exterior Lighting	

Airplane General, Emergen O NOT USE FOR FLIGHT Equipment, Doors, Windows **Table of Contents**

767 Flight Crew Operations Manual

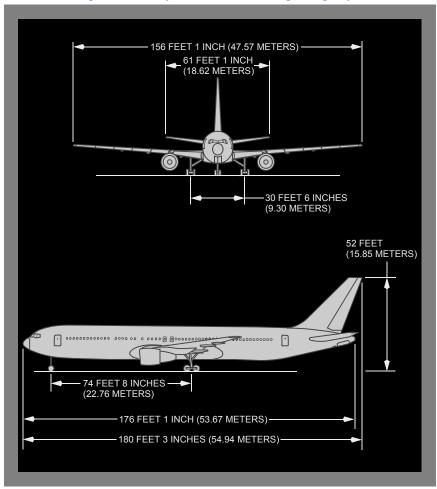
Emergency Lighting Controls
Doors and Windows
Exterior Door Annunciator Lights
Exterior Door Locations
Passenger Entry Doors
Passenger Door Control and Mode Select Panel 1.30.14
Interior Entry Door Electric Assist Controls1.30.15
Exterior Entry Door Controls
Overwing Emergency Exit Doors
Emergency Doors
Flight Deck Security Door
Flight Deck Number Two Window
Oxygen Systems
Oxygen Indications
Passenger Oxygen Switch
Oxygen Mask Panel
Oxygen Mask and Regulator1.30.26
Onygon what regulator
Emergency Evacuation Panel 1.30.27
-
Emergency Evacuation Panel
Emergency Evacuation Panel1.30.27Systems Description1.40Introduction1.40.1
Emergency Evacuation Panel1.30.27Systems Description1.40Introduction1.40.1Lighting Systems1.40.1
Emergency Evacuation Panel1.30.27Systems Description1.40Introduction1.40.1
Emergency Evacuation Panel1.30.27Systems Description1.40Introduction1.40.1Lighting Systems1.40.1Exterior Lighting1.40.1Exterior Lighting Locations1.40.2
Emergency Evacuation Panel1.30.27Systems Description1.40Introduction1.40.1Lighting Systems1.40.1Exterior Lighting1.40.1
Emergency Evacuation Panel1.30.27Systems Description1.40Introduction1.40.1Lighting Systems1.40.1Exterior Lighting1.40.1Exterior Lighting Locations1.40.2Flight Deck Lighting1.40.3
Emergency Evacuation Panel 1.30.27 Systems Description 1.40 Introduction 1.40.1 Lighting Systems 1.40.1 Exterior Lighting 1.40.1 Exterior Lighting Locations 1.40.2 Flight Deck Lighting 1.40.3 Indicator Lights 1.40.3
Emergency Evacuation Panel 1.30.27 Systems Description 1.40 Introduction 1.40.1 Lighting Systems 1.40.1 Exterior Lighting 1.40.1 Exterior Lighting Locations 1.40.2 Flight Deck Lighting 1.40.3 Indicator Lights 1.40.3 Passenger Cabin Signs 1.40.3
Emergency Evacuation Panel 1.30.27 Systems Description 1.40 Introduction 1.40.1 Lighting Systems 1.40.1 Exterior Lighting 1.40.1 Exterior Lighting Locations 1.40.2 Flight Deck Lighting 1.40.3 Indicator Lights 1.40.3 Passenger Cabin Signs 1.40.3 Emergency Lighting 1.40.4
Emergency Evacuation Panel 1.30.27 Systems Description 1.40 Introduction 1.40.1 Lighting Systems 1.40.1 Exterior Lighting 1.40.1 Exterior Lighting Locations 1.40.2 Flight Deck Lighting 1.40.3 Indicator Lights 1.40.3 Passenger Cabin Signs 1.40.3 Emergency Lighting 1.40.4 Oxygen Systems 1.40.5
Emergency Evacuation Panel 1.30.27 Systems Description 1.40 Introduction 1.40.1 Lighting Systems 1.40.1 Exterior Lighting 1.40.1 Exterior Lighting Locations 1.40.2 Flight Deck Lighting 1.40.3 Indicator Lights 1.40.3 Passenger Cabin Signs 1.40.3 Emergency Lighting 1.40.4 Oxygen Systems 1.40.5 Flight Crew Oxygen System 1.40.5
Emergency Evacuation Panel 1.30.27 Systems Description 1.40 Introduction 1.40.1 Lighting Systems 1.40.1 Exterior Lighting 1.40.1 Exterior Lighting Locations 1.40.2 Flight Deck Lighting 1.40.3 Indicator Lights 1.40.3 Passenger Cabin Signs 1.40.3 Emergency Lighting 1.40.4 Oxygen Systems 1.40.5 Flight Crew Oxygen System 1.40.5 Passenger Oxygen System 1.40.5 Passenger Oxygen System 1.40.5
Emergency Evacuation Panel 1.30.27 Systems Description 1.40 Introduction 1.40.1 Lighting Systems 1.40.1 Exterior Lighting 1.40.1 Exterior Lighting Locations 1.40.2 Flight Deck Lighting 1.40.3 Indicator Lights 1.40.3 Passenger Cabin Signs 1.40.3 Emergency Lighting 1.40.4 Oxygen Systems 1.40.5 Flight Crew Oxygen System 1.40.5 Passenger Oxygen System 1.40.5 Portable Oxygen Bottles 1.40.5

DO NOT USE FOR FLIGHT Airplane General, Emergency Equipment, Doors, Windows -**Table of Contents**

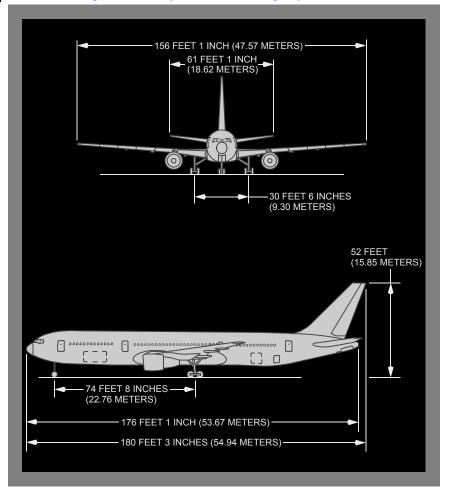
767 Flight Crew Operations Manual

Flight Deck Number Two Windows 1.40.7
Passenger Entry Doors
Passenger Entry Door and Slide Operation 1.40.9
Escape Slide/Raft Deployed 1.40.10
Emergency Doors
Overwing Emergency Exit Doors
Evacuation Slides
Cargo Doors
Flight Deck Seats
Pilot Seat Adjustment
Emergency Equipment
Introduction
Emergency Equipment. 1.45.1
Fire Extinguishers
Miscellaneous Emergency Equipment 1.45.2
Emergency Evacuation Signal System
Emergency Equipment Symbols 1.45.3
Emergency Equipment Locations
EICAS Messages
Airplane General, Emergency Equipment, Doors, Windows EICAS
Messages
Access Doors
Cargo Doors
Entry Doors. 1.50.2
Emergency Exit Doors
Overwing Emergency Exit Doors
Emergency Lights
Oxygen System

Copyright © The Boeing Company. See title page for details.

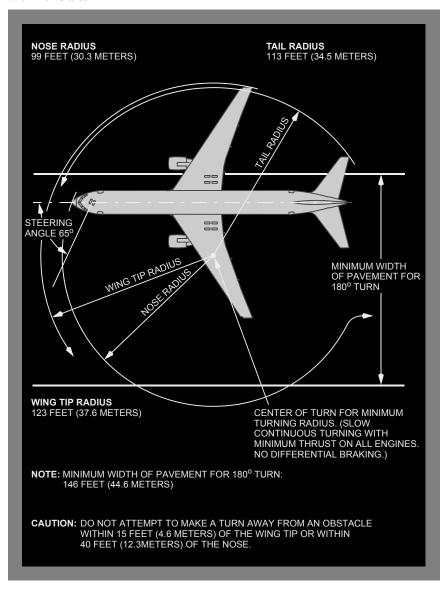

Intentionally Blank

767 Flight Crew Operations Manual


Airplane General, Emergency Chapter 1
Equipment, Doors, Windows
Dimensions Section 10

Principal Dimensions

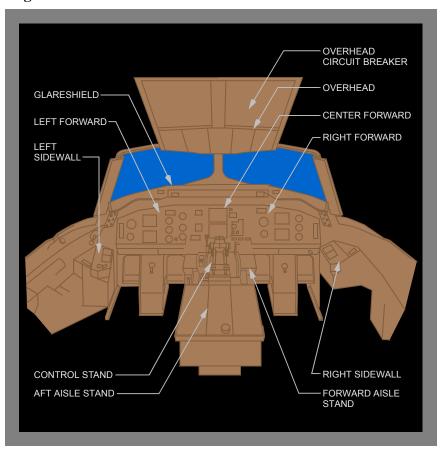
767-300 Passenger with 4 entry doors and 4 overwing emergency doors.



767-300 Passenger with 6 entry doors and 2 emergency doors.

Turning Radius

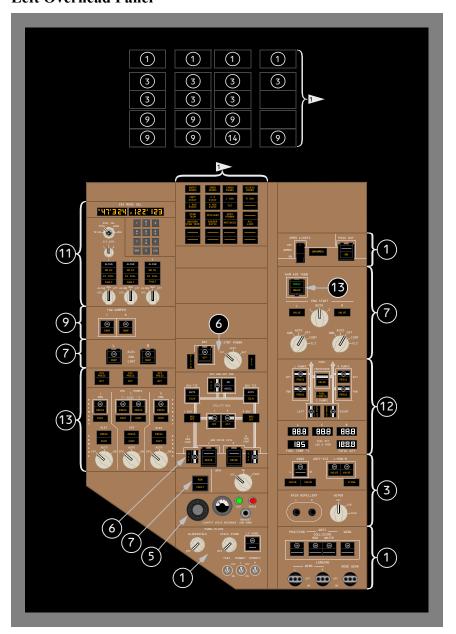
The wing tip swings the largest arc while turning and determines the minimum obstruction clearance path. All other portions of the airplane structure remain within this arc



August 17, 2007 D632T001-300 1.10.3 Intentionally Blank

767 Flight Crew Operations Manual

Airplane General, Emergency Chapter 1
Equipment, Doors, Windows
Instrument Panels Section 20


Flight Deck Panels

On the following pages, circled numbers refer to chapters where information on the item may be found.

The panels, controls, and indicators shown in this chapter are representative of installed units and may not exactly match the latest configuration. Refer to the appropriate chapter system descriptions for current information.

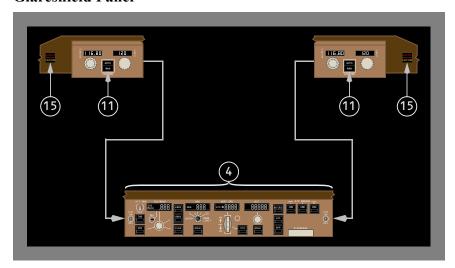
Left Overhead Panel

Right Overhead Panel

February 14, 2007 D632T001-300 1.20.3 Intentionally Blank

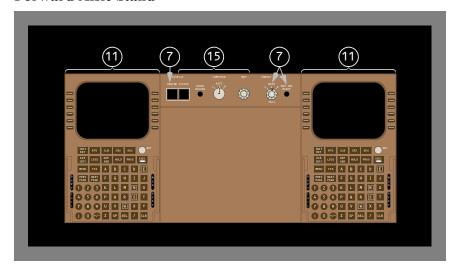
767 Flight Crew Operations Manual

Airplane General, Emergency Chapter 1
Equipment, Doors, Windows
Instrument Panels Section 21


Left Forward Panel

Right Forward Panel

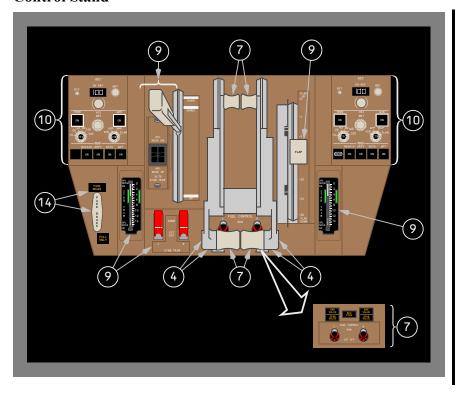
Glareshield Panel



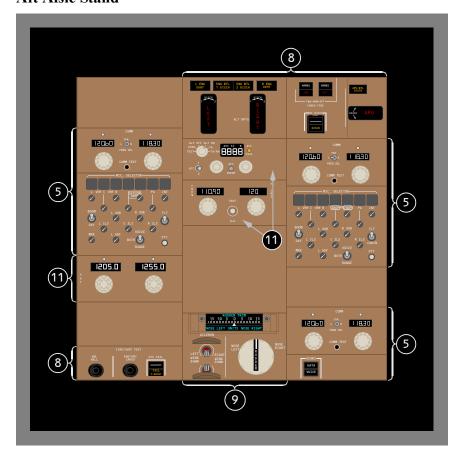
August 17, 2007 D632T001-300 1.21.3

Center Forward Panel

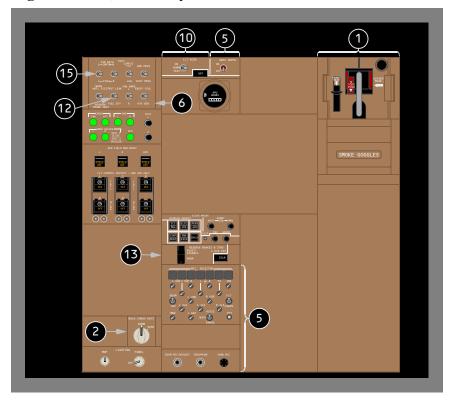
Forward Aisle Stand


February 14, 2007 1.21.5 D632T001-300

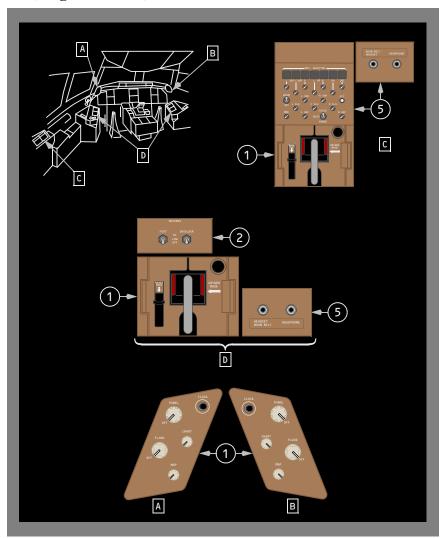
Intentionally Blank


767 Flight Crew Operations Manual

Airplane General, Emergency Chapter 1
Equipment, Doors, Windows
Instrument Panels Section 22


Control Stand

Aft Aisle Stand


Right Sidewall, Accessory Panel

Copyright © The Boeing Company. See title page for details.

February 14, 2007 1.22.3 D632T001-300

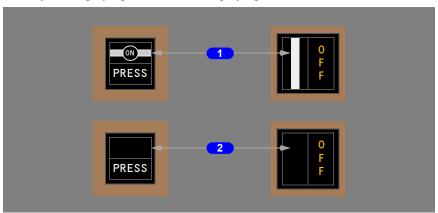
Left, Right Sidewall, and Observer Panels

767 Flight Crew Operations Manual

Airplane General, Emergency Chapter 1
Equipment, Doors, Windows
Controls and Indicators Section 30

Push-Button Switches

The airplane has two types of push–button switches: alternate action and momentary action. The switch may contain an indicator light that illuminates to indicate system status or faults. A line indicates there is no label for that portion of the switch


Note: Maintenance personnel should be contacted for all relamping operations. Unintentional system operation can result from improper relamping.

Alternate Action Switches

Alternate action switches have two positions: on and off.

When pushed in and flush with the panel, the switch is on. The switch indicates the system is on by displaying a word or flow bar.

When pushed out and extended, the switch is off. The switch indicates the system is off by not displaying a word or not displaying the flow bar.

Switch is ON

A mechanical shutter opens and a word, symbol or combination is visible.

For some switches, system status may be shown in half of the switch.

2 Switch is OFF

A mechanical shutter closes and the ON indication is not visible.

1.30.1

Controls and Indicators 767 Flight Crew Operations Manual

Momentary Action Switches

Momentary action switches are spring loaded to the extended position. They are used to activate or deactivate systems or to reset system logic. The switch display indicates system status.

1 Push to Reset

Push – the switch resets the master lights and aural alerts.

2 System Operation

Push – activates or deactivates the system.

Passenger Cabin Signs

Passenger Sign Selectors

1 NO SMOKING Selector

OFF – the no smoking signs are extinguished.

AUTO – the no smoking signs illuminate or extinguish with reference to landing gear position (refer to Lighting System Description section).

ON – the no smoking signs illuminate.

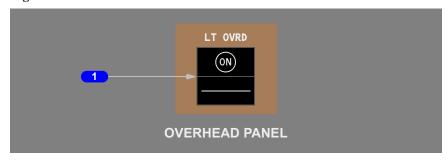
2 SEAT BELTS Selector

OFF – the fasten seat belts and return to seats signs are extinguished.

AUTO – the fasten seat belts and return to seats signs illuminate or extinguish with reference to landing gear or flap position (refer to Lighting System Description section).

767 Flight Crew Operations Manual

ON –the fasten seat belts and return to seats signs illuminate.


Note: Anytime passenger oxygen is deployed, the cabin signs revert to the following (regardless of selector position):

- · No Smoking Illuminated
- Fasten Seat Belts Illuminated
- Return to seats extinguish if the cabin altitude is above 10,000 ft. and passenger oxygen is on

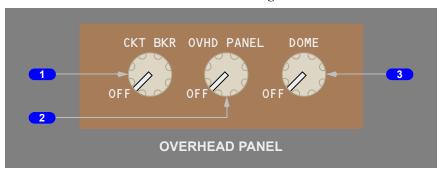
Lighting

Flight Deck Lighting

Light Override Switch

1 Light Override (LT OVRD) Switch

ON – overrides normal controls and illuminates the following lights at maximum brightness:


- forward panel flood lights
- · illuminated indicator lights
- glareshield flood lights
- · aisle stand flood lights
- · dome lights

Copyright © The Boeing Company. See title page for details. February 14, 2007

1.30.3

Controls and Indicators 767 Flight Crew Operations Manual

Circuit Breaker/Overhead Panel and Dome Lights Control

1 Circuit Breaker (CKT BKR) Panel Light Control

Rotate – controls circuit breaker panel light brightness.

2 Overhead (OVHD) Panel Lights Control

Rotate – controls overhead panel light brightness.

3 DOME Lights Control

Rotate – controls dome light brightness.

Note: Control is overridden with the Light Override Switch in the ON position.

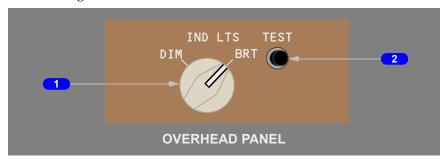
Glareshield Panel/Flood Lights Control

1 GLARESHIELD FLOOD Light Control (inner)

Rotate – controls glareshield flood light brightness.

2 GLARESHIELD PANEL Light Control (outer)

Rotate – controls glareshield panel light brightness.


3 AISLE STAND FLOOD Light Control (inner)

Rotate – controls the aisle stand flood light brightness.

4 AISLE STAND PANEL Light Control (outer)

Rotate – controls the aisle stand instrument panel light brightness.

Indicator Lights Switch

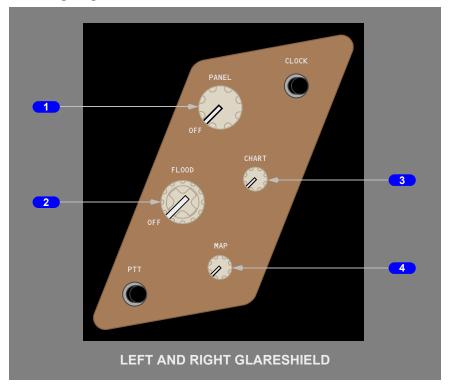
1 Indicator Lights (IND LTS) Switch

BRT – sets all illuminated annunciator lights to full brightness.

DIM – sets all illuminated annunciator lights to low brightness.

2 Indicator Lights (IND LTS) TEST Switch

Push and hold -


- · Initiates an indicator lights test
- Lights illuminate at the intensity selected by the Indicator Lights selector
- Tests the ADI and HSI displays if the airplane is on the ground
- Illuminates the IRS data display characters

Copyright © The Boeing Company. See title page for details.

February 14, 2007 D632T001-300 1.30.5

Controls and Indicators 767 Flight Crew Operations Manual

Pilot's Lighting Control Panel

1 PANEL Light Control

Rotate -

- left controls left forward and center forward instrument panel lights and standby magnetic compass brightness
- right controls right forward panel lights brightness

2 FLOOD Light Control

Rotate -

- left controls left forward and center forward instrument panel flood lights brightness
- right controls right forward instrument panel flood lights brightness

3 CHART Light Control

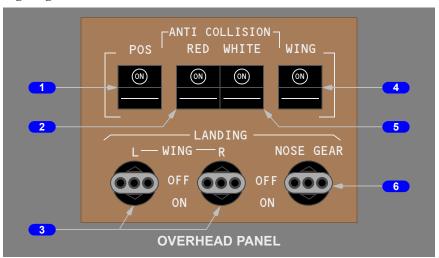
Pull – on

Push – off

767 Flight Crew Operations Manual

Rotate – adjusts chart light brightness.

4 MAP Light Control


Pull – on.

Push -off

Rotate – adjusts map light brightness.

Exterior Lighting

Lighting Control Panel

1 Position (POS) Light Switch

ON – the red, green, and white position lights illuminate.

OFF (ON not visible) – the red, green, and white position lights extinguish.

2 ANTI-COLLISION RED Light Switch

ON – the red anti–collision strobe lights on the top and bottom of the fuselage operate.

OFF (ON not visible) – the red anti–collision strobe lights on the top and bottom of the fuselage do not operate.

3 WING LANDING Light Switches

ON – the landing light illuminates.

OFF – the landing light extinguishes.

Copyright © The Boeing Company. See title page for details. August 17, 2007 1.30.7 D632T001-300

Controls and Indicators 767 Flight Crew Operations Manual

4 WING Light Switch

ON – the wing leading edge illumination lights illuminate.

OFF – the wing leading edge illumination lights extinguish.

5 ANTI-COLLISION WHITE Light Switch

ON – the white anti–collision strobe lights on tips of each wing operate.

OFF (ON not visible) – the white anti–collision strobe lights on tips of each wing do not operate.

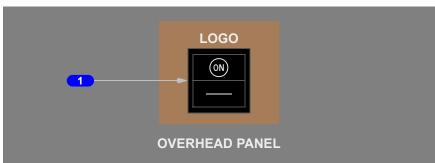
6 NOSE GEAR LANDING Light Switch

ON – the landing lights illuminate.

OFF – the landing lights extinguish.

Note: The nose gear landing lights do not illuminate when the nose landing gear is not down and locked.

Runway Turnoff Light Switches



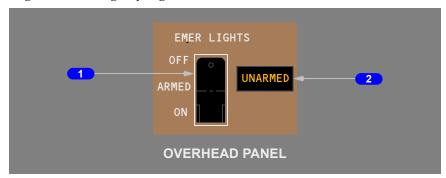
1 RUNWAY TURNOFF Light Switches

ON – the runway turnoff light illuminates.

OFF – the runway turnoff light extinguishes.

LOGO Lights

1 LOGO Light Switch


ON – the stabilizer mounted logo lights illuminate the vertical tail surface.

Copyright © The Boeing Company. See title page for details.

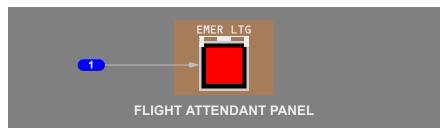
1.30.8 D632T001-300 February 19, 2009

Emergency Lighting Controls

Flight Deck Emergency Lights Switch

1 Emergency (EMER) LIGHTS Switch

OFF – prevents emergency lights system operation if airplane electrical power fails or is turned off.


ARMED – all emergency lights illuminate if airplane electrical power fails or is turned off

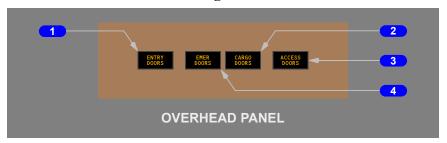
ON – all emergency lights illuminate.

2 Emergency Lights UNARMED Light

Illuminated (amber) – the emergency lighting system has been manually actuated or the emergency lights switch is OFF.

Passenger Cabin Emergency Lights Switch

1 Passenger Cabin EMERGENCY LIGHTS Switch


Push -

- Illuminated (red):
 - all passenger cabin and exterior emergency lights illuminate
 - bypasses the flight deck emergency lights switch
- Extinguished: all passenger cabin and exterior emergency lights extinguish

Copyright © The Boeing Company. See title page for details.

Doors and Windows

Exterior Door Annunciator Lights

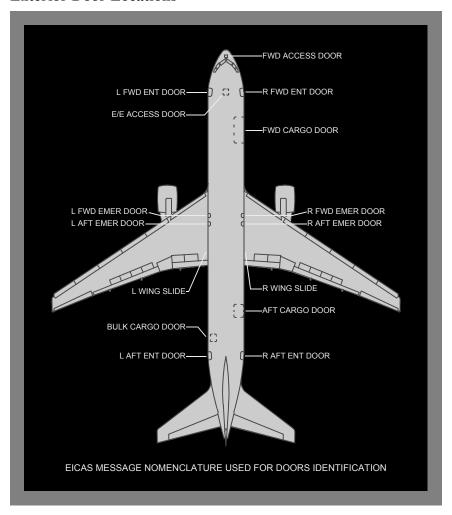
1 ENTRY DOORS Light

Illuminated (amber) – an entry door is not closed, and latched and locked.

CARGO DOORS Light

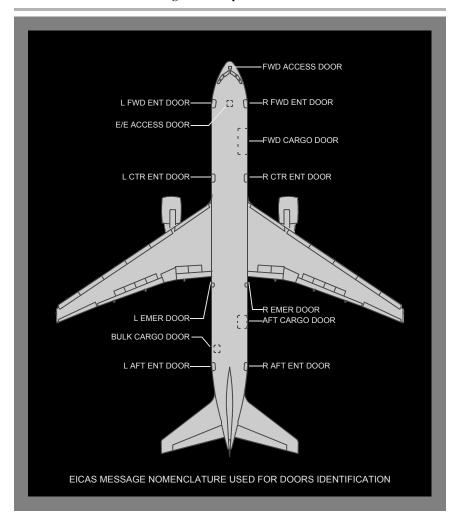
Illuminated (amber) – the forward, aft, or bulk cargo door is not closed and latched and locked.

3 ACCESS DOORS Light

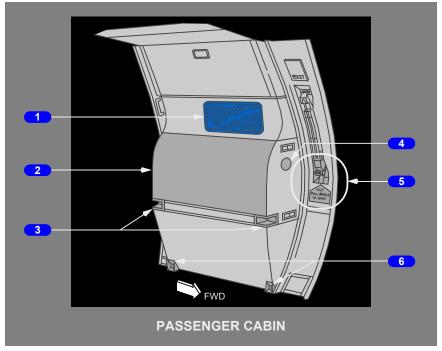

Illuminated (amber) – the forward equipment bay or the electrical equipment compartment door is not closed and latched and locked.

4 Emergency (EMER) DOORS Light

Illuminated (amber) – a forward or aft overwing emergency exit door, or a wing slide door is not closed and latched and locked.


Illuminated (amber) – an emergency door is not closed and latched and locked.

Exterior Door Locations



February 14, 2007 D632T001-300 1.30.11

Controls and Indicators 767 Flight Crew Operations Manual

Passenger Entry Doors

1 Viewing Window

Allows observation outside the airplane.

2 Slide

The bustle contains the slide.

Note: The slide is also configured as a raft.

3 Recessed Door Assist Handles

Used to assist in raising/lowering the door.

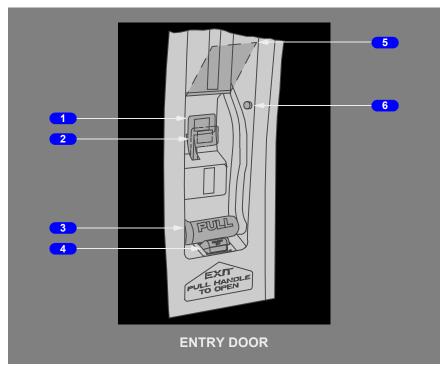
4 Slide Gas Bottle Pressure Gage

Maintenance use only.

5 Door Control and Mode Select Panel

See following illustration.

Copyright © The Boeing Company. See title page for details.


Controls and Indicators 767 Flight Crew Operations Manual

6 Direct Visual Indication-Girt Bar Lockdown

Indicator in view (yellow) – slide is armed.

Indicator not in view – slide is disarmed.

Passenger Door Control and Mode Select Panel

1 Slide Arming Lever

ARMED – if the door handle is moved to open, the slide deploys.

Note: If the door is opened from the outside, the slide is disarmed.

2 Slide Arming Lever

DISARMED – if the door handle is moved to open, the slide will not deploy.

3 Door Operating Handle

To open the door – pull up in the direction of the arrow.

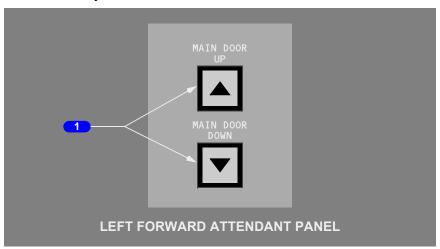
To close the door– push down in the opposite direction of the arrow.

767 Flight Crew Operations Manual

4 Armed Indicator

In view – slide is armed.

Not in view—slide is disarmed.


5 Slide Arming Lever Cover

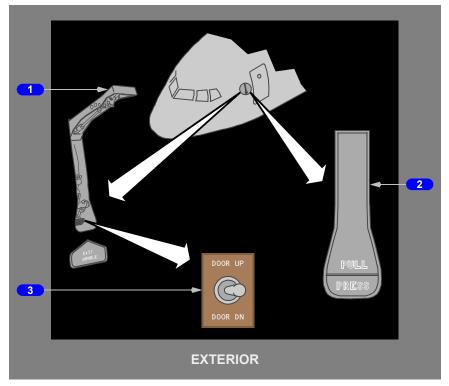
Protects against inadvertent movement of the slide arming lever.

6 Slide Arming Lever Release

Push – releases slide arming lever from the slide disarmed position.

Interior Entry Door Electric Assist Controls

Main Door Switch


MAIN DOOR UP – powers electrical assist to raise the entry door.

MAIN DOOR DOWN – powers electrical assist to release the uplatch and lower the entry door.

Note: The switch must be held in position during door operation.

Controls and Indicators 767 Flight Crew Operations Manual

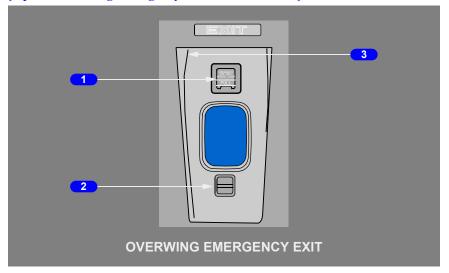
Exterior Entry Door Controls

- 1 Exterior Door Handle, Open Door Unlocked
- 2 Exterior Door Handle, Closed Door Locked

PRESS – disarms escape slide.

PULL - unlocks door.

3 Door Switch


DOOR UP – powers electrical assist to raise the entry door.

DOOR DOWN (DN) – powers electrical assist to release the uplatch and lower the entry door.

Note: The switch must be held in position during door operation.

Overwing Emergency Exit Doors

[Option-Overwing Emergency Exit Doors installed]

1 Emergency Handle

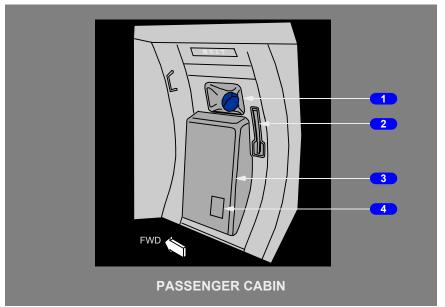
Note: Cover must be removed to access emergency handle.

To open the door and deploy the ramp slide – pull the handle.

2 Door Assist Handle

Used to assist in removing the door from the opening.

3 Alternate Slide Deployment Handle


Note: Door must be removed to access.

To manually deploy ramp slide in the event the normal system fails – remove the cover and pull the handle.

Controls and Indicators 767 Flight Crew Operations Manual

Emergency Doors

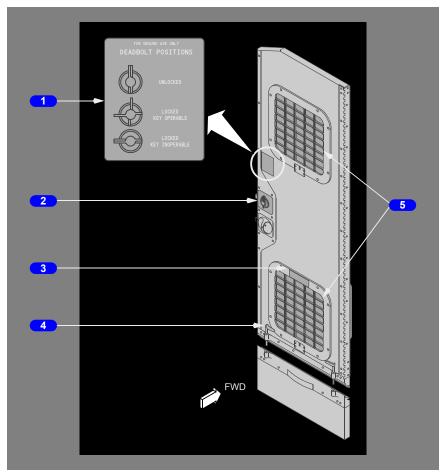
[Option-Emergency Doors installed]

1 Viewing Window

Allows observation outside the airplane.

2 Door Operating Handle

Pull – opens door and deploys slide.


3 Slide

The bustle contains the slide.

4 Slide Gas Bottle Pressure Gage

Maintenance use only.

Flight Deck Security Door

- Deadbolt Positions Placard
- 2 Deadbolt Levers
- **3** Emergency Egress Placard

Describes how to separate lower break-away panel from a jammed door to allow door opening and egress.

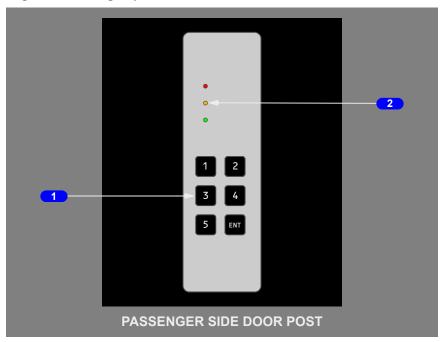
4 Shear Pins

Retract out of lower break-away panel when shear pin levers rotate down.

Copyright © The Boeing Company. See title page for details.

August 17, 2007

D632T001-300


1.30.19

Controls and Indicators 767 Flight Crew Operations Manual

5 Security Grill

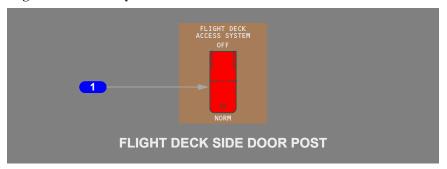
Prevents intrusion into flight deck if decompression panels open due to cabin depressurization.

Flight Deck Emergency Access Panel

1 Keypad

Push - enters 3 to 8 digit emergency access code by pressing numeric then "ENT" keys. Entry of correct emergency access code sounds flight deck chime.

2 Access Lights

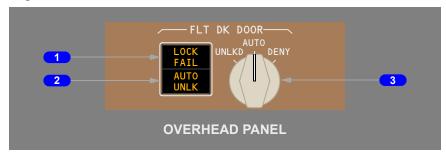

Illuminated (red) - door locked or Flight Deck Access System switch OFF..

Illuminated (amber) - correct emergency access code entered.

Illuminated (green) - door unlocked.

767 Flight Crew Operations Manual

Flight Deck Access System Switch



1 Flight Deck Access System Switch

OFF - removes electrical power from door lock.

NORM (Normal) - flight deck access system configured for flight.

Flight Deck Door Lock Panel

1 LOCK FAIL Light

Illuminated (amber) - door lock selector in AUTO position and door lock has failed or the Flight Deck Access System Switch in OFF.

2 AUTO UNLOCK (UNLK) Light

Illuminated (amber) - correct emergency access code entered in keypad. AUTO UNLK light flashes and continuous chime sounds before timer expires and door unlocks.

3 Flight Deck Door (FLT DK DOOR) Lock Selector

Spring loaded to AUTO. Selector must be pushed in to rotate from AUTO to UNLKD position. Selector must not be pushed in to rotate from AUTO to DENY position.

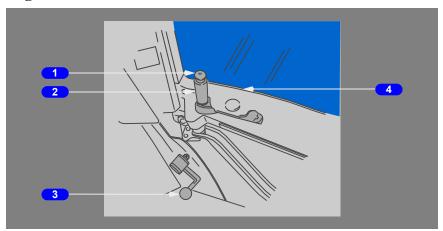
UNLKD - door unlocked while selector in UNLKD.

Copyright © The Boeing Company. See title page for details.

August 17, 2007

D632T001-300

1.30.21


Airplane General, Emergence NOT USE FOR FLIGHT Equipment, Doors, Windows

Controls and Indicators 767 Flight Crew Operations Manual

AUTO - door locked. Allows door to unlock after entry of emergency access code and expiration of timer, unless crew takes action.

DENY - rejects keypad entry request and prevents further emergency access code entry for a time period.

Flight Deck Number Two Window

1 Window Lock Release Button

Button must be depressed to free the Window Lock Lever from the Forward Position

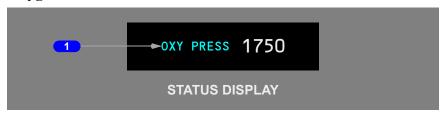
2 Window Lock Lever

Forward Position— with the window fully closed (WINDOW NOT CLOSED decal not visible), locks the window.

Aft Position—unlocks the window so it can be cranked open.

3 Window Crank

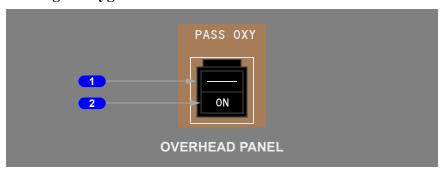
Used to position the window open or closed when the window lock lever is unlocked.


4 WINDOW NOT CLOSED Decal

Visual indication the window is not fully closed.

767 Flight Crew Operations Manual

Oxygen Systems


Oxygen Indications

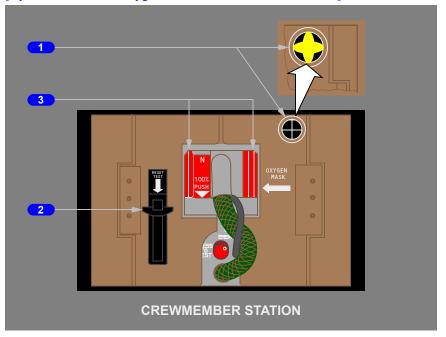
1 Oxygen Pressure (OXY PRESS) Display

Displays crew oxygen cylinder pressure (psi).

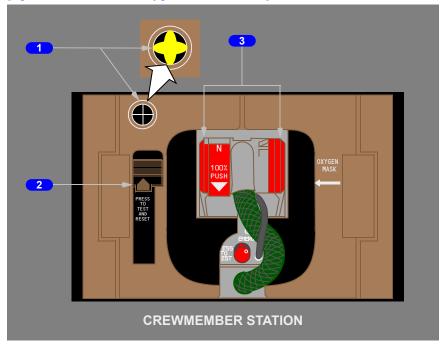
Passenger Oxygen Switch

1 Passenger Oxygen (PASS OXY) Switch

Push – the passenger cabin oxygen masks drop.


2 Passenger Oxygen ON Light

Illuminated (amber) – the passenger oxygen system is operating and the masks have dropped.


August 17, 2007 D632T001-300 1.30.23

Oxygen Mask Panel

[Option-Scott EROS Oxygen Masks with Vent valve Installed]

[Option-Scott Full Face Oxygen Masks installed]

1 Oxygen Flow Indicator

Shows a yellow cross when oxygen flowing.

2 RESET/TEST Switch

Push -

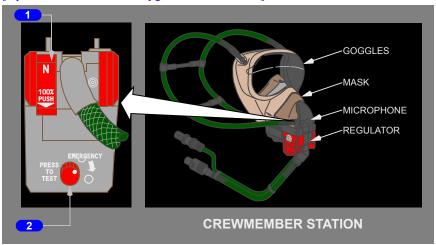
- with the left oxygen panel door closed and OXY ON flag not displayed, turns oxygen on momentarily to test the regulator
- with the left oxygen panel door closed and the OXY ON flag displayed, turns oxygen off

3 Oxygen Mask Release Levers

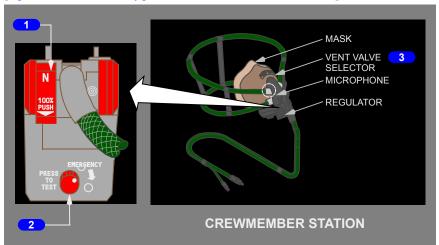
Squeeze and pull -

- unlocks the oxygen panel doors
- releases the mask
- oxygen turns on when the oxygen panel doors open

Squeeze (right lever) – inflates the mask harness.


Release – deflates the mask harness into position on the head and face.

August 17, 2007 Copyright © The Boeing Company. See title page for details.


D632T001-300 1.30.25

Oxygen Mask and Regulator

[Option-Scott Full Face Oxygen Masks installed]

[Option-Scott EROS Oxygen Masks with Vent valve installed]

1 Normal (N)/100% Switch

N- supplies an air/oxygen mixture on demand (the ratio depends on cabin altitude).

100% – supplies 100% oxygen on demand (not an air/oxygen mixture).

2 Oxygen Mask Emergency/Test Selector

Rotate (in the direction of the arrow) – supplies 100% oxygen under positive pressure at all cabin altitudes (protects against smoke and harmful vapors).

PRESS TO TEST – tests the positive pressure supply to the regulator.

3 Smoke Vent Valve Selector

Up – vent valve closed

Down – vent valve open, allowing oxygen flow to smoke goggles.

Emergency Evacuation Panel

[Option-Gables Emergency Evacuation Panel installed]

1 Evacuation (EVAC) PRESS TO TEST Switch

Push – tests the EVAC light.

2 Evacuation (EVAC) Light

Illuminated (red) – a command switch is in the ON position.

3 Evacuation COMMAND Switch

ON -

- activates evacuation signal system
- EVAC lights (flight deck and attendant panels) flash
- audio horn sounds at each panel

OFF – prevents activation of emergency evacuation COMMAND signal at all flight attendant panels.

Evacuation HORN SHUTOFF Switch

Pull – silences flight deck evacuation audio horn.

February 19, 2009 D632T001-300 1.30.27

Airplane General, Emergence NOT USE FOR FLIGHT Equipment, Doors, Windows

Controls and Indicators 767 Flight Crew Operations Manual

5 EVACUATION SIGNAL Horn

Sounds an audio signal.

DO NOT USE FOR FLIGHT

767 Flight Crew Operations Manual

Airplane General, Emergency Chapter 1
Equipment, Doors, Windows
Systems Description Section 40

Introduction

This chapter describes miscellaneous airplane systems, including:

- lighting systems
- oxygen systems
- · doors and windows
- · flight deck seats

Lighting Systems

Lighting systems described in this chapter include:

- exterior lighting
- · flight deck lighting
- · emergency lighting

Exterior Lighting

Exterior lighting consists of these lights:

- landing
- · runway turnoff
- · anti-collision
- navigation (position)
- wing leading edge illumination
- · logo

Landing Lights

The landing lights consist of the left, right, and nose gear landing lights. The left and right landing lights are located in the left and right wing root and are optimized for flare and ground roll. The two nose gear—located landing lights are optimized for approach.

The nose gear landing lights are inoperative when the nose landing gear is not down and locked.

Runway Turnoff Lights

Two runway turnoff lights are located in the left and right wing root.

White Anti-collision Lights

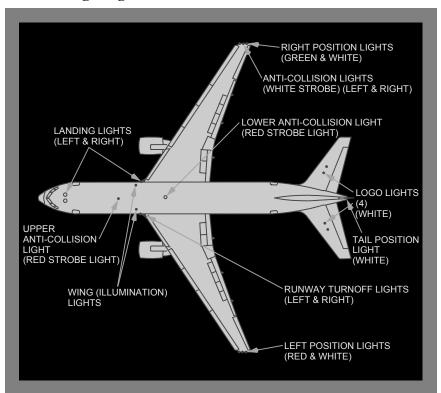
The white anti-collision lights are strobe lights located on each wing tip.

Red Anti-collision Lights

The red anti–collision lights are strobe lights located on the top and bottom of the fuselage.

Navigation Lights

The navigation lights are standard red (left forward wingtip), green (right forward wingtip), and white (aft tip of both wings) position lights.


Wing Lights

Wing lights are installed on the fuselage and illuminate the leading edge of the wing.

Logo Lights

Logo lights are located on the stabilizer to illuminate the logo on the vertical tail surface.

Exterior Lighting Locations

Systems Description

767 Flight Crew Operations Manual

Flight Deck Lighting

Flight deck lighting is provided for panel illumination, area lighting, and localized illumination. Flood lights and light plates provide panel illumination. Dome lights provide flight deck area lighting. Map lights, chart lights, and utility lights provide localized illumination.

Panel and flood lights illuminate the forward panels, glareshield, and aisle stand panels. When the light override switch is ON, the forward panel flood lights, glareshield flood lights, dome lights, aisle stand flood lights, and all illuminated annunciator lights illuminate at full brightness.

If normal electrical power is lost, the standby magnetic compass light, forward panel flood lights, and integral lights for essential instruments on the left forward, center forward, and overhead panels are automatically switched to the Standby AC bus.

Indicator Lights

Indicator Light brightness can be set to DIM or BRT with the indicator lights selector. The system automatically overrides the DIM position and illuminates the indicator lights full bright if the ambient flight deck light level increases to a preset crossover light value as detected by system sensors located on the center forward panel.

Passenger Cabin Signs

The passenger cabin signs are controlled by overhead panel selectors. The passenger signs illuminate when any of the following conditions are satisfied:

FASTEN SEAT BELTS signs (AUTO selected):

- cabin altitude above 10,000 feet
- · landing gear not up and locked
- flap lever not up
- · passenger oxygen on

NO SMOKING signs (AUTO selected):

- cabin altitude above 10,000 feet
- landing gear not up and locked
- · passenger oxygen on

All passenger signs can be controlled manually by positioning the respective selector to ON or OFF. When the FASTEN SEAT BELTS and NO SMOKING selectors are in the OFF position, and cabin altitude is above 10,000 feet or passenger oxygen is on, the FASTEN SEAT BELTS and NO SMOKING signs illuminate.

RETURN TO SEAT signs are illuminated with the FASTEN SEAT BELTS signs and extinguish when the passenger oxygen is on either automatically or manually.

Copyright © The Boeing Company. See title page for details. August 19, 2009 D632T001-300 1.40.3

Airplane General, Emergence NOT USE FOR FLIGHT Equipment, Doors, Windows Systems Description 767 Flight Crew Operations Manual

When the passenger signs illuminate or extinguish, a low tone sounds over the PA system.

Emergency Lighting

The emergency lighting consists of:

- · passenger cabin interior emergency lights
- passenger exterior emergency lights
- aft flight deck dome light (one bulb only)

These lights are powered by the emergency lighting system. These lights provide illumination for evacuating the airplane. The system is controlled by the emergency lights switch on the overhead panel. The switch can be used to manually activate or arm the system for automatic operation. Automatic operation occurs if DC power fails or is turned off when the system is armed. The emergency lighting system can also be controlled by the emergency lights switch on the flight attendant switch panel.

When the emergency lights switch on the flight deck is armed, and the slide arming lever is in the SLIDE ARMED position, moving the door handle to the open position will cause the exterior emergency lights on that side of the airplane to illuminate.

In addition, when the emergency lights switch on the flight deck is armed, moving an overwing emergency exit door handle to the open position will cause the exterior emergency lights on that side of the airplane to illuminate.

The emergency lighting system is powered by remote batteries. Battery charge is maintained by the airplane electrical system. A fully charged battery provides at least 15 minutes of operation.

The UNARMED light illuminates and the EICAS advisory message EMER LIGHTS displays if the emergency lights switch is not in the ARMED position.

Interior Emergency Lighting

Interior emergency lighting consists of door, aisle, escape path, and lighted exit signs.

Battery powered exit lights are located at each cabin exit.

Exterior Emergency Lighting

Exterior emergency lights are located at each entry door and emergency door. Lights are also installed in each slide to illuminate the ground at the end of the slide.

Exterior emergency lights are located at each entry door and overwing emergency exit door. Lights are also installed in each slide to illuminate the ground at the end of the slide.

Oxygen Systems

Two independent oxygen systems are provided, one for the flight crew and one for the passengers. Portable oxygen cylinders are located throughout the airplane for emergency use.

Flight Crew Oxygen System

The flight crew oxygen system uses quick—donning masks and regulators located at each crew station. Oxygen pressure is displayed on the lower EICAS status display.

Flight crew and observer masks and regulators are installed in oxygen mask panels near each seat. Squeezing the red oxygen mask release levers releases the mask from stowage. Removing the mask:

- · inflates the mask harness
- momentarily displays the yellow oxygen flow indicator

Passenger Oxygen System

The passenger oxygen system is supplied by individual chemical oxygen generators. The oxygen system provides oxygen to the passenger, attendant stations, and lavatory service units. The passenger oxygen masks and chemical oxygen generators are located above the passenger seats in passenger service units (PSUs). Oxygen flows from a PSU generator when any mask hanging from that PSU is pulled. The masks automatically drop from the PSUs if cabin altitude exceeds 14,000 feet. The passenger masks can be manually deployed from the flight deck by pushing the passenger oxygen switch. The passenger oxygen ON light illuminates and EICAS advisory message PASS OXYGEN ON displays when the system is activated.

Portable Oxygen Bottles

Portable oxygen bottles are stowed in various locations in the passenger cabin. The bottles are fitted with disposable masks and are used for first aid purposes or as walk–around units.

Doors and Windows

The airplane has six passenger entry doors, four overwing emergency exit doors, one flight deck door (the flight deck/passenger cabin entry), and three cargo doors. It also has electrical equipment and forward equipment bay access doors.

The airplane has four passenger entry doors, four overwing emergency exit doors, one flight deck door (the flight deck/passenger cabin entry), and three cargo doors. It also has electrical equipment and forward equipment bay access doors.

Copyright © The Boeing Company. See title page for details.

August 17, 2007

D632T001-300

1.40.5

Airplane General, Emergence NOT USE FOR FLIGHT Equipment, Doors, Windows Systems Description 767 Flight Crew Operations Manual

The airplane has six passenger entry doors, two emergency doors, one flight deck door (the flight deck/passenger cabin entry), and three cargo doors. It also has electrical equipment and forward equipment bay access doors.

The airplane has four passenger entry doors, two emergency doors, one flight deck door (the flight deck/passenger cabin entry), and three cargo doors. It also has electrical equipment and forward equipment bay access doors.

The flight deck number two windows, one on the left and one on the right, can be opened by the flight crew.

An EICAS message is displayed when a passenger entry door, overwing emergency exit door, cargo door or access door is not closed and latched, and locked.

An EICAS message is displayed when a passenger entry door, emergency door, cargo door or access door is not closed and latched and locked.

Flight Deck Security Door

The flight deck security door meets requirements for resistance to ballistic penetration and intruder entrance. The door opens into the flight deck. There is a step between the flight deck and the cabin. When closed, the door locks when electrical power is available and unlocks when electrical power is removed. A viewing lens in the door allows observation of the passenger cabin. The door can be manually opened from the flight deck by turning the door handle.

The door incorporates a deadbolt with a key lock. Rotating both concentric deadbolt levers to the locked (horizontal) position prevents the passenger cabin key from unlocking the door. Rotating only the forward deadbolt lever to locked allows the key to unlock the door.

The flight deck access system consists of an emergency access panel, chime module, Door Lock selector, two indicator lights, and an Access System switch. The emergency access panel includes a six button keypad for entering the numeric access code along with red, amber, and green lights. The red light illuminates to indicate the door is locked. When the correct emergency access code is entered, the amber light illuminates. The green light illuminates to indicate the door is unlocked.

Two indicator lights and a three position rotary Door Lock selector are located on the overhead panel. Illumination of the amber LOCK FAIL light indicates the door lock has failed or the Access System switch is in the off position.

DO NOT USE FOR FLIGHT Airplane General, Emergency Equipment, Doors, Windows -**Systems Description**

767 Flight Crew Operations Manual

The emergency access code is used to gain access to the flight deck in case of pilot incapacitation. Annunciation of a flight deck chime and illumination of the amber AUTO UNLK light indicates the correct emergency access code has been entered and the door is programmed to unlock after a time delay. Selecting the DENY position on the Door Lock selector denies entry and prevents further keypad entry for several minutes. To allow entry, the selector is turned to the UNLKD position which unlocks the door while held in that position. If the emergency access code is entered and the pilot takes no action, the door unlocks after expiration of the time delay. Before the door unlocks, the chime sounds continuously and the AUTO UNLK light flashes.

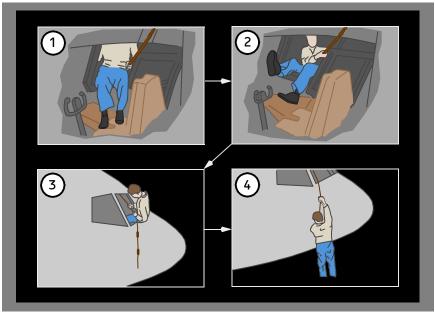
By pressing "1" then "ENT" keys on the emergency access panel, the flight deck chime will sound (if programmed).

The door latch system incorporates a pressure rate-sensor that unlocks the door in the event of flight deck depressurization. Two hinged decompression panels open to equalize pressure in the event of cabin depressurization. Each panel opening has a security grill on the flight deck side.

Features are included to prevent a jammed door due to structural deformation. A lower break-away panel is attached to the main door section by interlocking extrusions and two shear pins. If sufficient upward force occurs, the pins will shear and the break-away panel will separate from the door. If the pins fail to shear, they can be retracted manually to aid in egress. An angled door jamb aids in forcing the door open into the flight deck in case of surrounding bulkhead deformation.

Flight Deck Number Two Windows

The flight deck number two windows can be opened on the ground or in flight. The flight deck number two windows can be used for emergency evacuation. Pressing the Window Lock Release Button frees the Window Lock Lever. The Window Lock Lever locks or unlocks the window. Rotating the window crank opens and closes the window.


A WINDOW NOT CLOSED placard is visible when the window is open.

The windows can be opened or closed in flight with minor flight deck consequences if the airplane is unpressurized. The force required to move the crank increases with airspeed. With the window open, voice, interphone, and radio audio may not be heard due to high noise levels. Prior communications arrangements with the controlling agency should be established before opening the window. The design provides an area of relatively calm air over the open window. Forward visibility can be maintained by looking out of the open window.

Flight Deck Window Emergency Egress

If the flight deck number two windows must be used for emergency evacuation, exit in accordance with the following illustration.

CAUTION: Ensure the rope is securely fastened to the airplane.

Passenger Entry Doors

The passenger entry doors are used to enter and exit the airplane, and also serve as emergency exits. The passenger entry doors are paired along the airplane fuselage. The doors can be opened or closed manually from inside or outside of the airplane.

Door 1L may be opened or closed electrically through the electrical control panel located adjacent to the door.

The entry doors are plug—type doors. During opening, the door first moves inward, then upward into the ceiling. The weight of the door is counterbalanced so that very little effort is required for operation. The door is held open by a latch in the upper part of the door frame. In order to close the door it must initially be raised slightly, push and hold the uplatch release button, lower the door approximately 2 inches (5 centimeters). Release button and continue to lower the door.

WARNING: Stand clear of the door handle, the handle may move as the door is lowered.

A window in each door allows observation outside of the airplane.

Systems Description

767 Flight Crew Operations Manual

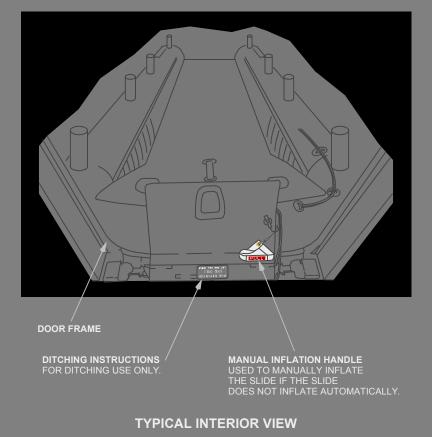
The ENTRY DOORS light illuminates and the EICAS advisory message L AFT, L FWD, R AFT, or R FWD ENT DOOR displays when a passenger entry door is not closed and latched and locked. If two doors on the same side of the airplane are not closed and latched and locked, the EICAS advisory message L or R ENTRY DOORS displays.

The ENTRY DOORS light illuminates and the EICAS advisory message L AFT, L CTR, L FWD, R AFT, R CTR or R FWD ENT DOOR displays when a passenger entry door is not closed and latched and locked. If two or more doors on the same side of the airplane are not closed and latched and locked, the EICAS advisory message L or R ENTRY DOORS displays.

Passenger Entry Door and Slide Operation

Emergency evacuation slide and door opening systems are provided for each passenger entry door. A cover in the lower face of the door contains the slide.

For normal operations, the slide must be disarmed before opening the door. Moving the arming lever to the SLIDE DISARMED position causes the door girt bar to detach from the floor, the girt bar visual indication window to completely blank, and the yellow armed indicator to be removed from view. Pulling the Door Handle up will unlock and unseat the door.


The emergency door opening system is armed by first pressing the arming lever release and then positioning the arming lever to the SLIDE ARMED position. This engages the door girt bar, the girt bar visual indication window will be completely yellow, and armed indicator will be in view. Once armed, rotating the door handle up to the OPEN position unlocks the door and causes the slide to deploy. The door will retract to the full open position, and the slide will inflate automatically.

A manual inflation handle can be pulled if the slide has not automatically inflated.

The emergency door opening system and the slide are automatically disarmed when the door is opened from the outside. If the arming lever is in the ARMED position and the door is opened using the exterior door handle, the arming lever automatically moves to DISARMED and the door opens without slide deployment.

The passenger door evacuation slides are also configured as rafts.

Escape Slide/Raft Deployed

Emergency Doors

An emergency door is located aft of the wing on each side of the airplane. The emergency door is only used as an emergency exit. A slide bustle in the lower face of the door contains an evacuation slide. A window in the door allows observation outside of the airplane.

The emergency door is a plug—type door and is hinged on the bottom. Pulling the door operating handle up lifts the door inward and upward. The door can then be pushed out through the door frame and the slide automatically deploys and inflates.

A manual inflation handle can be pulled if the slide has not automatically inflated.

Systems Description

767 Flight Crew Operations Manual

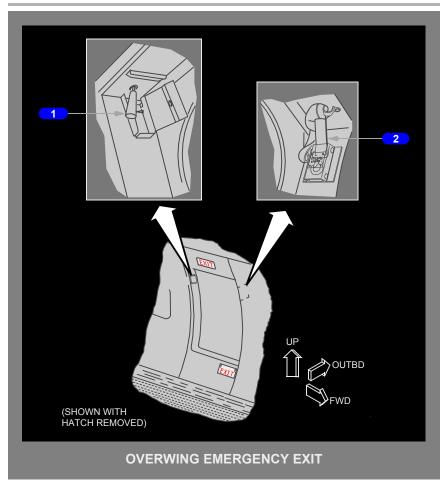
The EMER DOORS light illuminates and the EICAS advisory message L or R EMER DOOR displays when an emergency door is not closed and latched and locked. If both doors are not closed and latched and locked, the EICAS advisory message EMER DOORS displays.

The emergency door evacuation slides are not configured as rafts, however they may be used as auxiliary flotation devices.

Overwing Emergency Exit Doors

Overwing emergency exit doors are located over the wing on each side of the airplane. The overwing emergency exit doors are only used as emergency exits. An overwing evacuation ramp and slide assembly is contained within each wing body fairing. A window in the door allows observation outside of the airplane.

The overwing emergency exit door is a plug-type hatch. The emergency PULL handle opens the door. The door can then be removed from the opening. Opening the overwing emergency exit door automatically deploys and inflates the ramp and slide. Simultaneously, on that side of the airplane, the inboard spoiler is retracted and the exterior emergency lights illuminate.


A manual inflation handle can be pulled if the ramp and slide has not automatically inflated.

The overwing emergency exit door ramp and slide is automatically disarmed when the door is opened from the outside.

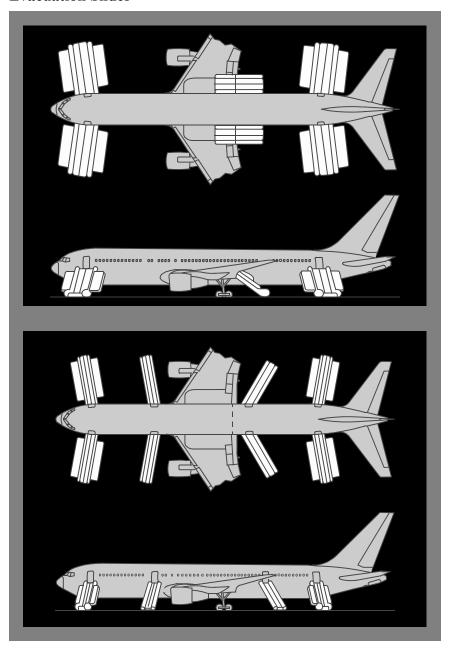
The EMER DOORS light illuminates and the EICAS advisory message L AFT, L FWD, R AFT or R FWD EMER DOOR displays when an overwing emergency exit door is not closed and latched and locked. The EICAS advisory message EMER DOORS displays if two or more, overwing emergency exit doors are not closed and latched and locked.

The overwing emergency exit door ramps and slides are not configured as raft and they may not be used as auxiliary flotation devices.

Systems Description 767 Flight Crew Operations Manual

1 Manual Inflation Handle

Pull – Deploys ramp slide in the event normal system fails.


· one per exit

2 Escape Strap (FWD Door only)

Remove Cover – Pull out and attach hook to wing fitting.

• installed on forward door only

Evacuation Slides

August 17, 2007 D632T001-300 1.40.13

Cargo Doors

There are three cargo doors: one AFT, one BULK, and one FWD. The AFT, and FWD doors are located on the right side of the airplane and open upward and outward. The BULK cargo door is on the left side of the airplane.

Both AFT and FWD cargo doors are normally operated electrically from an exterior or interior fuselage—mounted control panel located with each door. Forward cargo door locking is accomplished manually. If necessary, the forward and aft cargo doors may be operated manually.

CAUTION: Do not operate the cargo doors with winds at the door of more than 40 knots. Do not keep the door open when wind gusts are more than 65 knots. Strong winds can cause damage to the structure of the airplane.

The CARGO DOORS light illuminates. The EICAS caution message FWD CARGO DOOR displays when the forward cargo door is not closed and latched and locked. The EICAS advisory message AFT or BULK CARGO DOOR displays when either cargo door is not closed and latched and locked. The EICAS advisory message CARGO DOORS displays if two or more of these cargo doors are not closed and latched and locked

Flight Deck Seats

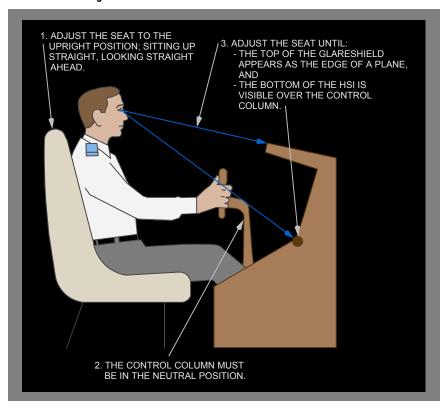
The pilot seats:

- · recline
- · adjust vertically
- · adjust forward and aft
- adjust for thigh support
- adjust for the lumbar region of the back

The seats also have:

- adjustable armrests
- crotch straps
- · inertial-reel shoulder harnesses with manual locks
- lap belts
- adjustable headrests

The seats move outboard during the last four inches of travel. Manual controls provide forward, aft, and vertical adjustment.


Aircraft with electrical controlled pilots seat.

Electrical controls provide forward, aft, and vertical adjustment.

Lumbar and thigh pad support can be adjusted using the adjustment hand wheels. Armrest pitch can be adjusted using the control knob under the armrest. The armrests can be stowed vertically for easier seat access.

Adjust the seat to obtain the optimum eye position as shown on the following illustration.

Pilot Seat Adjustment

Copyright © The Boeing Company. See title page for details.

Intentionally Blank

767 Flight Crew Operations Manual

Airplane General, Emergency Equipment, Doors, Windows Emergency Equipment Chapter 1

Section 45

Introduction

This chapter describes miscellaneous airplane systems, including:

- · emergency equipment
- · emergency equipment locations

Emergency Equipment

Emergency equipment described in this section includes:

- · fire extinguishers
- · miscellaneous emergency equipment
- · emergency evacuation signal system

Fire Extinguishers

Fire extinguishers are located throughout the aircraft. See emergency equipment diagram for location.

The type of fire extinguishers are as follows:

- Halon (BCF)
- Water (H2O)

WARNING: If a fire extinguisher is to be discharged in the flight deck area, all flight crew members must wear oxygen masks and use 100% oxygen with emergency selected.

CAUTION: For electrical fires, remove the power source as soon as possible. Avoid discharging directly on persons due to possibility of suffocating effects. Do not discharge too close to fire as the discharge stream may scatter the fire. As with any fire, keep away from the fuel source. Avoid breathing vapors, fumes, and heated smoke as much as possible.

Halon Fire Extinguishers

Halon fire extinguishers contain a liquefied gas agent under pressure. The extinguisher pressure indicator shows three pressure ranges:

- · acceptable
- · recharge
- overcharged

Airplane General, Emergence NOT USE FOR FLIGHT Equipment, Doors, Windows

Emergency Equipment 767 Flight Crew Operations Manual

A safety pin with a pull ring prevents accidental trigger movement. When released, the liquefied gas agent vaporizes and extinguishes the fire. The extinguisher is effective on all types of fires, but is used primarily on electrical, fuel, and grease fires.

Direction for use of the fire extinguisher is printed on the extinguisher.

Water (H2O) Fire Extinguishers

Water fire extinguishers contain a solution of water mixed with anti-freeze. The container is pressurized by a CO2 cartridge. The extinguisher should be used on fabric, paper or wood fires only.

CAUTION: Do not use on electrical or grease type fires.

To use the Water fire extinguisher, hold the extinguisher upright and rotate the handle fully clockwise. Aim the extinguisher at the base of the flame and pull the trigger.

Miscellaneous Emergency Equipment

Additional equipment is stowed at strategic locations throughout the airplane. This may include a crash axe, megaphones, flashlights and first aid kits. Life vests are stowed at each crew member station and at each passenger seat.

Emergency Locator Transmitters (ELTs)

ELTs are installed in slide/raft bustles. The ELTs automatically transmit when submerged in water.

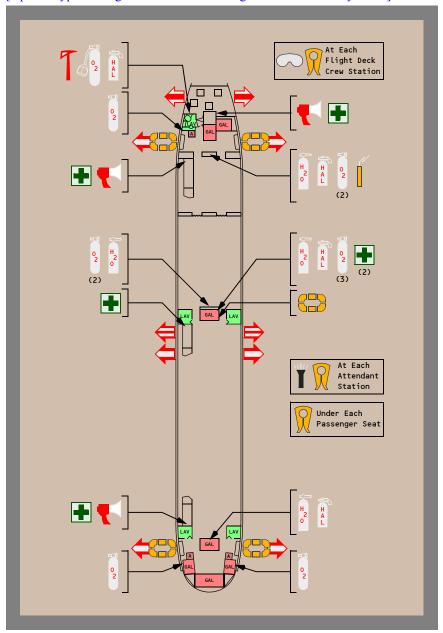
Portable ELTs may be installed in the passenger cabin, as shown in the Emergency Equipment Locations diagram.

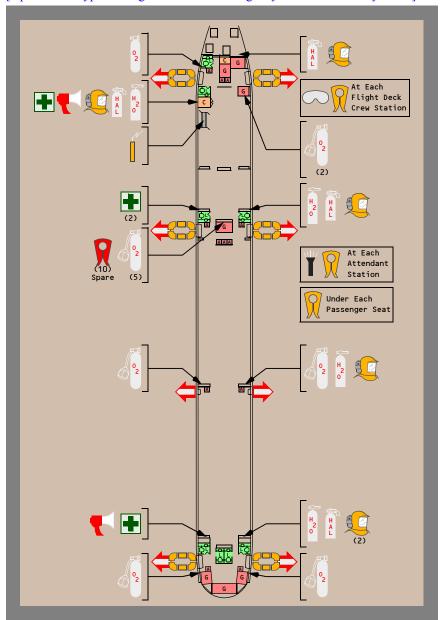
Escape Ropes

Escape ropes are attached to the airplane structure above both number two flight deck windows. The ropes are stowed in compartments above the pilot seats. Prior to dropping the rope out of the window, ensure the rope is attached by pulling down

Emergency Evacuation Signal System

The emergency evacuation signal system alerts the flight attendants to evacuate the passenger cabin. Evacuation command switches are located on the flight deck and at selected flight attendant panels.


Emergency Equipment Symbols


Copyright © The Boeing Company. See title page for details.

Emergency Equipment Locations

[Option-Typical Diagram with two overwing exits and four entry doors]

[Option-non Typical Diagram with two emergency exits and six entry doors]

August 17, 2007 D632T001-300

1.45.5

Intentionally Blank

767 Flight Crew Operations Manual

Airplane General, Emergency Equipment, Doors, Windows EICAS Messages Chapter 1

Section 50

Airplane General, Emergency Equipment, Doors, Windows EICAS Messages

The following EICAS messages may be displayed.

Access Doors

Message	Level	Light	Aural	Condition
ACCESS DOORS	Advisory	ACCESS DOORS		Forward equipment bay and electrical equipment compartment access doors are not closed, latched, and locked.
E/E ACCESS DOOR	Advisory	ACCESS DOORS		Electrical equipment access door is not closed, latched, and locked.
FWD ACCESS DOOR	Advisory	ACCESS DOORS		The forward equipment bay access door is not closed, latched, and locked.

Cargo Doors

Message	Level	Light	Aural	Condition
CARGO DOORS	Advisory	CARGO DOORS		Two or more cargo doors are not closed, latched, and locked.
AFT CARGO DOOR	Advisory	CARGO DOORS		Cargo door is not closed, latched, and locked.
BULK CARGO DOOR	Advisory	CARGO DOORS		Cargo door is not closed, latched, and locked.
FWD CARGO DOOR	Caution	CARGO DOORS		Cargo door is not closed, latched, and locked.

EICAS Messages 767 Flight Crew Operations Manual

Entry Doors

Message	Level	Light	Aural	Condition
L ENTRY DOORS R ENTRY DOORS	Advisory	ENTRY DOORS		Two or more entry doors on the same side are not closed, latched, and locked.
L AFT ENT DOOR R AFT ENT DOOR	Advisory	ENTRY DOORS		Entry door is not closed, latched, and locked.
L CTR ENT DOOR R CTR ENT DOOR	Advisory	ENTRY DOORS		Entry door is not closed, latched, and locked.
L FWD ENT DOOR R FWD ENT DOOR	Advisory	ENTRY DOORS		Entry door is not closed, latched, and locked.

Emergency Exit Doors

[Option- Type 1 Emergency Exit Doors installed]

Message	Level	Light	Aural	Condition
EMER DOORS	Advisory	EMER DOORS		Both emergency doors are not closed, latched, and locked
L EMER DOOR R EMER DOOR	Advisory	EMER DOORS		Emergency door is not closed, latched, and locked.

Overwing Emergency Exit Doors

[Option-Overwing Emergency Exit Doors installed]

Message	Level	Light	Aural	Condition
EMER DOORS	Advisory	EMER DOORS		Two or more emergency doors are not closed, latched, and locked (overwing emergency exit door).
L AFT EMER DOOR R AFT EMER DOOR	Advisory	EMER DOORS		An overwing emergency exit door is not closed, latched, and locked.
L FWD EMER DOOR R FWD EMER DOOR	Advisory	EMER DOORS		An overwing emergency exit door is not closed, latched, and locked.

DO NOT USE FOR FLIGHT Airplane General, Emergency Equipment, Doors, Windows -

equipment, Doors, Windows -

767 Flight Crew Operations Manual

Emergency Lights

Message	Level	Light	Aural	Condition
EMER LIGHTS	Advisory	UN- ARMED		The emergency lights switch is not in the Armed position.

Oxygen System

Message	Level	Light	Aural	Condition
PASS OXYGEN ON	Advisory	ON		Passenger oxygen system is activated.

August 17, 2007 D632T001-300 1.50.3

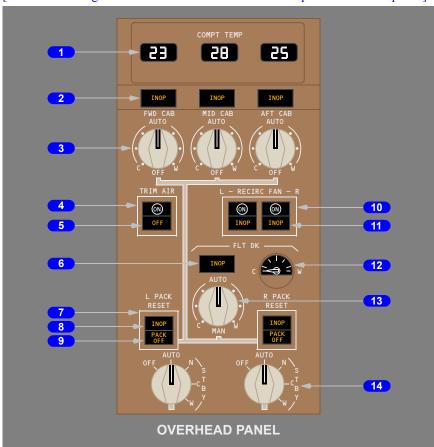
Intentionally Blank

767 Flight Crew Operations Manual

707 Fight Crew Operations Manual	Cl
Air Systems	Chapter 2
Table of Contents	Section 0
Controls and Indicators	2.10
Air Conditioning System	2.10.1
Air Conditioning Control Panel	2.10.1
Shoulder and Foot Heaters	2.10.5
Equipment Cooling Panel	2.10.5
Cargo Heating	2.10.6
Pressurization System	
Cabin Altitude Controls	
Cabin Altitude Indicators	2.10.10
Bleed Air System	2.10.12
Bleed Air Control Panel	2.10.12
Air Conditioning System Description	2.20
Introduction	2.20.1
Air Conditioning Packs	2.20.1
Air Conditioning Automatic Mode	
Air Conditioning Standby Mode	2.20.1
Ground Conditioned Air Operation	2.20.1
Pack Non-Normal Operation	2.20.2
Air Distribution	2.20.2
Temperature Control	2.20.2
Temperature Control With Loss of Trim Air System.	2.20.3
Gasper System	2.20.3
Air Conditioning System Schematic	2.20.4
Shoulder and Foot Heaters	2.20.4
Equipment Cooling System	2.20.5
Forward Equipment Cooling	2.20.5
Non-Normal Operation	2.20.5
Cargo Heat System.	2.20.5
Normal Operation	2.20.6
Non-Normal Operation	2.20.6

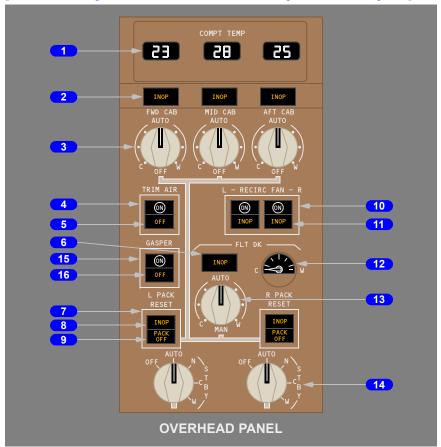
767 Flight Crew Operations Manual

Pressurization System Description	2.30
Introduction	2.30.1
Pressurization System Automatic Operation	2.30.1
Takeoff	2.30.1
Climb	2.30.1
Cruise	2.30.1
Descent and Landing	2.30.2
Non-Normal Indications	2.30.2
Bleed Air System Description	2.40
Introduction	2.40.1
Engine Bleed Air Supply	2.40.1
APU Bleed Air Supply	2.40.2
Ground Pneumatic Air Supply	2.40.2
Bleed Air Duct System	2.40.2
Bleed Air System Non-normal Operations	2.40.2
Bleed Air System Schematic	2.40.3
Air Systems EICAS Messages	2.50
Air Systems EICAS Messages	2.50.1


767 Flight Crew Operations Manual

Air Systems Chapter 2
Controls and Indicators Section 10

Air Conditioning System


Air Conditioning Control Panel

[Air Conditioning Control Panel shown without the Gasper Fan Switch option.]

767 Flight Crew Operations Manual

[Air Conditioning Control Panel shown with the Gasper Fan Switch option.]

1 Compartment Temperature (COMPT TEMP) Indicators

Displays actual temperature sensed in the compartment.

2 Compartment Temperature Inoperative (INOP) Lights

Illuminated (amber) -

- fault in the zone temperature controller
- the Compartment Temperature Control is OFF
- the trim air switch is OFF.

3 Compartment Temperature Controls

AUTO -

- provides automatic compartment temperature control
- rotating the control toward C (cool) or W (warm) sets the desired temperature between 18 degrees C and 30 degrees C.

OFF -

- closes the compartment trim air valve
- the compartment temperature INOP light illuminates.

4 TRIM AIR Switch

ON – the trim air valve is commanded open.

Off (ON not visible) – the trim air valve is commanded closed.

5 Trim Air OFF Light

Illuminated (amber) – the TRIM AIR switch is off.

6 Flight Deck (FLT DK) Temperature Inoperative (INOP) Light

Illuminated (amber) –

- fault in the zone temperature controller.
- the trim air switch is OFF

7 PACK RESET Switches

Push – resets an overheated pack if the pack has cooled to a temperature below the overheat level

8 Pack Inoperative (INOP) Light

Illuminated (amber) –

- the pack is overheated
- fault in the automatic control system.

9 PACK OFF Lights

Illuminated (amber) – pack valve is closed.

10 Recirculation Fan (RECIRC FAN) Switches

ON – the recirculation fan operates

Off (ON not visible) – the recirculation fan does not operate.

767 Flight Crew Operations Manual

11 Recirculation Fan Inoperative (INOP) Lights

Illuminated (amber) –

- the recirculation fan is failed or is not operating.
- · the RECIRC FAN switch is off.

12 Flight Deck Trim Air Valve Position Indicator

C (cool) – valve closed.

W (warm) – valve open.

13 Flight Deck Compartment Temperature Control

AUTO -

- · provides automatic flight deck temperature control
- rotating the control toward C (cool) or W (warm) sets the desired temperature between 18 degrees C and 30 degrees C.

MAN-

- provides manual control of compartment trim air valve
- spring loaded to the 6 o'clock position in this sector.

14 PACK Control Selectors

OFF – closes the pack valve.

AUTO – the pack is automatically controlled.

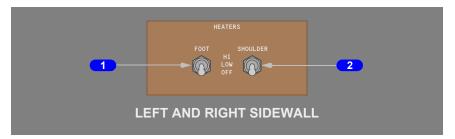
STBY -

- N (normal) regulates the pack outlet temperature to a constant, moderate temperature.
- C (cool) sets the pack to full cold operation.
- W (warm) sets the pack to full warm operation.

15 GASPER Fan Switch

[Gasper Fan Switch and OFF light description provided when the Gasper Fan Switch option is installed.]

ON – the gasper fan is signaled on.


Off (ON not visible) – the gasper fan is signaled off.

16 Gasper Fan OFF light

Illuminated (amber) – the GASPER fan switch is ON but the gasper fan is not operating.

Shoulder and Foot Heaters

1 FOOT HEATERS Switch

HIGH – the electric heater adds heat at high setting to the conditioned air flowing to the rudder pedal area in flight only.

LOW – the electric heater adds heat at low setting to the conditioned air flowing to the rudder pedal area in flight only.

OFF – the electric heater is not operating (no heat added to the conditioned air flowing to the rudder pedal area).

2 SHOULDER HEATERS Switch

HIGH – the electric heater adds heat at high setting to the conditioned air flowing to the side window area in flight only.

LOW – the electric heater adds heat at low setting to the conditioned air flowing to the side window area in flight only.

OFF – the electric heater is not operating (no heat added to the conditioned air flowing to the side window area).

Equipment Cooling Panel

767 Flight Crew Operations Manual

1 Equipment (EQUIP) COOLING Selector

AUTO – automatically controls equipment cooling system.

STBY – positions equipment cooling system for inboard air flow.

OVRD – positions equipment cooling system for reverse air flow.

2 NO COOLING Light

Illuminated (amber) –

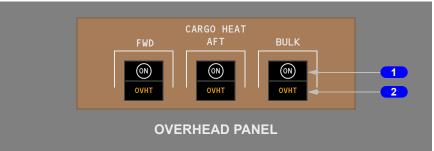
- · active in OVRD only
- no reverse air flow through the E/E compartment avionics.

3 VALVE Light

Illuminated (amber) – equipment cooling valves are not in their commanded position.

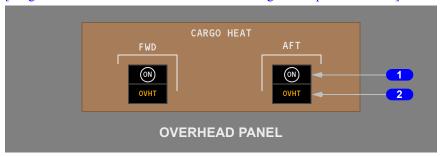
4 Overheat (OVHT) light

Illuminated (amber) – high temperature or low airflow in the equipment cooling system.


5 SMOKE Light

Illuminated (amber) – smoke in the equipment cooling system.

Cargo Heating


Cargo Heat Panel

[Cargo Heat Panel shown with the BULK Cargo heat option installed.]

[Cargo Heat Panel shown without the BULK Cargo heat option installed.]

CARGO HEAT Switches

ON – provides power for heat valves to cycle open and closed for automatic temperature control

Off (ON not visible) - the heat valves are commanded closed

Cargo Heat Overheat (OVHT) Lights

Illuminated (amber) –

- cargo compartment temperature above standard control range
- · shutoff valve signaled closed

Bulk Cargo Heat Panel

[Bulk Cargo Heat Panel shown with the optional NORM or VENT position selector.]

1 BULK CARGO HEAT Selector

Bulk cargo heat switch must be on

NORM – standard cargo heating range

767 Flight Crew Operations Manual

VENT -

- · requests higher temperature control range than NORM
- turns on ventilating fan for bulk cargo compartment

[Bulk Cargo Heat Panel shown with the optional CARGO or ANIMAL position selector.]

1 BULK CARGO HEAT Selector

Bulk cargo heat switch must be on

CARGO – standard cargo heating range.


ANIMAL -

- requests higher temperature control range than CARGO
- turns on ventilating fan for bulk cargo compartment.

Pressurization System

Cabin Altitude Controls

1 Cabin Altitude MANUAL Control

Spring – loaded to center.

Controls cabin outflow valve position with the Cabin Altitude Mode Selector in manual (MAN) mode.

CLIMB – moves outflow valve toward open.

DESCEND – moves outflow valve toward closed.

2 Outflow VALVE Position Indicator

OP - Open.

CL - Closed

3 Landing Altitude (LDG ALT) Indicator

Feet.

Displays selected landing altitude.

4 Landing Altitude (LDG ALT) Selector

Rotate – sets landing altitude indicator.

767 Flight Crew Operations Manual

5 Cabin Altitude AUTO RATE Control

Rotate -

- sets limit for cabin altitude rate of climb or descent during auto control
- index mark establishes approximately 500 fpm climb and 300 fpm descent

6 AUTO Inoperative (INOP) Light

Illuminated (amber) –

- AUTO 1 and AUTO 2 cabin altitude control functions are inoperative
- MAN mode is selected

7 Cabin Altitude MODE SELECTOR

AUTO 1 -

- activates Auto 1 cabin altitude control for automatic operation
- outflow valve positioned automatically.

AUTO 2 -

- activates Auto 2 cabin altitude control for automatic operation
- outflow valve positioned automatically.

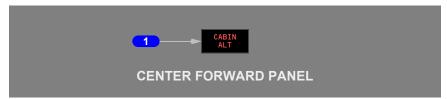
MAN (Manual) -

- outflow valve position is controlled by the cabin altitude MANUAL control
- AUTO INOP light illuminates.

Cabin Altitude Indicators

Cabin Differential Pressure Indicator

Pounds per square inch (psi).


2 Cabin Altitude

Feet x 1,000.

3 Cabin Altitude Rate

Feet per minute (fpm x 1,000).

Cabin Altitude (CABIN ALT) Light

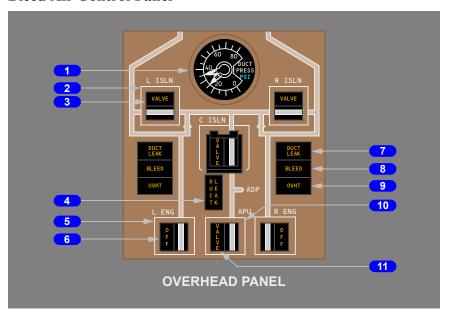
1 Cabin Altitude Light

Illuminated (red) -

- · cabin altitude exceeds 10,000 feet
- extinguishes when cabin altitude descends below 8,500 feet.

Cabin Altitude Light

1 Cabin Altitude Light


Illuminated (red) -

- cabin altitude exceeds 10,000 feet
- extinguishes when cabin altitude descends below 8,500 feet.

767 Flight Crew Operations Manual

Bleed Air System

Bleed Air Control Panel

1 Duct Pressure (DUCT PRESS) Indicators

Pounds per square inch (PSI).

2 Isolation (ISLN) Switches

On (bar in view) – commands isolation valves to open.

Off (bar not in view) – commands isolation valves to close.

3 Isolation VALVE Lights

Illuminated (amber) – isolation valve position disagrees with commanded position.

4 DUCT LEAK Light

Illuminated (amber) – a high temperature bleed air leak is detected in the center pneumatic duct.

5 Engine (ENG) Bleed Air Switches

On (bar in view) – the engine bleed air valve opens when engine bleed air is available.

Off (bar not in view) – valve is manually commanded closed.

6 Engine Bleed Air OFF Lights

Illuminated (amber) – engine bleed air valve is closed:

- · automatically due to a system fault
- the switch is OFF
- the engine is not running.

7 DUCT LEAK Lights

Illuminated (amber) – a high temperature bleed air leak is detected in the left, right, or engine strut pneumatic duct.

8 Engine BLEED Lights

Illuminated (amber) – the engine high pressure bleed air valve and/or pressure regulating valves are open when they should be closed.

9 Engine Bleed Air Overheat (OVHT) Lights

Illuminated (amber) –

- engine bleed air overtemp
- engine bleed valves automatically closed.

10 APU Bleed Air Switch

On (bar in view) – the APU bleed air valve is automatically controlled Off (bar not in view) – commands APU bleed air valve to close.

11 APU Bleed Air VALVE Light

Illuminated (amber) – APU bleed air valve position disagrees with commanded position.

767 Flight Crew Operations Manual

Intentionally Blank

767 Flight Crew Operations Manual

Air Systems Air Conditioning System Description

Chapter 2 Section 20

Introduction

The air conditioning system supplies conditioned bleed air and recirculated cabin air at a controlled temperature throughout the airplane.

The system supplies conditioned air to the flight deck shoulder heaters.

The system supplies ventilation for the cabin:

- · lavatories
- · galleys.

Pack control, zone temperature control, cabin air recirculation, fault detection, and overheat protection are all automatic.

The airplane is divided into four temperature zones: the flight deck and three cabin zones.

Air Conditioning Packs

Two identical air conditioning packs cool bleed air from the engines, APU, or high pressure air from a ground source. Bleed air is precooled before entering the pack. The packs are controlled by two identical pack controllers. Pack output is automatically increased during high pack demand periods to compensate for a failed pack or recirculation fan. This increase in pack output is inhibited during high bleed air demand periods (such as with an engine inoperative).

Air Conditioning Automatic Mode

With the pack selector in the AUTO position, pack output temperature is determined by the left and right cabin temperature controllers:

Air Conditioning Standby Mode

With the pack selector in the standby mode, pack output temperature is determined by the position of the pack selector:

- N (normal) constant, moderate temperature
- C (cool) full cold
- W (warm) full warm.

Ground Conditioned Air Operation

When a ground source of conditioned air is available, it may be used to supply conditioned air directly to the cabin distribution system, eliminating the need for pack operation.

767 Flight Crew Operations Manual

Pack Non-Normal Operation

Pack control, fault detection, and overheat protection are all automatic.

The pack INOP light illuminates and the EICAS advisory message L or R PACK TEMP displays for all pack control system faults and overheats.

When an automatic control system fault or a pack outlet overheat is detected, the pack continues to operate in an uncontrolled, degraded condition, requiring crew interaction

The pack valve closes and the pack is shut down automatically when an internal pack overheat is detected. The PACK OFF light illuminates and the EICAS advisory message L or R PACK OFF displays in addition to the PACK TEMP indications.

If the INOP light remains illuminated after selecting STBY, the fault is a pack overheat. After the pack has cooled, an attempt to restore pack operation may be made by pushing the PACK RESET switch.

Air Distribution

Conditioned air from the packs flows into a mix manifold where it mixes with air from two recirculation fans. Recirculation fans maintain overall cabin air circulation while allowing a reduction of cabin air ventilation, permitting the packs to be operated at a reduced flow. The mixed air is then ducted into the cabin.

The recirculation fans may be turned off for several minutes to provide a more rapid exchange of air.

The recirculation fan INOP light illuminates and the EICAS advisory message L or R RECIR FAN displays whenever a recirculation fan fails or is not operating. A slight increase in fuel consumption occurs for each fan that is OFF.

Temperature Control

The airplane is divided into four temperature control zones:

- flight deck
- · forward cabin
- · mid cabin
- · aft cabin.

The pack controllers regulate the pack output air temperature to satisfy the temperature requirement of the compartment requiring the coolest air. Hot trim air from the bleed air system is added through trim air valves to control the temperature in each of the other compartments. Each temperature control compartment has an associated temperature control.

A compartment INOP light illuminates, and the EICAS advisory message FLT DECK TEMP, FWD CABIN TEMP, MID CABIN TEMP, or AFT CABIN TEMP displays to indicate:

- zone temperature controller failure
- · trim air switch is OFF
- compartment temperature control is in the OFF position (FWD, MID, and AFT CAB only).

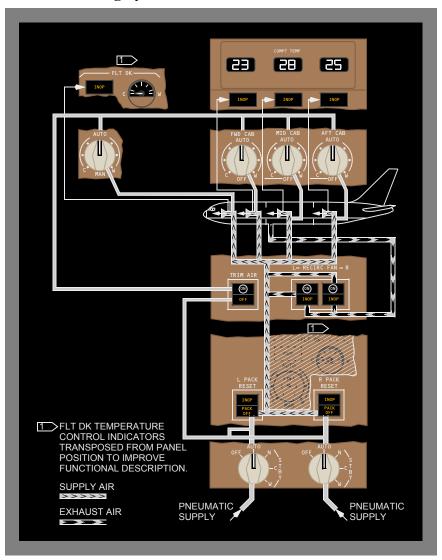
Temperature Control With Loss of Trim Air System

During operation with the trim air system off, the packs attempt to maintain all compartments at an average temperature. The trim air OFF light illuminates and the EICAS advisory message TRIM AIR displays when a TRIM AIR switch is off.

Gasper System

[Gasper System description included when the Gasper Fan Switch option is installed.]

The gasper system draws air from the forward cabin overhead air conditioning ducts and discharges it from gasper outlets in the passenger service units located above each passenger seat. Gasper air is controlled by the GASPER fan switch.


Air Systems -

Description

Air Conditioning System

767 Flight Crew Operations Manual

Air Conditioning System Schematic

Shoulder and Foot Heaters

Flight crew shoulder and foot heat is provided by electric heaters in the ducts that supply conditioned air to the side windows and rudder pedal areas respectively. The heaters operate in flight only.

Equipment Cooling System

Forward Equipment Cooling

The forward equipment cooling system supplies cooling air to equipment in the forward electronic equipment racks and the flight deck avionics.

System operation is automatic with the EQUIP COOLING selector in AUTO.

On the ground, engine operation, pack operation, air/ground logic, airplane skin temperature and ambient temperature are all factors that determine system configuration. A supply fan and an exhaust fan either recirculate the cooling air back through the system, or port it overboard.

In flight, only the exhaust fan operates, and the air is recirculated through the system.

Non-Normal Operation

The VALVE light illuminates and the EICAS advisory message FWD EQPT VAL displays if the system valves fail to reconfigure during automatic operation. Placing the EQUIP COOLING selector in STBY provides an alternate command to reconfigure the system for recirculating the cooling air back through the system,.

The OVHT light illuminates and the EICAS advisory message FWD EQPT OVHT displays if low airflow or high temperature is sensed. Placing the EQUIP COOLING selector in STBY may correct the condition by reconfiguring the system.

The SMOKE light illuminates and the EICAS advisory message FWD EQPT SMOKE displays if smoke is sensed in the forward equipment cooling ducts. Placing the EQUIP COOLING selector in OVRD allows conditioned air to be drawn in reverse through the system by differential pressure and exhausted overboard.

The NO COOLING light illuminates and the EICAS caution message FWD EQPT COOLING displays if no cooling airflow is sensed after selecting OVRD.

Cargo Heat System

The forward and aft cargo compartments are provided heat from the bleed air system.

The forward, aft, and bulk cargo compartments are provided heat from the bleed air system.

767 Flight Crew Operations Manual

Normal Operation

Separate switches control a shutoff valve and a heat control valve in each compartment. The system automatically maintains compartment temperature above approximately 45°F (7°C).

Bulk Cargo Heat Selector

[When the Bulk Cargo Heat option is installed, the Bulk Cargo Heat Panel will contain either the NORM/VENT selector switch or the CARGO/ANIMAL selector switch.]

A BULK CARGO HEAT selector allows a higher temperature to be selected for the bulk compartment. With the selector in the NORM position, the bulk compartment operates the same as the forward and aft compartments. With the selector in the VENT position, the bulk compartment is maintained above approximately 65°F (18°C), and a vent fan draws cabin discharge air into the compartment.

A BULK CARGO HEAT selector allows a higher temperature to be selected for the bulk compartment. With the selector in the CARGO position, the bulk compartment operates the same as the forward and aft compartments. With the selector in the ANIMAL position, the bulk compartment is maintained above approximately 65°F (18°C), and a vent fan draws cabin discharge air into the compartment.

Non-Normal Operation

[This paragraph applies to aircraft without the Bulk Cargo Heat option.]

The cargo heat switch OVHT light illuminates, and the EICAS advisory message FWD or AFT CARGO OVHT displays when the cargo compartment temperature is above the standard control range. The compartment shutoff valve closes automatically if a compartment temperature exceeds approximately 90°F (32°C). When the compartment temperature decreases below the overheat temperature setting, the OVHT light extinguishes, the EICAS message is removed, and the compartment shutoff valve re–opens.

[This paragraph applies to aircraft with the Bulk Cargo Heat option.]

The cargo heat switch OVHT light illuminates and the EICAS advisory message FWD, AFT or BULK CARGO OVHT displays when the cargo compartment temperature is above the standard control range. The compartment shutoff valve closes automatically if a compartment temperature exceeds approximately 90°F (32°C). When the compartment temperature decreases below the overheat temperature setting, the OVHT light extinguishes, the EICAS message is removed, and the compartment shutoff valve re–opens.

767 Flight Crew Operations Manual

Air Systems Pressurization System Description

Chapter 2 Section 30

Introduction

Cabin pressurization is controlled by adjusting the discharge of conditioned cabin air through the outflow valve.

Positive pressure relief valves and negative pressure relief doors protect the fuselage against excessive pressure differential.

The pressurization system has automatic and manual operating modes.

Pressurization System Automatic Operation

The pressurization system is in the automatic mode when the cabin altitude mode selector is set to AUTO 1 or AUTO 2. If the selected auto mode fails, control is automatically switched to the other auto mode.

In the automatic mode, the pressurization system uses ambient pressure data from the air data system in conjunction with the selected cabin auto rate, the takeoff altitude and the indicated landing altitude to calculate the cabin pressurization schedule.

Takeoff

For takeoff, the system supplies a small positive pressurization to cause a smooth cabin altitude transition.

Climb

During climb, cabin altitude increases on a schedule related to the takeoff field elevation, airplane altitude, and the selected auto climb rate limit.

If the maximum cabin pressure differential is reached, cabin climb rate becomes a function of airplane climb rate, while maintaining the maximum differential pressure.

Cruise

Shortly after the airplane levels off, the system enters the cruise mode. The landing altitude and the scheduled cabin altitude are compared and the higher of these two is selected for the cruise cabin altitude. If necessary, the cabin climbs to the cruise cabin altitude at one—half the auto rate or descends to the cruise cabin altitude at the auto rate.

The cruise cabin altitude does not change for minor altitude variations. A significant altitude change causes the system to re–enter the climb mode or to enter the descent mode.

767 Flight Crew Operations Manual

Descent and Landing

During descent, cabin altitude decreases to slightly below the selected landing altitude. This ensures that the airplane lands pressurized. Landing altitude barometric pressure correction comes from the captain's altimeter.

At touchdown, the outflow valve opens to depressurize the airplane.

Non-Normal Indications

If the cabin altitude climbs above 10,000 feet, the CABIN ALT and CABIN ALTITUDE lights illuminate and the EICAS warning message CABIN ALTITUDE displays. The lights extinguish and the EICAS message blanks when the cabin altitude descends below 8,500 feet.

The AUTO INOP light illuminates and the EICAS caution message CABIN AUTO INOP displays when automatic pressurization control fails or when cabin altitude MODE SELECT is MAN. Manual operation is required if the automatic system fails.

Only the automatic mode is equipped with an aneroid switch that automatically closes the outflow valve when the cabin exceeds 11,000 feet. The manual mode has no auto closure feature.

To operate the pressurization system manually:

- · set the cabin altitude MODE SELECT to MAN
- hold the cabin altitude MANUAL control to CLIMB to move the outflow valve toward open and cause the cabin altitude to climb
- hold the cabin altitude MANUAL control to DESCEND to move the outflow valve toward closed and cause the cabin altitude to descend.

767 Flight Crew Operations Manual

Air Systems Bleed Air System Description

Chapter 2 Section 40

Introduction

Bleed air can be supplied by the engines, APU, or a ground air source.

Bleed air is used for:

- · air conditioning
- pressurization
- · engine start
- · wing and engine anti-ice
- center hydraulic system air driven pump (ADP)
- hydraulic reservoir pressurization

When the aircraft is equipped with GE 80C2 engines.

· thrust reversers

Engine Bleed Air Supply

Engine bleed air comes from either the high pressure (HP) or the low pressure (LP) engine compressor sections. LP air is used during high power setting operations. HP air is used during descent and other low power setting operations.

The engine bleed air valves are armed when the engine bleed switches are selected ON. The valves are pressure actuated and remain closed until engine bleed air pressure is sufficient to cause forward flow. The valves may close when the APU is starting either engine. The valves may close when ground pneumatic air is connected or during periods of low engine bleed air demand, such as when the air conditioning packs are off.

The engine bleed air OFF light illuminates and the EICAS advisory message L or R ENG BLEED OFF displays when the engine bleed air valve is closed for a system fault.

The OVHT light illuminates and the EICAS advisory message L or R ENG BLD OVHT displays when the engine bleed air temperature is excessive.

The BLEED light illuminates and the EICAS advisory message L or R ENG HPSOV displays when the engine high pressure bleed air valve is open when commanded closed.

The BLEED light illuminates and the EICAS advisory message L or R ENG PRV displays when the pressure regulating valve is open when commanded closed.

APU Bleed Air Supply

APU bleed air is used primarily during ground operations for air conditioning pack operation and engine starting. In flight, APU bleed air is available up to approximately 17,000 feet.

The check valve in the APU supply line prevents reverse flow of bleed air from the duct into the APU

The VALVE light illuminates and the EICAS advisory message APU BLEED VAL displays when the APU bleed valve position disagrees with the commanded position.

Ground Pneumatic Air Supply

External connectors are provided to connect a ground source of high pressure air directly to the bleed air duct.

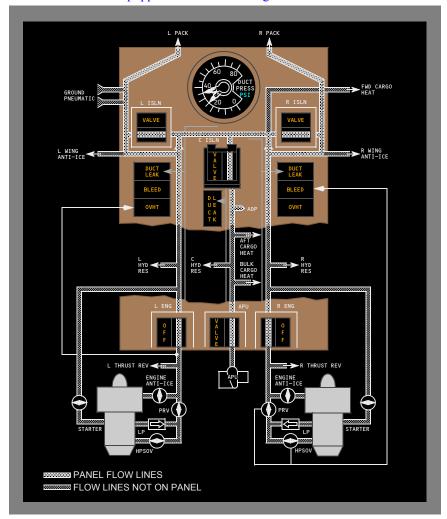
Check valves prevent reverse flow of bleed air from the bleed air duct to the connectors.

Bleed Air Duct System

The duct pressure indicator displays the pressure in the left and right bleed air ducts.

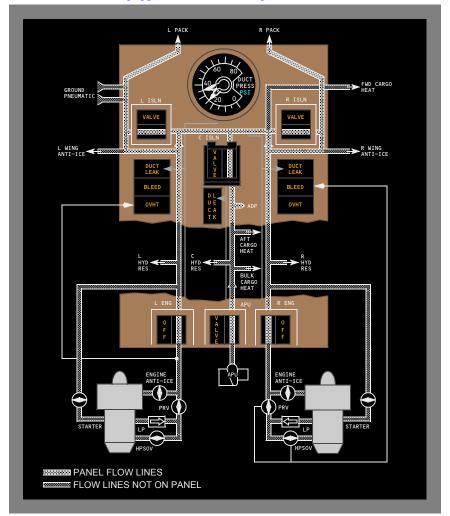
Isolation valves separate the bleed air ducts into isolated segments. The left and right isolation valves are normally closed except for engine start or single bleed source operation. The center isolation valve normally remains open.

The isolation VALVE lights illuminate and the EICAS advisory message C, L or R BLD ISLN VAL displays when the bleed isolation valve position disagrees with the commanded position.


The DUCT LEAK light illuminates and the EICAS caution message L or R BLD DUCT LEAK, BODY DUCT LEAK or STRUT DCT LEAK displays when a high temperature bleed air leak is detected.

Bleed Air System Non-normal Operations

Bleed air overheat protection is provided by a bleed air temperature sensor. A higher than normal temperature causes a L or R ENG BLD OVHT advisory message to appear and the engine bleed air OVHT light to illuminate. If a bleed overheat occurs, the engine bleed air valve is automatically closed. With the engine bleed air valve closed, the HPSOV and PRV are closed. Activation of engine anti-ice will cause the PRV to open to provide cowl anti-ice unless a strut duct leak exists.


Bleed Air System Schematic

When the aircraft is equipped with GE 80C2 engines.

February 19, 2009 2.40.3 D632T001-300

When the aircraft is equipped with PW4000 engines.

767 Flight Crew Operations Manual

Air Systems Air Systems EICAS Messages

Chapter 2
Section 50

Air Systems EICAS Messages

The following EICAS messages can be displayed.

Message	Level	Light	Aural	Condition
APU BLEED VAL	Advisory	VALVE		APU bleed valve position disagrees with the commanded position.
L BLD DUCT LEAK R BLD DUCT LEAK BODY DUCT LEAK	Caution	DUCT LEAK	Beeper	A high temperature bleed air leak is detected.
C BLD ISLN VAL L BLD ISLN VAL R BLD ISLN VAL	Advisory	VALVE		Bleed isolation valve position disagrees with the commanded position.
CABIN ALTITUDE	Warning	CABIN ALTITUDE, CABIN ALT	Siren	Cabin altitude excessive.
CABIN AUTO INOP	Caution	AUTO INOP	Beeper	Automatic pressurization control has failed or the cabin altitude mode selector is in manual.
AFT CABIN TEMP FWD CABIN TEMP MID CABIN TEMP	Advisory	INOP		A fault in the zone temperature controller, compartment temperature control is in the OFF position, or trim air switch OFF.

[This EICAS message applies to aircraft with the Bulk Cargo Heat option.]

AFT CARGO OVHT	Advisory	OVHT	Cargo compartment
BULK CARGO OVHT			temperature above standard control range.
FWD CARGO OVHT			

Air Systems -Air Systems EICAS Message DO NOT USE FOR FLIGHT

767 Flight Crew Operations Manual

This EICAS message applies to aircraft without the Bulk Cargo Heat option.] AFT CARGO OVHT	Message	Level	Light	Aural	Condition
L ENG BLEED OFF R ENG BLEED OFF R ENG BLEED OFF R ENG BLD OVHT Advisory R ENG BLD OVHT Advisory R ENG BLD OVHT Advisory R ENG HPSOV Advisory R ENG PRV And PRV R ENG PRV And PRV R ENG P	[This EICAS message applies to aircraft without the Bulk Cargo Heat option.]				
R ENG BLEED OFF L ENG BLD OVHT R ENG BLD OVHT R ENG BLD OVHT L ENG HPSOV R ENG HPSOV Advisory R ENG PRV R ENG PRV R ENG PRV Advisory R ENG PRV R ENG PRV Advisory R ENG PRV Advisory R ENG PRV R ENG PRV Sure regulating valve is open when commanded closed. OVRD selected and no reverse airflow detected through the E/E compartment avionics. FWD EQPT OVHT Advisory OVHT Ground crew call horn on ground FWD EQPT SMOKE Advisory SMOKE Smoke detected in the forward equipment cooling system. Smoke detected in the forward equipment cooling ducts. An equipment cooling valve not in commanded position.		Advisory	OVHT		temperature above
R ENG BLEED OFF L ENG BLD OVHT R ENG BLD OVHT R ENG BLD OVHT L ENG HPSOV R ENG HPSOV Advisory R ENG PRV R ENG PRV R ENG PRV Advisory R ENG PRV R ENG PRV Advisory R ENG PRV Advisory R ENG PRV R ENG PRV Sure regulating valve is open when commanded closed. OVRD selected and no reverse airflow detected through the E/E compartment avionics. FWD EQPT OVHT Advisory OVHT Ground crew call horn on ground FWD EQPT SMOKE Advisory SMOKE Smoke detected in the forward equipment cooling system. Smoke detected in the forward equipment cooling ducts. An equipment cooling valve not in commanded position.		ı	I	1	
R ENG BLD OVHT L ENG HPSOV R ENG HPSOV Advisory R ENG PRV R ENG PRV R ENG PRV Advisory R ENG PRV R ENG PRV Advisory R ENG PRV Advisory R ENG PRV COOLING COOLING COOLING COOLING COOLING Beeper COOLING C		Advisory	OFF		
L ENG HPSOV R ENG HPSOV Advisory R ENG PRV R ENG PRV R ENG PRV R ENG PRV COOLING COOLING COOLING COOLING COOLING COOLING RENG PRV Advisory COOLING CO	L ENG BLD OVHT	Advisory	OVHT		
R ENG HPSOV R ENG PRV R ENG PRV Cooling Cooling Advisory R ENG PRV Cooling Cooling Advisory R ENG PRV Cooling Cooling	R ENG BLD OVHT				temperature is excessive.
L ENG PRV R ENG PRV COOLING Caution COOLING Caution COOLING Caution COOLING Caution COOLING Caution COOLING Cooling Cool	L ENG HPSOV	Advisory	BLEED		
R ENG PRV Caution NO COOLING COOLING COOLING COOLING COOLING COOLING Beeper OVRD selected and no reverse airflow detected through the E/E compartment avionics. FWD EQPT OVHT Advisory OVHT Ground crew call horn on ground FWD EQPT SMOKE Advisory SMOKE Smoke detected in the forward equipment cooling ducts. FWD EQPT VAL Advisory VALVE An equipment cooling valve not in commanded position.	R ENG HPSOV				
FWD EQPT OVHT Advisory FWD EQPT SMOKE Advisory FWD EQPT SMOKE Advisory SMOKE Commanded closed. Commanded closed. OVRD selected and no reverse airflow detected through the E/E compartment avionics. High temperature or low airflow in equipment cooling system. Smoke detected in the forward equipment cooling ducts. FWD EQPT VAL Advisory VALVE An equipment cooling valve not in commanded position.	L ENG PRV	Advisory	BLEED		
COOLING COOLING COOLING reverse airflow detected through the E/E compartment avionics. FWD EQPT OVHT Advisory OVHT Ground crew call horn on ground FWD EQPT SMOKE Advisory SMOKE Smoke detected in the forward equipment cooling ducts. FWD EQPT VAL Advisory VALVE An equipment cooling valve not in commanded position.	R ENG PRV				
FWD EQPT SMOKE Advisory SMOKE Smoke detected in the forward equipment cooling ducts. FWD EQPT VAL Advisory VALVE An equipment cooling valve not in commanded position.	-	Caution		Beeper	reverse airflow detected through the E/E
FWD EQPT VAL Advisory VALVE An equipment cooling valve not in commanded position.	FWD EQPT OVHT	Advisory	OVHT	crew call horn on	airflow in equipment
valve not in commanded position.	FWD EQPT SMOKE	Advisory	SMOKE		forward equipment
FLT DECK TEMP Advisory INOP A fault in the zone	FWD EQPT VAL	Advisory	VALVE		valve not in commanded
temperature controller or trim air switch OFF.	FLT DECK TEMP	Advisory	INOP		temperature controller or
L PACK OFF Advisory PACK OFF Pack valve is closed. R PACK OFF		Advisory	PACK OFF		Pack valve is closed.
		Advisory	INOP		Automatic control system
L PACK TEMP Advisory INOP Automatic control system fault or overheat.		Auvisory	INOP		Automatic control system fault or overheat.

DO NOT USE FOR FLIGHTAir Systems EICAS Messages

2.50.3

767 Flight Crew Operations Manual

Message	Level	Light	Aural	Condition
L RECIR FAN R RECIR FAN	Advisory	INOP		Fan is failed or not operating.
L STRUT DCT LEAK	Caution	DUCT LEAK	Beeper	A high temperature bleed air leak is detected.
R STRUT DCT LEAK				
TRIM AIR	Advisory	OFF		Trim air switch OFF.

Intentionally Blank

767 Flight Crew Operations Manual

Anti-Ice, Rain	Chapter 3
Table of Contents	Section 0
Controls and Indicators	3.10
Manual Anti–Ice Panel	3.10.1
Window Heat and Wiper Panels	3.10.2
Window Heat Panel	3.10.2
Wiper Panel	3.10.2
Probe Heat Lights	3.10.3
System Description	3.20
Introduction	3.20.1
Engine Anti–Ice System	3.20.1
Wing Anti–Ice System	3.20.1
Manual Anti-Ice System Operation	3.20.2
Engine Anti-Ice Operation	3.20.2
Wing Anti-Ice Operation	3.20.2
Anti–Ice System Schematic	3.20.3
Flight Deck Window Heat	3.20.3
Windshield Wipers	3.20.4
Probe Heat	3.20.4
EICAS Messages	3.30
Anti–Ice EICAS Messages	3.30.1

767 Flight Crew Operations Manual

Intentionally Blank

767 Flight Crew Operations Manual

Anti-Ice, Rain Chapter 3 **Controls and Indicators Section 10**

Manual Anti-Ice Panel

1 WING ANTI-ICE Switch

ON – in flight, both wing anti–ice valves are commanded open.

Off (ON not visible) – both wing anti–ice valves are commanded closed.

2 Wing Anti–Ice VALVE Lights

Illuminated (amber) – wing anti–ice valve position disagrees with the switch position.

3 ENGINE ANTI-ICE Switches

ON – the engine anti–ice valve is commanded open.

Off (ON not visible) – the engine anti–ice valve is commanded closed.

4 Engine Anti–Ice VALVE Lights

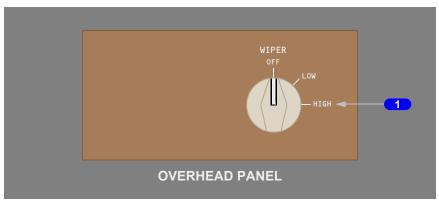
Illuminated (amber) – engine anti–ice valve position disagrees with the switch position.

767 Flight Crew Operations Manual

Window Heat and Wiper Panels

Window Heat Panel

WINDOW HEAT Switches


ON – window heat is applied to the selected windows.

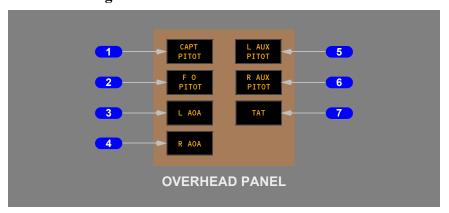
Off (ON not visible) – window heat is removed from the selected windows

2 Window Heat Inoperative (INOP) Lights

Illuminated (amber) – the window is not being heated.

Wiper Panel

1 WIPER Selector


OFF – the wipers are stowed at the base of the windows.

LOW – the wipers operate at low speed.

HIGH – the wipers operate at high speed.

Probe Heat Lights

1 Captain Pitot (CAPT PITOT) Light

Illuminated (amber) – probe is not being heated in flight or neither engine is running on the ground.

2 First Officer Pitot (F O PITOT) Light

Illuminated (amber) – probe is not being heated in flight or neither engine is running on the ground.

3 Left Angle of Attack (L AOA) Probe Light

Illuminated (amber) – probe is not being heated in flight or neither engine is running on the ground.

4 Right Angle of Attack (R AOA) Probe Light

Illuminated (amber) – probe is not being heated in flight or neither engine is running on the ground.

5 Left Auxiliary Pitot (L AUX PITOT) Light

Illuminated (amber) – probe is not being heated in flight or neither engine is running on the ground.

6 Right Auxiliary Pitot (R AUX PITOT) Light

Illuminated (amber) – probe is not being heated in flight or neither engine is running on the ground.

767 Flight Crew Operations Manual

7 Total Air Temperature (TAT) Probe Light

Illuminated (amber) – probe is not being heated in flight or neither engine is running on the ground.

767 Flight Crew Operations Manual

Anti-Ice, Rain System Description

Chapter 3
Section 20

Introduction

The anti-ice and rain systems include:

- · engine anti-ice
- wing anti-ice
- · flight deck window heat
- windshield wipers
- probe heat

Engine Anti–Ice System

The engine anti-ice system uses engine bleed air to provide engine cowl inlet ice protection. Engine anti-ice can be operated in flight or on the ground. The left and right engines have identical, independent anti-ice systems. This allows the remaining system to operate if one engine fails.

When the aircraft is equipped with PW4000 engines.

The engine thermal anti-ice (TAI) annunciation appears above the EICAS N1 indication when an engine anti-ice valve is open.

When the aircraft is equipped with GE 80C2 engines.

The engine thermal anti–ice (TAI) annunciation appears below the EICAS N1 indication when an engine anti–ice valve is open.

The VALVE light illuminates and the EICAS advisory message L or R ENG ANTI-ICE displays when the engine anti-ice valve disagrees with the switch position.

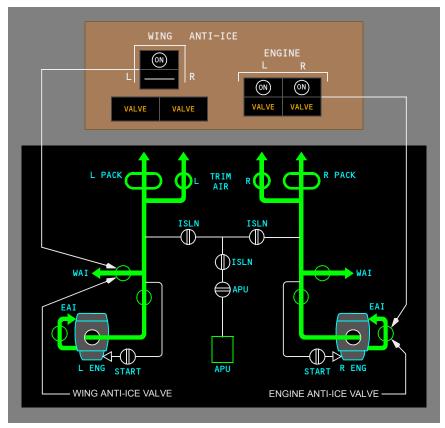
Wing Anti-Ice System

The wing anti-ice system provides bleed air to the three outboard leading edge slats on each wing. Wing anti-ice can be operated in flight only. It is inhibited on the ground.

The VALVE light illuminates and the EICAS advisory message L or R WING ANTI-ICE displays if the wing anti-ice valve disagrees with the switch position.

767 Flight Crew Operations Manual

Manual Anti-Ice System Operation


Engine Anti-Ice Operation

On the ground or in flight, pushing the ENGINE ANTI-ICE switches ON commands the engine anti-ice valves to open, and allows engine bleed air to anti-ice the engine cowl inlets. Pushing the ENGINE ANTI-ICE switches again commands the engine anti-ice valves to close, and stops engine bleed air from anti-icing the engine cowl inlets.

Wing Anti-Ice Operation

In flight, pushing the WING ANTI-ICE switch ON commands the wing anti-ice valve in each wing to open, allowing bleed air to flow from the bleed air manifold to the affected slats. Pushing the WING ANTI-ICE switch again commands the wing anti-ice valve in each wing to close, stopping bleed air from flowing from the bleed air manifold to the affected slats.

Anti-Ice System Schematic

Flight Deck Window Heat

All flight deck windows are electrically heated. The forward windows have anti-icing protection and anti-fogging. The side windows have anti-fogging protection only.

The WINDOW HEAT switches control heating for all flight deck windows. With the switches ON, window heat operates as soon as electrical power is established. The windows are protected from thermal shock when the switches are initially placed ON.

In addition to the electric heating, conditioned air is ducted to the top of the forward windows and then flows along the inside surface to provide supplemental anti–fogging. The anti–fogging airflow is continuous and is independent of electric window heat.

767 Flight Crew Operations Manual

One INOP light illuminates and the EICAS advisory message L or R FWD WINDOW or L or R SIDE WINDOW displays to indicate a window is not being heated. If two or more INOP lights illuminate, the EICAS advisory message WINDOW HEAT displays.

The WINDOW HEAT EICAS message displays, and electrical power for the aft-most cockpit window heat is load shed when the Fuel Jettison Switch is selected ON. Electrical power is reset, and the WINDOW HEAT EICAS message no longer displays when the Fuel Jettison Switch is selected OFF.

Windshield Wipers

The forward windows are equipped with two-speed wipers. One selector controls both wipers. With the WIPER selector in the OFF position, the wipers are off and stowed.

Probe Heat

Operation of the probe heat system is fully automatic. Power to the electrically heated probes is applied any time an engine is running.

An individual probe heat light illuminates and the associated EICAS advisory message displays when a probe is not being heated. If two or more probe lights illuminate, the EICAS advisory message PROBE HEAT displays.

767 Flight Crew Operations Manual

Anti-Ice, Rain EICAS Messages

Chapter 3
Section 30

Anti-Ice EICAS Messages

The following EICAS messages can be displayed.

Message	Level	Light	Aural	Condition
L AOA PROBE	Advisory	L AOA		AOA probe heat is
R AOA PROBE		R AOA		inoperative.
L AUX PITOT	Advisory	L AUX		Left aux or right aux pitot
R AUX PITOT		PITOT		heat is inoperative.
		R AUX PITOT		
CAPT PITOT	Advisory	CAPT PITOT		Captain's pitot probe heat is inoperative.
r File Alert Ion				•
L ENG ANTI-ICE	Advisory	VALVE		Engine anti–ice valve disagrees with switch
R ENG ANTI–ICE				position.
F/O PITOT	Advisory	FO		First officer's pitot probe
		PITOT		heat is inoperative.
PROBE HEAT	Advisory	Two or		Two or more probe heats
		more PITOT,		are inoperative.
		AOA or		
		TAT		
TAT PROBE	Advisory	TAT		TAT probe heat is inoperative.
L FWD WINDOW	Advisory	INOP		Window is not being
R FWD WINDOW				heated.
L SIDE WINDOW	Advisory	INOP		Window is not being
R SIDE WINDOW				heated.
WINDOW HEAT	Advisory	Two or		Two or more windows are
		more INOP		not being heated.
L WING ANTI-ICE	Advisory	VALVE		Wing anti-ice valve
R WING ANTI–ICE				disagrees with switch position.

767 Flight Crew Operations Manual

Intentionally Blank

767 Flight Crew Operations Manual

Automatic Elight	antor 1
	napter 4
	Section 0
Controls and Indicators	4.10
Mode Control Panel (MCP)	4.10.1
Autopilot Flight Director System (AFDS) Controls	4.10.1
Autothrottle (A/T) System Controls	4.10.2
Autopilot Flight Director IAS/MACH Controls	4.10.4
Autopilot Flight Director Roll and Pitch Controls	4.10.5
Autopilot Flight Director Heading and Bank Angle Contr	ols . 4.10.7
Autopilot Flight Director Vertical Speed (V/S) Controls.	4.10.8
Autopilot Flight Director Altitude Controls	4.10.9
Autopilot Flight Director Approach Mode Controls	4.10.9
Autoland Status	4.10.12
ADI Flight Mode Annunciations (FMAs)	4.10.13
Autopilot Disengage Switch	4.10.15
Autothrottle Disconnect and Go–Around Switches	4.10.16
Autoflight Lights	
Contain Description	4.20
System Description	
Introduction	
Autopilot Flight Director System	
MCP Switches	
Autopilot Engagement	
Autopilot Disengagement	
AFDS Failures	
Flight Director Display	
Autopilot Flight Director System Schematic	
Autoland Status Annunciators (ASA)	
AFDS Flight Mode Annunciations	4.20.5
Autothrottle System	4.20.8
Thrust Management Computer	
Thrust Mode Select Panel	
Autothrottle Thrust Lever Operation	
Autothrottle Disconnect	

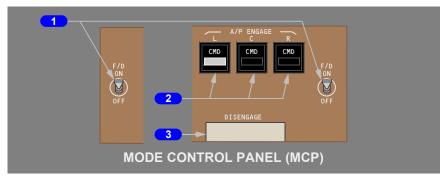
Automatic Flight - Table of Contents

DO NOT USE FOR FLIGHT

767 Flight Crew Operations Manual

Automatic Flight Operations	4.20.11
Automatic Flight – Takeoff and Climb Profile	4.20.11
Automatic Flight – Cruise	4.20.13
Automatic Flight – Approach and Landing	4.20.14
Automatic Flight – Approach Profile	4.20.16
Automatic Flight – Go–Around	4.20.16
Automatic Flight – Windshear Recovery	4.20.18
Auto Flight Limit Modes	4.20.18
EICAS Messages	4.30
Automatic Flight EICAS Messages	4 30 1

767 Flight Crew Operations Manual


Automatic Flight Controls and Indicators

Chapter 4
Section 10

Mode Control Panel (MCP)

Autopilot Flight Director System (AFDS) Controls

1 Flight Director (F/D) Switches

The left and right flight director switches activate flight director steering indications on their respective flight mode annunciator (FMA).

ON – respective pilots command bars operate in current AFDS mode.

- On the ground with no autopilot engaged and both F/D switches OFF, the first F/D switch positioned to ON arms the flight director in the takeoff (TO) roll and pitch modes. Positioning the second F/D switch to ON displays the flight director steering indications on the second FMA
- In flight, with the autopilot engaged and both F/D switches OFF, the first F/D switch positioned to ON activates the flight director in the selected autopilot mode(s)
- In flight with the autopilot disengaged and both F/D switches OFF, the first F/Ds switch positioned to ON engages the flight director in:

767 Flight Crew Operations Manual

[Basic: Autopilot heading hold at engage.]

- V/S as the pitch mode and HDG HOLD as the roll mode
- command bars not in view if the autopilot, corresponding to the FCC selected for the flight director, is engaged in CMD

OFF -

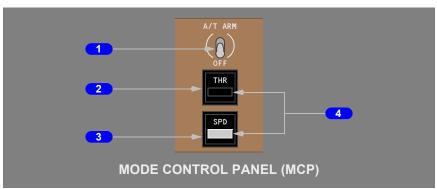
- flight director steering indications do not display, unless
- the go-around switch is pushed when airspeed is greater than 80 knots and with the flaps not retracted

2 Autopilot (A/P) ENGAGE Switches

Push (any switch can engage the autopilot) –

- · CMD displays on each FMA
- if either F/D switch is ON, the autopilot engages in the selected flight director mode(s) except TO and GA
- if both F/D switches are OFF, the autopilot engages in:
 - V/S as the pitch mode and HDG HOLD as the roll mode

3 Autopilot DISENGAGE Bar


Push down -

- disengages all three autopilots
- · prevents autopilot engagement
- · exposes amber stripe

Lift up -

- · enables autopilot engagement
- · conceals amber stripe

Autothrottle (A/T) System Controls

1 Autothrottle (A/T) ARM Switch

ARM -

- · arms autothrottle system for mode selection
- autothrottle operates when THR, SPD, V NAV, FL CH, or GA switch pushed
- autothrottle operates when SPD switch pushed and pitch mode is ALT HOLD, V/S or G/S

OFF – disconnects autothrottle and prevents autothrottle engagement.

2 Thrust (THR) Switch

Push -

- selects autothrottle EPR mode
- EPR annunciates on each FMA
- · selects autothrottle N1 mode
- N1 annunciates on each FMA
- autothrottle holds reference thrust value displayed on EICAS subject to maximum speed limits
- changes thrust reference from TO to CLB if above 400 feet radio altitude
- updates FMC position to takeoff runway threshold position when selected for takeoff only if GPS NAV is OFF (i.e. GPS NAV data not available to the FMC)

3 Speed (SPD) Switch

Push -

- · selects autothrottle SPD mode
- SPD appears on each FMA
- autothrottle controls thrust to maintain IAS or MACH displayed in the speed window subject to minimum and maximum speed limits
- changes thrust reference from TO to CLB if above 400 feet radio altitude

4 MCP Mode Switch Lights

All MCP mode switches contain an annunciator light that illuminates when the mode switch is selected to indicate the mode is either engaged or armed.

767 Flight Crew Operations Manual

Autopilot Flight Director IAS/MACH Controls

1 IAS/MACH Window

Displays selected speed when IAS/MACH selector controls command speed.

Displays 200 knots when power first applied.

Blank when FMC is controlling command airspeed bugs.

Display range:

- 0.40 0.95 MACH
- 100 399 KIAS

In climb, changes from IAS to MACH at approximately .80 MACH.

In descent, changes from MACH to IAS at approximately 300 KIAS.

2 Select (SEL) Switch

Push – alternately changes the IAS/MACH window between IAS and MACH.

3 IAS/MACH Selector

Rotate -

- sets speed in IAS/MACH window and positions command airspeed bugs
- inoperative when IAS/MACH window blank

Push – when VNAV mode is engaged, alternately changes IAS/MACH window between current IAS or MACH and a blank display.

- VNAV active, window opens and speed control transfers from FMC target speed to IAS/MACH selector
- descending in VNAV PTH, pitch mode changes to VNAV SPD. Selected speed maintained by pitch until airplane intercepts an altitude constraint and VNAV PTH reengages. Although, if on approach, pitch mode remains in VNAV PTH and autothrottle controls speed

Autopilot Flight Director Roll and Pitch Controls

1 Lateral Navigation (L NAV) Switch

Push -

- Arms, engages or disarms LNAV as the roll mode.
- Displays LNAV in white (armed) on the roll flight mode annunciator when armed. The previous roll mode remains active.
- LNAV engages if the airplane is above 50 feet radio altitude and:
 - within 2.5 NM of the active leg
 - if not within 2.5 NM of the active leg and on an intercept heading to the active leg, remains armed then engages when approaching the active leg
 - · when engaged, displays LNAV in green on roll flight mode
- selection of LNAV with the airplane not on a heading which intercepts the active leg, displays NOT ON INTERCEPT HEADING in the CDU scratch pads.
- Selection of LNAV when an active FMC route is not available displays NO ACTIVE ROUTE in the CDU scratchpad.

LNAV maintains current heading when:

- passing the last active route waypoint
- passing the last waypoint prior to a route discontinuity
- passing the last route offset waypoint
- · activating the inactive route or activating an airway intercept and not within LNAV engagement criteria

LNAV deactivates:

- by selecting heading hold (HDG HOLD) or heading select (HDG SEL)
- · when localizer is captured

767 Flight Crew Operations Manual

- if there is a dual FMC failure (LNAV may be re-engaged if there is an active CDU ALTN NAV route available.
- by pushing LNAV switch a second time when LNAV is armed

2 Vertical Navigation (V NAV) Switch

Push -

- engages AFDS and A/T in VNAV mode
- VNAV PTH or VNAV SPD displays on each FMA
- AFDS and autothrottle follow vertical path and thrust guidance from FMCS
- changes thrust reference from TO to CLB if above 400 feet radio altitude

During climbs or descents, AFDS captures and holds altitude displayed in altitude window or FMC target altitude, whichever is reached first.

With VNAV engaged, pushing IAS/MACH selector permits manual speed selection. FMCs then use manually selected speeds for speed control.

VNAV deactivates:

- by selecting GA, FL CH, SPD or THR, V/S or ALT HOLD
- by pushing VNAV switch a second time when VNAV is armed
- · when glideslope is captured
- in climb or descent, reaching altitude displayed in altitude window prior to reaching FMCs target altitude
- passing top of descent point if the MCP is not set to an altitude below cruise altitude

3 Flight Level Change (FL CH) Switch

Push -

- selects FLCH mode and sets IAS/MACH window and command airspeed bugs to current airspeed
- FLCH displays on each FMA
- AFDS pitch holds existing airspeed and A/T sets required thrust, limited by the thrust limit for climb and idle for descent. When selected altitude is reached, pitch mode changes to ALT HOLD and A/T changes to SPD mode
- with FLCH mode displayed, pushing switch resets IAS/MACH window and commands airspeed bugs to current airspeed
- changes thrust reference from TO to CLB if above 400 feet radio altitude

Autopilot Flight Director Heading and Bank Angle Controls

1 Heading (HDG) Window

Displays selected heading and positions map display selected heading markers.

HDG window and map display headings set to 000 when power first applied.

Automatically changes to ILS front course heading at LOC capture.

2 Heading Select (SEL) Switch

Push -

- engages HDG SEL roll mode
- HDG SEL roll mode displays on each FMA
- AFDS controls roll to acquire and hold heading shown in heading window and on map display heading markers
- · bank is limited by bank limit selector

3 Heading Selector (inner)

Rotate – sets heading in HDG window and positions selected heading marker on both map displays.

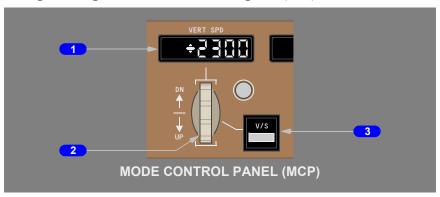
4 BANK LIMIT Selector (outer)

Rotate – sets AFDS commanded bank limit when in HDG SEL roll mode as follows:

AUTO – bank angle varies between 15 – 25 degrees, depending on true airspeed.

- at slower true airspeeds the bank angle limit is 25 degrees
- as true airspeed increases, the bank angle limit decreases

Manually selected – 5, 10, 15, 20, or 25 selected value is maximum regardless of airspeed.


767 Flight Crew Operations Manual

5 Heading HOLD Switch

Push -

- selects HDG HOLD roll mode and displays on each FMA
- · AFDS rolls wings level, then holds present heading

Autopilot Flight Director Vertical Speed (V/S) Controls

1 Vertical Speed (VERT SPD) Window

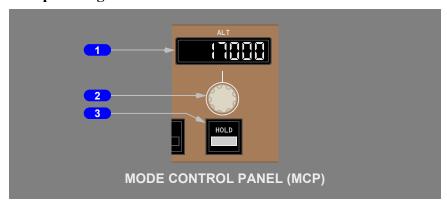
Displays selected vertical speed.

Blank when V/S pitch mode not selected.

Display range is from (-8000 to +6000 fpm) in 100 fpm increments.

2 Vertical Speed Selector (DN/UP)

UP or Down (DN) – sets vertical speed in VERT SPD window.


3 Vertical Speed (V/S) Switch

Push -

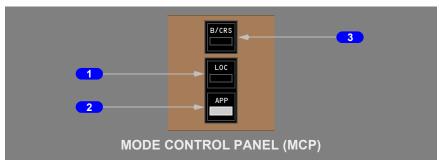
- selects V/S pitch mode and displays on each FMA
- displays current vertical speed in VERT SPD window
- when selected altitude reached, pitch flight mode annunciation changes to ALT HOLD
- AFDS pitch maintains vertical speed displayed in the VERT SPD window
- if AFDS is engaged in V/S from FLCH or from VNAV, A/T automatically engages in SPD mode if armed

Autopilot Flight Director Altitude Controls

1 Altitude (ALT) Window

Displays selected altitude in 100 feet increments. Range: 0 to 50,000 feet. Displayed altitude is reference altitude, for altitude alerting and level off. ALT window set to 10,000 feet when power is first applied.

2 Altitude Selector


Rotate – sets altitude in ALT window.

3 Altitude HOLD Switch

Push -

- selects altitude ALT HOLD pitch mode
- ALT HOLD pitch mode displays on FMA pitch mode annunciation
- AFDS commands pitch to maintain the altitude when the switch was pushed

Autopilot Flight Director Approach Mode Controls

767 Flight Crew Operations Manual

1 Localizer (LOC) Switch

Push -

- arms, disarms, captures LOC as roll mode
- displays LOC on both FMA roll flight mode annunciations before localizer capture; current roll mode LNAV, HDG SEL or HDG HOLD remains active until LOC capture
- displays LOC on FMA roll flight mode annunciations after localizer capture
- arms AFDS to capture and track inbound on front course, capture point varies based on range and intercept angle
- localizer capture can occur when intercept track angle is within 120 degrees of the localizer course

Note: After localizer capture, flight director roll commands may appear inconsistent with A/P roll maneuvers for one to two minutes.

Localizer mode can be disarmed before localizer capture by:

- · pushing localizer switch a second time
- arming LNAV

Localizer mode can be deactivated after localizer capture by:

- pushing a GA switch
- selecting a roll mode other than LNAV
- disengaging the autopilot and turning both F/D switches off

Note: The LOC mode is a single autopilot function only. Multiple autopilots cannot be engaged with this mode.

2 Approach (APP) Switch

Push -

- autopilot systems powered by separate sources with three autopilots engaged
- arms, disarms, or captures LOC as roll mode and glideslope (G/S) as pitch mode
- displays LOC and G/S on FMA roll and pitch flight mode annunciations prior to localizer and glideslope capture
- displays LOC and G/S on both FMA roll and pitch flight mode annunciations after each is captured
- localizer captures when intercept track angle is within 120 degrees of localizer course

Note: After localizer capture, flight director roll commands may appear inconsistent with A/P roll maneuvers for one to two minutes.

• glideslope captures when intercept track angle to the localizer is within 80 degrees of localizer course

Automatic Flight -Controls and Indicators

4.10.11

767 Flight Crew Operations Manual

[Basic: Glideslope inhibit before localizer capture.]

- · localizer must be captured before glideslope
- AFDS captures and tracks localizer and glideslope upon intercepting the respective localizer and glideslope radio signals

[Basic: Approach mode automatic autopilot selection.]

• arms the other autopilot systems (CMD switch bars in view) for subsequent automatic engagement which occurs when localizer and glideslope are captured, and radio altitude is below 1500 feet

Approach mode can be disarmed before localizer or glideslope capture by:

- pushing approach switch a second time
- pushing LOC switch (G/S disarms, LOC remains armed)
- pushing LNAV switch and LNAV arms (does not immediately engage)
- pushing VNAV switch and VNAV arms (does not immediately engage)

Approach mode deselects:

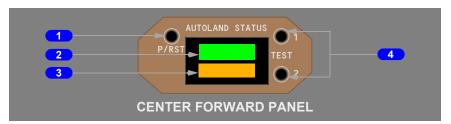
- with LOC captured and G/S armed, by selecting another roll mode other than LNAV; selecting LOC mode initiates a localizer approach.
- with G/S captured and LOC armed, by selecting another pitch mode other than VNAV.
- after LOC and/or G/S are captured, by selecting TO/GA mode or disengage autopilot and turn both F/D switches off

3 Backcourse (B/CRS) Switch

Push – (Must be used concurrently with LOC switch), arms or engages AFDS in B/CRS mode as follows:

B/CRS appears on each FMA prior to localizer capture.

- AFDS is armed to capture and track inbound on backcourse of localizer
- capture point varies based on range and intercept angle
- initial roll modes; LNAV, HDG SEL or HDG HOLD remain engaged until B/CRS capture
- before localizer capture, pushing the LOC switch a second time disarms both the LOC and B/CRS modes. Pushing only the B/CRS switch a second time, disarms the B/CRS mode but the LOC mode remains armed


B/CRS appears on each FMA after localizer capture.

- · AFDS tracks inbound on backcourse
- if the LOC switch is selected and localizer is captured before B/CRS switch is pushed, AFDS will track the localizer front course (outbound) and B/CRS cannot be selected
- G/S, FLARE and ROLLOUT functions are not available

Note: The B/CRS mode is a single autopilot function only. Multiple autopilots cannot be engaged with this mode.

767 Flight Crew Operations Manual

Autoland Status

1 Push/Reset (P/RST) Switch

Push – resets both pilots annunciators as follows:

Before APP mode selected:

- changes NO AUTOLND or NO LAND 3 to blank,
- if condition is still present when switch release, annunciation returns

After APP mode selected:

- if NO LAND 3 displayed, becomes blank and remains blank until after landing and autopilots disengaged
- if NO AUTOLND displayed, remains displayed until autopilots are disengaged

2 AUTOLAND STATUS Annunciator (Upper)

Normal (blank) –

LAND 3 - (green)

- indicates all three autopilot systems and their associated supporting airplane system inputs are operating normally
- appears below 1500 feet radio altitude with LOC and G/S captured

LAND 2 – (green)

- indicates a minimum of two autopilot systems and their associated supporting airplane system inputs are operating normally
- appears below 1500 feet radio altitude with LOC and G/S captured

3 AUTOLAND STATUS Annunciator (Lower)

Normal (blank) –

NO AUTOLND (amber) – indicates fault conditions exist which preclude the use of the autopilots for an automatic landing.

NO LAND 3 (amber) – indicates a fault condition exists which results in a LAND 2 condition

4.10.13

767 Flight Crew Operations Manual

4 TEST Switches

Push – activates autoland status annunciator tests.

ADI Flight Mode Annunciations (FMAs)

[Option: Top flight mode annunciations (required for speed tape).]

[Option: Top flight mode annunciations.]

[Basic: Fast / slow indicator.]

1 Autothrottle Modes (Active)

Displayed (green) - ***

- EPR
- N1
- SPD
- FLCH
- GA
- IDLE
- THR HLD

Autothrottle Limits: displayed (green) - */***

- FLAP LIM
- ALPHA
- SPD LIM

767 Flight Crew Operations Manual

[Option: Top flight mode annunciations.] [Basic: Fast / slow indicator.]

Autothrottle Status: displayed (green) - ****

- A/T
- F/S

2 AFDS Pitch Modes (Armed)

Displayed (white) -

- G/S
- FLARE
- VNAV

3 AFDS Pitch Modes (Active)

Displayed (green) -**/***

- TO
- ALT HOLD
- V/S
- VNAV PTH
- VNAV SPD
- SPD
- G/S
- FLARE
- ALT CAP
- GA

AFDS Pitch Limits: displayed (green) - */***

- FLAP LIM
- SPD LIM

4 AFDS Roll Modes (Active)

Displayed (green) - **/ ***

- HDG HOLD
- HDG SEL
- LNAV
- LOC
- ROLLOUT
- TO
- GA

[Option: Top flight mode annunciations]

B/CRS

767 Flight Crew Operations Manual

5 AFDS Roll Modes (Armed)

Displayed (white) –

- LOC
- ROLLOUT
- LNAV

[Option: Top flight mode annunciations.]

B/CRS

6 AFDS (Active)

Displayed (green) -

- CMD
- FD
- * Mode is operating with angle of attack (alpha) or airspeed limit. Limit mode annunciation replaces engaged mode annunciation.
- ** An amber horizontal line is drawn through the appropriate autopilot pitch or roll mode annunciation when a flight mode fault is detected.
- ***AFDS/Autothrottle mode changes are emphasized for 10 seconds by a box (green) drawn around the annunciated mode.

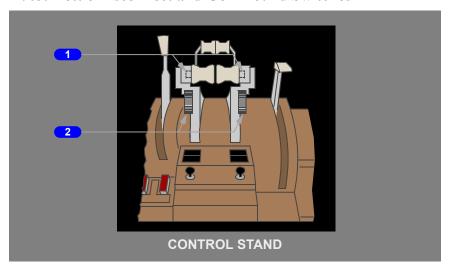
[Basic: Fast / slow indicator.]

****F/S appears only when autothrottle is disengaged, AFDS is not operating in a speed mode (FLCH or GA) and the present airspeed is approaching either the SPD LIM, ALPHA or FLAP LIM.

Autopilot Disengage Switch

767 Flight Crew Operations Manual

1 Autopilot Disengage Switches


Push (either switch) -

- disconnects the autopilot
- A/P DISC and master warning lights illuminate
- · displays the EICAS warning message AUTOPILOT DISC
- · sounds an aural warning
- if the autopilot automatically disengages, resets the master warning lights, EICAS warning message, and the aural warning

Second push - resets

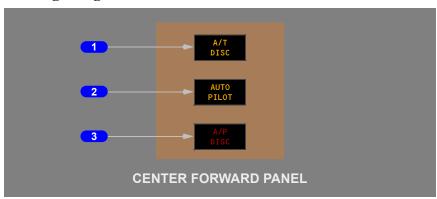
- the master warning light
- EICAS warning message
- · the aural warning

Autothrottle Disconnect and Go-Around Switches

1 Autothrottle Disconnect Switches

Push (either switch) -

- disconnects autothrottle and A/T DISC light illuminates
- · autothrottle remains armed
- subsequent push extinguishes A/T DISC light


767 Flight Crew Operations Manual

2 Go-Around Switches

Push (either switch) -

- automatic arming occurs at glide slope capture or with extension of wing flaps
- engages AFDS and autothrottle in GA mode if previously armed
- provides windshear guidance during GA if windshear detected
- if flight director off, activates flight director in GA mode
- cancels all thrust derates if selected after takeoff

Autoflight Lights

1 Autothrottle Disconnect (A/T DISC) Light

Illuminated (amber) -

- autothrottle has disconnected
- extinguished by pushing either autothrottle disconnect switch

2 Autopilot (AUTO PILOT) Light

Illuminated (amber) –

- a degraded operating condition exists in engaged autopilot
- extinguished when condition is corrected or an alternate autopilot is selected, provided fault is not common to alternate autopilot

3 Autopilot Disconnect (A/P DISC) Light

Illuminated (red) –

- an autopilot has been automatically or manually disconnected
- extinguished by pushing either autopilot disengage switch

767 Flight Crew Operations Manual

Intentionally Blank

767 Flight Crew Operations Manual

Automatic Flight System Description

Chapter 4
Section 20

Introduction

The automatic flight control system consists of the autopilot flight director system (AFDS) and the autothrottle system (A/T). The mode control panel (MCP) and flight management computer (FMC) control the AFDS and the autothrottle system to perform climb, cruise, descent and approach.

Autopilot Flight Director System

The AFDS consists of three flight control computers (FCCs) and the MCP.

The MCP provides control of the autopilot, flight director, altitude alert, and autothrottle systems. The MCP selects and activates AFDS modes, and establishes altitudes, speeds, and climb/descent profiles.

The three FCCs, left, center, and right, control separate hydraulically powered autopilot control servos to operate flight controls. The autopilot controls ailerons and elevators. Rudder commands are added only during a multiple autopilot approach. Nose wheel steering is also added during rollout from an automatic landing. During an ILS approach with all three autopilots engaged, separate electrical sources power the three FCCs.

The FCCs also provide inputs for AFDS operating mode displays and flight director commands on the FMA.

MCP Switches

MCP switches select automatic flight control and flight director modes. A light in the lower half of the switch illuminates to indicate the mode is armed or active. Respective roll and pitch flight mode annunciations on the FMA will also display. Autothrottle modes are discussed later in this section.

The following modes activate with a single push. These modes include:

- flight level change (FLCH)
- heading hold (HDG HOLD)
- heading select (HDG SEL)
- vertical speed (V/S)
- altitude hold (ALT HLD)

Other modes arm or activate with a single push. These modes are:

- lateral navigation (LNAV)
- vertical navigation (VNAV)
- localizer (LOC)

767 Flight Crew Operations Manual

- approach (APP)
- back course localizer (B/CRS)

All modes deactivate by disengaging the autopilot and turning both flight directors off. After localizer and glideslope capture, the localizer and glideslope modes can only be deactivated by disengaging the autopilot and turning both flight directors off or by selecting GA mode.

Desired target values can be selected on the MCP for:

- airspeed
- · mach
- heading
- · vertical speed
- altitude

All parameters except vertical speed can be preselected before autopilot and/or flight director engagement.

Autopilot Engagement

Autopilot engagement requires at least two FCCs and pushing one of the MCP autopilot engage switches.

Autopilot Disengagement

Normal autopilot disengagement is through either control wheel autopilot disengage switch.

The autopilots can also be disengaged by the MCP autopilot disengage bar.

The A/P DISC light illuminates and the EICAS warning message AUTOPILOT DISC displays when the autopilot has been manually or automatically disconnected.

AFDS Failures

During autopilot operation, failures affecting the active mode annunciate on the FMA. If the failure affects only the active mode:

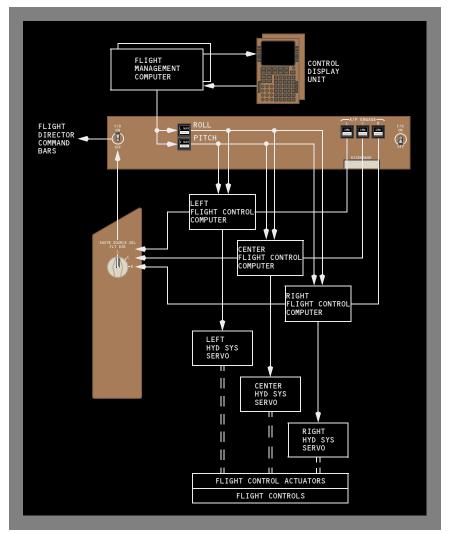
- the autopilot remains engaged in an attitude stabilizing mode
- an amber line is drawn through the mode annunciation
- the AUTO PILOT light illuminates
- the EICAS caution message AUTOPILOT displays

If unwanted operation is noticed or when an autopilot failure is annunciated, the autopilot should be disconnected and the airplane flown manually.

Failures affecting all autopilot modes result in an autopilot disengagement accompanied by an aural warning. Depending on the system failure, it may be possible to reengage an autopilot by pushing the autopilot engage switch.

767 Flight Crew Operations Manual

Flight Director Display


Flight director steering indications normally display any time the related F/D switch is ON.

The steering indications are also displayed when the related flight director switch is OFF and a go—around switch is pushed, if airspeed is greater than 80 knots and the flaps are not retracted. In this case, the flight director display can be removed by cycling the respective flight director switch on and then off.

A flight director failure in either pitch or roll, causes the respective steering bars to disappear.

767 Flight Crew Operations Manual

Autopilot Flight Director System Schematic

Autoland Status Annunciators (ASA)

The following AFDS status annunciations can be displayed:

- LAND 3 three autopilots engaged and operating normally for an automatic landing
- LAND 2 AFDS redundancy reduced, in some cases only two autopilots available

767 Flight Crew Operations Manual

- NO LAND 3 indicates a fault condition exists which results in a LAND 2 condition
- NO AUTOLND AFDS unable to make an automatic landing

With a LAND 3 indication, the autopilot system level of redundancy is such that a single fault cannot prevent the autopilot system from making an automatic landing (fail operational).

With a LAND 2 indication, the level of redundancy is such that a single fault cannot cause a significant deviation from the flight path (fail passive).

Below 200 feet radio altitude the ASA display cannot change except to indicate a NO AUTOLND condition. Faults not requiring immediate crew action or awareness are annunciated after touchdown

AFDS Flight Mode Annunciations

Flight mode annunciations are displayed on the ADI. Mode annunciations include:

- · autothrottle
- · pitch
- roll
- · AFDS status

Active modes are displayed in green letters. When a mode changes the new active mode is highlighted with a green rectangle around it for several seconds. Armed modes display in smaller white letters.

Autothrottle Modes

Autothrottle annunciations are:

- SPD autothrottle controlling thrust to maintain speed selected in IAS/Mach or, if VNAV engaged, the speed as programmed by the FMC
- IDLE autothrottle is reducing or has reduced thrust to flight idle. It may engage in a VNAV descent. It will, after FLARE is engaged

[Option: Top flight mode annunciations]

- THR HLD thrust levers remain in existing position or where manually placed
- EPR autothrottle controlling to the selected EPR reference thrust
- N1 autothrottle controlling to the selected N1 reference thrust
- FLCH autothrottle controlling to a maximum of the selected mode reference thrust during climb, and to a minimum thrust during descent
- GA autothrottle controlling to a maximum reference thrust to maintain a climb rate of at least 2000 fpm. If both flight directors and the autopilot are off, autothrottle controls to go–around reference thrust subject to flap and VMO limit speeds

767 Flight Crew Operations Manual

Roll Modes

Roll annunciations are:

LNAV -

[Option: Top flight mode annunciations]

Arm LNAV by pushing the L NAV switch. The light illuminates and LNAV annunciates on the FMA roll mode annunciator in white characters below the current roll mode

- LNAV (armed) LNAV is armed to activate when parameters are met
- LNAV (active) LNAV activates when in position to turn onto the active route leg. In flight, selection causes immediate activation if within 2 1/2 NM of the active leg

[Basic: Autopilot heading hold at engage.]

HDG-

- HDG SEL (active) airplane turns to or maintains the heading selected in the MCP heading window
- HDG HOLD (active) AFDS holds present heading. When turning, AFDS holds the heading reached after rolling wings level

LOC-

- LOC (armed) AFDS captures the localizer when within range and within 120 degrees of the localizer course
- LOC (active) AFDS follows the localizer course

B/CRS -

- B/CRS (armed) AFDS is armed to capture and track inbound on backcourse of localizer after localizer capture
- B/CRS (active) AFDS tracks inbound on backcourse of localizer

TO-

- On the ground, TO annunciates by selecting either F/D switch ON when both flight directors are OFF
- TO roll and pitch guidance become active at lift-off

GA -

• In flight, go—around arms with flaps out of up or at glideslope capture. There is no flight mode annunciation for go—around armed in flight; although the reference thrust limit changes to GA. Go—around is activated in flight by pushing a GA switch. The roll steering indication provides guidance to maintain the ground track present at mode engagement

4.20.7

DO NOT USE FOR FLIGHT

767 Flight Crew Operations Manual

ROLLOUT -

- ROLLOUT (armed) displays below 1500 feet radio altitude and activates below 5 feet
- ROLLOUT (active) after touchdown, AFDS uses rudder and nosewheel steering to steer the airplane on the localizer centerline

Pitch Modes

Pitch annunciations are:

TO -

On the ground, TO annunciates by selecting either F/D switch ON when both flight directors are OFF. The flight director pitch bar indicates an initial pitch of approximately eight degrees up.

After takeoff, the AFDS commands a pitch attitude to maintain:

- pitch command greater of V2 + 15 knots or liftoff speed + 15
- if current airspeed remains above the target speed for 5 seconds, target airspeed resets to current airspeed, to a maximum of V2 + 25 knots
- IAS/MACH window speed if IAS/MACH window speed is changed to a speed greater than the target speed

Note: AFDS uses the speed set in the IAS/MACH window prior to takeoff for V2

GA -

Go-around arms and the reference thrust limit changes to GA when flaps are out of up or glideslope is captured.

When a go—around is initiated, the commanded speed is the MCP IAS/Mach window or current airspeed, whichever is higher. If the airspeed increases and remains above the initial target airspeed for five seconds, target airspeed resets to current airspeed to a maximum of the IAS/MACH window speed plus 25 knots. If airspeed at initiation of go—around is greater than IAS/Mach window plus 25 knots, that speed is maintained. GA displays as the reference thrust limit on the primary EICAS engine display.

VNAV -

[Option: Top flight mode annunciations]

Arm VNAV by pushing the V NAV switch. The light illuminates and VNAV annunciates on the FMA pitch mode annunciator in white characters below the current pitch mode.

767 Flight Crew Operations Manual

VNAV provides pitch commands to maintain the FMC computed airspeed/path:

- VNAV SPD (active) the AFDS maintains the FMC speed displayed on the FMA and/or the CDU CLIMB or DESCENT pages. During speed intervention, use the MCP IAS/MACH selector to manually set the speed
- VNAV PTH (active) the AFDS maintains FMC altitude or descent path with pitch commands. For a non–entered headwind, thrust may increase to maintain the VNAV descent path. If the MCP altitude window is set to the current cruise altitude as the airplane approaches the top of descent, the CDU scratchpad message RESET MCP ALT displays
- when a VNAV descent is initiated before the top of descent (T/D) and the airplane descent path subsequently intercepts the VNAV descent path, the pitch annunciation changes from VNAV SPD to VNAV PTH

V/S -

Pushing the V/S switch opens the vertical speed window and displays the current vertical speed. It also opens the IAS/MACH window (if blanked). Pitch commands maintain the rate of climb or descent selected in the V/S window.

SPD -

Pushing the SPD switch opens the IAS/MACH window (if blanked). Pitch commands maintain IAS/MACH window airspeed or Mach.

ALT CAP -

A transition maneuver entered automatically from a V/S, FLCH, or VNAV climb or descent to selected MCP altitude. Engages but does not annunciate during VNAV transition.

ALT HOLD -

Altitude hold mode is activated by:

- pushing the MCP altitude HOLD switch, or
- capturing the selected altitude from a V/S or FLCH climb or descent.

G/S –

Autopilot flight director system follows the ILS glideslope.

FLARE -

- FLARE (armed) during autoland, FLARE displays below 1500 feet radio altitude
- FLARE (active) during autoland, flare activates at 50 feet radio altitude.
 FLARE deactivates at touchdown and the nosewheel smoothly lowers to the runway

Autothrottle System

The autothrottle system provides thrust control from takeoff through landing.

767 Flight Crew Operations Manual

Autothrottle mode and speed selection is controlled from the MCP and the thrust mode select panel (TMSP). When in VNAV, the FMC selects autothrottle modes and target thrust values. Refer to Chapter 11, Flight Management, Navigation, for FMS and CDU operation.

With a command speed of VREF + 5 knots and landing flaps, there is sufficient wind and gust protection available with the autothrottle engaged. The autothrottle adjusts thrust quickly when the airspeed decreases below the command speed. The autothrottle decreases thrust slowly when the airspeed is more than the command speed. In turbulence, the result is that the thrust average is higher than necessary to keep the command speed. This causes the speed average to be more than the command speed.

The autothrottle can be operated without using the flight director or the autopilot.

The autothrottle can be manually overridden or disconnected by using either A/T disconnect switch.

Thrust Management Computer

The thrust management computer (TMC) controls the autothrottle system through manual inputs from the MCP or automatically from the FMCs while VNAV is engaged. The basic TMC functions are to:

- calculate thrust limits and settings or follow FMC thrust settings
- · detect and transmit autothrottle failures
- · actuate the thrust levers

[Basic: Fast / slow indicator.]

• generate fast slow indications for display on the ADIs

Thrust Mode Select Panel

The thrust mode select panel (TMSP) provides the following functions:

- selection of reference thrust modes (TO, GA, CLB, CON, CRZ)
- selection of fixed and assumed temperature derated reference thrust values

Autothrottle Thrust Lever Operation

The autothrottle system moves both thrust levers together to control speed or thrust, depending on the engaged mode.

[Option: Top flight mode annunciations]

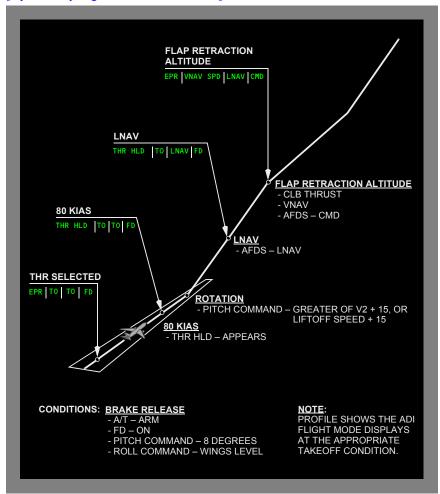
Thrust levers can be manually positioned without disconnecting the autothrottle. After manual positioning and release, the autothrottle repositions the thrust levers to comply with the engaged mode. The autothrottle system does not reposition the thrust levers while in THR HLD mode.

767 Flight Crew Operations Manual

Autothrottle Disconnect

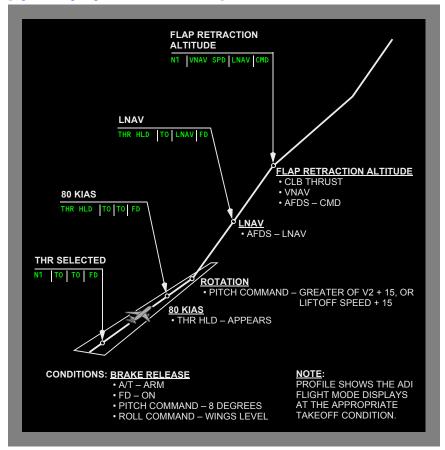
The autothrottle system can be disconnected manually by positioning the A/T arm switch to OFF or by pushing either thrust lever A/T disconnect switch.

Autothrottle disconnect occurs if a fault in the active autothrottle mode is detected, or when a reverse thrust lever is raised to reverse idle.


The A/T DISC light illuminates and the EICAS caution message AUTOTHROT DISC displays.

767 Flight Crew Operations Manual

Automatic Flight Operations


Automatic Flight - Takeoff and Climb Profile

[Option: Top flight mode annunciations]

767 Flight Crew Operations Manual

[Option: Top flight mode annunciations]

Takeoff is a flight director only function and can only be engaged on the ground. The autopilot is not used during the takeoff roll but may be engaged after liftoff.

During preflight:

- with the autopilot disengaged and both F/D switches OFF, activation of TO roll and pitch mode occurs when the first F/D switch is positioned ON
- FD displays as AFDS status and TO as the pitch and roll flight mode annunciations
- · command steering bars come into view

On takeoff, prior to 80 knots IAS:

- pitch command is set to approximately eight degrees up
- roll command is wings level
- autothrottle is engaged by pushing THR switch, thrust levers advance to selected takeoff power

Copyright © The Boeing Company. See title page for details.

767 Flight Crew Operations Manual

- FMAs display N1 for autothrottle and TO for both pitch and roll modes
- FMAs display EPR for autothrottle and TO for both pitch and roll modes

During takeoff prior to lift-off:

[Option: Top flight mode annunciations]

at 80 knots, autothrottle annunciation changes to THR HLD

At lift-off.

- pitch command greater of V2 + 15 or liftoff speed + 15
- if an engine failure occurs on the ground, the pitch command target speed at lift–off is V2 or airspeed at lift–off, whichever is greater
- roll command maintains ground track

After lift_off:

 FD TO modes are terminated by engaging an A/P in CMD, or selecting any other pitch or roll mode

[Option: Top flight mode annunciations]

 A/T remains in THR HLD mode at takeoff thrust until a pitch mode, A/T mode, or thrust reference mode select switch is pushed. The A/T then sets climb thrust or the selected reference thrust

[Basic: Fast / slow indicator.]

 Fast/Slow pointer appears on ADIs following selection of a thrust mode other than TO and a FD mode other than TO

Note: Autopilot elevator authority during a single autopilot operation is limited to reduce the effects of an autopilot malfunction. During altitude capture, there may be insufficient elevator authority and stabilizer trim rate to counteract pitch down, caused by the combination of thrust reduction, flap retraction and aft c.g.

Note: An altitude capture from a climb that includes a significant airspeed increase or thrust reduction may result in the autopilot descending away from the selected altitude in an attempt to increase the airspeed.

Automatic Flight - Cruise

The autopilot and/or flight director can be used after takeoff to fly a lateral navigation track (LNAV) and a vertical navigation track (VNAV) provided by the FMC. Using LNAV and VNAV ensures the most economical operation.

767 Flight Crew Operations Manual

Automatic Flight - Approach and Landing

[Basic: Approach mode automatic autopilot selection.]

The AFDS provides guidance for multiple autopilot precision approaches. Pushing the APP switch arms localizer in the roll mode and glideslope in the pitch mode. Also, with an autopilot engaged, the remaining two autopilots automatically arm for a multiple autopilot approach.

[Basic: Glideslope inhibit before localizer capture.]

Glideslope capture is inhibited until the localizer is captured.

Pushing the LOC switch arms the AFDS for localizer tracking. Descent on the localizer can be accomplished using VNAV, FLCH, or V/S pitch modes. The localizer mode cannot capture if the intercept angle exceeds 120 degrees. All other nonprecision approaches can be flown using LNAV and VNAV modes, or HDG SEL or V/S modes

Pushing the B/CRS switch in conjunction with the LOC switch will enable localizer backcourse tracking.

Runway Alignment and Asymmetric Thrust Compensation

AFDS controls rudder during multiple autopilot ILS approaches to compensate for engine—out asymmetric thrust conditions during an ILS approach.

With LAND 3 or LAND 2 annunciated, autopilot control of the rudder is active.

The runway align submode is operative during multiple autopilot ILS approach. It reduces the crab angle established during crosswind conditions prior to automatic landing. The submode operates as follows:

- actuated at 500 feet radio altitude with LAND 3 or LAND 2 annunciated
- activation not displayed
- autopilot systems initiate a slip with a maximum bank angle of two degrees when the crab angle exceeds five degrees
- wing leveling from the slip is initiated when the ROLLOUT mode is engaged

If the autopilots are disengaged, manually or automatically, in an asymmetric thrust condition with rudder control active, the rudder moves to the trimmed position. The pilot may need to exert rudder pedal force to maintain a smooth transition to manual flying.

Flare

The flare maneuver brings the airplane to a smooth automatic landing touchdown. The flare submode is a multiple autopilot mode, and is not intended for single autopilot or flight director only operation.

At approximately 50 feet radio altitude, the autopilots start the flare maneuver. FLARE replaces the G/S pitch flight mode annunciation.

767 Flight Crew Operations Manual

Flare arms when LAND 3 or LAND 2 annunciates.

During flare:

- at 15 feet radio altitude the autothrottle retards thrust levers to idle
- IDLE replaces the SPD autothrottle flight mode annunciation
- if slip exists due to runway align submode, wings leveled when ROLLOUT mode engaged
- autopilots start lowering nose wheel to runway at five feet radio altitude plus two seconds with pitch attitude less than two degrees
- at touchdown, the FLARE annunciation no longer displays, and the nose lowers to the runway

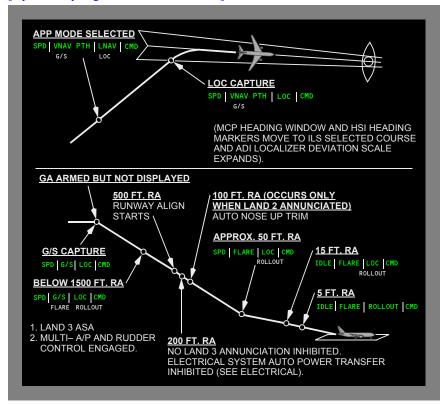
Note: During an approach with LAND 2 annunciated and below 100 feet radio altitude an increment of nose up trim is automatically applied for flare. If the autopilots are subsequently disengaged in the approach, a forward control column force of 20–30 pounds may be required to counter the automatic trim condition. If an automatic multi–autopilot go–around is performed, the increment of automatic trim is removed

Rollout

Rollout arms when LAND 3 or LAND 2 annunciates

At approximately five feet radio altitude, rollout activates. ROLLOUT replaces the LOC roll flight mode annunciation.

The autopilot controls the rudder and nose wheel steering to keep the airplane on the localizer centerline.


Rollout guidance continues until a full stop or until the autopilots are disengaged.

During rollout, autothrottle IDLE mode remains active until the autothrottle disengages. Autothrottle disengagement occurs when either thrust lever is set in reverse thrust position. When selecting reverse thrust the A/T DISC caution light, AUTOTHROT DISC EICAS message and aural warning will not be activated.

767 Flight Crew Operations Manual

Automatic Flight - Approach Profile

[Option: Top flight mode annunciations]

Automatic Flight - Go-Around

Pushing either GA switch activates a go-around using multiple autopilot, single autopilot or flight director only.

When the F/D switches are not on, pushing either GA switch displays the flight director bars.

Go—around arms and the reference thrust limit changes to GA when the flaps are out of up or glideslope is captured. Arming is not annunciated. GA remains armed until two seconds after five feet radio altitude. Pushing either GA switch during this period of the approach engages the GA mode. The mode remains active even if the airplane touches down while executing the go—around.

If the airplane is floating within five feet radio altitude for more than two seconds when the GA switch is pushed, the autopilot pitch mode will remain in FLARE and the autothrottle go—around mode will engage.

767 Flight Crew Operations Manual

If the airplane is on the ground but has been below five feet radio altitude for less than two seconds when the GA switch is pushed, the autopilot GA pitch mode will engage but the A/T mode will remain IDLE.

The GA switches are interlocked with the thrust reversers to prevent go–around mode engagement during reverse thrust operation.

Pushing either GA switch:

- roll and pitch activate in GA on the FMA
- autothrottle increases thrust to maintain a climb rate of at least 2000 fpm
- roll commands bank to maintain ground track
- AFDS increases pitch to hold existing speed or the selected MCP speed, whichever is higher, as thrust increases
- if flap setting is 20 or less, a thrust mode other than go—around can be selected

Note: Autopilot elevator authority during a single autopilot approach is limited to reduce the effects of an autopilot malfunction. If a go—around is initiated during a single autopilot approach, there may be insufficient elevator authority and stabilizer trim rate to counteract pitch up, caused by a rapid application of full go—around thrust. There is sufficient elevator authority to counteract pitchup when the go—around is flown using multiple autopilots, or manually (no autopilot), or when the autothrottle go—around mode is used to set a 2000 FPM climb rate.

GA level-off:

- at the selected altitude, the AFDS pitch flight mode annunciation changes to ALT CAP, then to ALT HOLD and autothrottle mode changes to SPD
- GA remains the active roll mode until another mode is selected
- landing gear and flaps must be operated manually

GA Mode Termination:

Below 400 feet radio altitude -

- if flap setting is 25 or 30, autothrottle remains in GA mode unless disengaged
- · disengaged autopilot and turn off both flight directors

Above 400 feet radio altitude –

• select a different roll or pitch mode; all autopilots, except first in CMD, disengage

Note: If the autopilot systems are compensating for an asymmetric thrust condition when they revert to a single autopilot in CMD configuration, the rudder will return to the trimmed position unless the pilot exerts the rudder pedal force required to maintain the rudder position.

767 Flight Crew Operations Manual

Automatic Flight - Windshear Recovery

The AFDS provides windshear recovery guidance by means of the normal go—around pitch and roll modes. With go—around armed, pushing a GA switch commands a pitch—up of 15 degrees or slightly below the pitch limit, whichever is lower

When the autopilot is not engaged when go—around is initiated, the pilot must fly the windshear recovery following the flight director commands. If the autothrottle is not armed or engaged, the thrust levers must be advanced manually.

Auto Flight Limit Modes

Autothrottle Limit Modes

- FLAP LIM
- ALPHA
- SPD LIM

Pitch Limit Modes

- FLAP LIM
- SPD LIM

Flap placards speeds, airplane maximum angle of attack and maximum speed limit are automatically monitored by the AFDS and TMC. The appropriate speed limit mode annunciation of FLAP LIM, ALPHA, or SPD LIM is displayed when a speed limit is approached and the MCP selected speed or FMC target speed is set to exceed a limit. When the limit mode is displayed, the limit speed becomes the reference speed for the autothrottle and AFDS.

When the AFDS is engaged in a speed mode (FLCH, GA), the speed limit monitoring is accomplished by the AFDS. When approaching a speed limit, the appropriate limit mode annunciation, replaces the existing pitch mode.

The AFDS will not annunciate ALPHA when approaching maximum angle of attack speed, however, the alpha safe speed will be maintained by AFDS pitch.

[Basic: Fast / slow indicator.]

When the AFDS is not controlling speed, speed limit monitoring is accomplished by the TMC. When a speed limit is exceeded, the appropriate limit mode annunciation appears at the autothrottle mode position. The speed limit mode annunciations may appear when the autothrottles are engaged or not engaged.

[Basic: Fast / slow indicator.]

The Fast/Slow pointer changes color to amber and the pointer flashes when a speed limit is exceeded.

767 Flight Crew Operations Manual

Automatic Flight EICAS Messages

Chapter 4
Section 30

Automatic Flight EICAS Messages

Automatic Fight LIC/IS Wessages					
The following EICAS messages can be displayed.					
Level	Light	Aural	Condition		
Caution	AUTO PILOT	Beeper	The engaged autopilot is operating in a degraded mode. Engaged roll and/or pitch mode may have failed.		
[Basic: Autopilot disconnect siren.]					
Warning	A/P DISC	Siren	The autopilot has disconnected.		
connect wa	iler.]				
Warning	A/P DISC	Wailer	The autopilot has disconnected.		
1	1	_			
Caution	A/T DISC	Beeper	The autothrottle has disconnected.		
	Level Caution Onnect sirer Warning Connect wa Warning	messages can be displement to the large of t	messages can be displayed. Level Light Aural Caution AUTO PILOT Beeper PILOT Warning A/P DISC connect wailer.] Warning A/P Wailer DISC Caution A/T Beeper		

767 Flight Crew Operations Manual

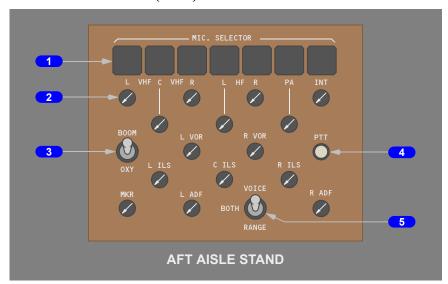
Intentionally Blank

767 Flight Crew Operations Manual

707 Fight Ciew Operations Manual				
	hapter 5			
Table of Contents	Section 0			
Controls and Indicators	5.10			
Audio Control Panel (ACP)	5.10.1			
Pilot Call Panel	5.10.2			
Radio System	5.10.3			
VHF Communication Panel	5.10.3			
HF Communication Panel	5.10.4			
Miscellaneous Communication Controls	5.10.5			
Control Wheel Microphone/Interphone Switch				
Glareshield Push-To-Talk Switch	5.10.5			
Service Interphone Switch				
Flight Deck Speaker				
Captain/First Officer Jack Panels	5.10.7			
ACARS or SATCOM Control				
ACARS Access Through Control Display Units (CDU)	5.10.8			
Cockpit Voice Recorder Panel	5.10.9			
System Description	5.20			
Introduction	5.20.1			
Audio Control Panels	5.20.1			
Radio Communication Systems	5.20.2			
HF Communication System	5.20.2			
VHF Communication System	5.20.2			
Selective Calling (SELCAL) System	5.20.2			
Aircraft Communication Addressing and Reporting				
System (ACARS)	5.20.3			
Voice Recorder System	5.20.3			
Communication Crew Alerting System	5.20.4			
Communication Alert Categories	5.20.4			
Crew Communication or Selective Calling				
(SELCAL) Messages	5.20.4			

Communications - Table of Contents

DO NOT USE FOR FLIGHT


767 Flight Crew Operations Manual

Interphone Systems	5.30
Interphone Communication System	5.30.1
Flight Interphone System	5.30.1
Cabin Interphone System	5.30.2
Service Interphone System	5.30.2
Passenger Address System	5.30.2
Data Link System	5.40
Aircraft Communication Addressing and Reporting	
System (ACARS).	5.40.1
Control and Status Display	5.40.1
Control Through CDUs	5.40.1
Data Mode	5.40.2
Message Display	5.40.2
Voice Mode	5.40.2
Online ACARS Voice Mode	5.40.3
Air-to-Ground Voice Calls (Typical)	5.40.3
Ground-to-Air Voice Calls (Typical)	5.40.3
EICAS Messages	5.50
EICAS Communication Alert Messages	5.50.1
Crew Communication Messages	5.50.1
Selective Calling (SELCAL)	5.50.1

767 Flight Crew Operations Manual

CommunicationsChapter 5Controls and IndicatorsSection 10

Audio Control Panel (ACP)

1 Microphone Selector Switches/Lights

Push -

- the selected transmitter light illuminates
- the light for any other transmitter extinguishes
- selects the respective transmitter (radio or intercommunications) for transmission from this crew station (only one can be selected at a time for each crew station)
- selects the receiver audio on, if not already manually selected on

2 Receiver Control

Push – turns respective receiver ON/OFF at any volume setting.

Rotate – varies respective receiver volume.

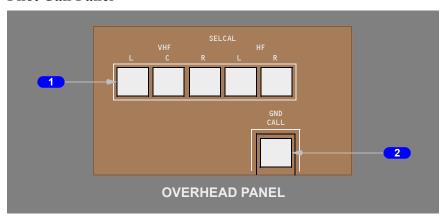
3 Boom/Oxygen (BOOM/OXY) Switch

BOOM – transmit from the boom microphone.

OXY – transmit from the oxygen mask microphone.

767 Flight Crew Operations Manual

4 Push-To-Talk (PTT) Switch


Push and hold – transmits on selected system.

5 Navigation Filter Selector

Filters VOR, ADF, or ILS audio:

- VOICE only voice transmissions can be heard
- BOTH voice transmissions and station identifiers can be heard
- RANGE only station identifiers can be heard

Pilot Call Panel

1 Selective Calling (SELCAL) Switch/Lights

Illuminated – indicates a radio call on SELCAL:

· resets when the respective transmitter is keyed or when light is pushed

2 Ground Call (GND CALL) Switch/Light

Illuminated – indicates a call from ground personnel:

• extinguishes after 30 seconds

Push – calls ground personnel as long as switch is pushed.

767 Flight Crew Operations Manual

Radio System

VHF Communication Panel

Option: VHF radios with 8.33 KHZ spacing

1 Frequency Window

Indicates the selected frequency.

2 Frequency Transfer (TFR) Switch

Selects which frequency is active for the transceiver.

3 Frequency Selector

Rotate – changes frequency in the window above:

- outer selector changes digits to the left of the decimal point
- inner selector changes digits to the right of the decimal point

4 Active Frequency Light

Illuminated – indicates which frequency has been selected by the frequency transfer switch.

767 Flight Crew Operations Manual

HF Communication Panel

1 Frequency Window

Indicates the selected frequency.

2 Frequency Selectors

Selects the frequency shown in the Frequency Window:

Rotate left knob – changes the digits to the left of the decimal point.

Rotate right knob – changes the digits to the right of the decimal point.

3 Mode Selector

OFF – power removed from unit.

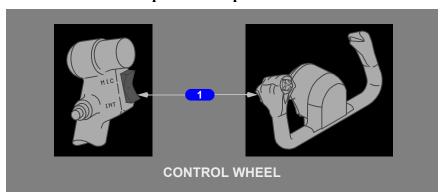
USB – sets the upper side band (USB) mode.

AM – sets the amplitude modulation (AM) mode.

4 SQUELCH Control

Rotate – adjusts the sensitivity of the HF receiver:

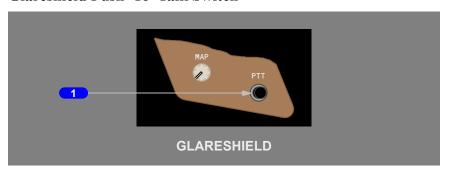
- (clockwise) increases sensitivity for reception of weak or distant stations
- (counter clockwise) decreases sensitivity to reduce noise and static


Note: Decreasing sensitivity too far prevents reception, including SELCAL monitoring of HF radio.

767 Flight Crew Operations Manual

Miscellaneous Communication Controls

Control Wheel Microphone/Interphone Switch

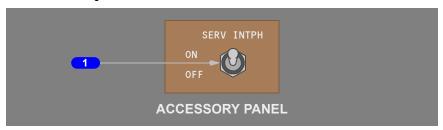

1 Control Wheel Microphone/Interphone (MIC/INT) Switch

Spring loaded to center (off) position.

MIC – allows transmission on the selected transmitter.

INT – allows transmission on the flight interphone system.

Glareshield Push-To-Talk Switch

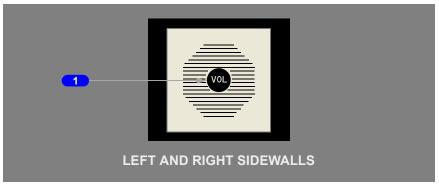


1 Glareshield Push-To-Talk (PTT) Switch

Push – allows transmission on the selected transmitter.

767 Flight Crew Operations Manual

Service Interphone Switch


1 Service Interphone (SERV INTPH) Switch

ON – adds external (unpressurized area) headphone jacks to cabin interphone system.

OFF – deactivates external (unpressurized area) headphone jacks, except jack marked FLIGHT at the APU ground control panel.

Flight Deck Speaker

Options: Speaker has volume control in the center.

1 Flight Deck Speaker Volume Control

Rotate – adjusts speaker volume.

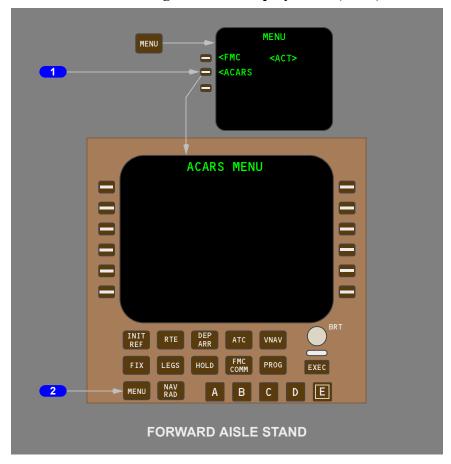
767 Flight Crew Operations Manual

Captain/First Officer Jack Panels

1 BOOM MIC/HEADSET Jack

Accepts a flight crew boom microphone/headset plug.

2 HEADPHONE Jack


Accepts a flight crew headphone plug.

767 Flight Crew Operations Manual

ACARS or SATCOM Control

Option: ACARS installed

ACARS Access Through Control Display Units (CDU)

1 ACARS Line Select Key

Push – displays ACARS MENU page.

See section 40 of this chapter for description of ACARS operation.

2 MENU KEY

Push – displays MENU page.

See Chapter 11, Flight Management, Navigation for description of the FMC and associated software functions.

767 Flight Crew Operations Manual

Cockpit Voice Recorder Panel

1 Monitor

During test, needle displaces to green band if all four channels are operating.

2 Microphone

Area microphone for the voice recorder.

3 TEST Switch

Push and hold – initiates cockpit voice recorder test.

4 ERASE Switch

Push (2 seconds) – erases the voice recorder (if on the ground, AC power on, and the parking brake is set).

5 HEADSET Jack

A headset may be plugged in to monitor playback of voice audio, or to monitor tone transmission during test.

767 Flight Crew Operations Manual

Intentionally Blank

767 Flight Crew Operations Manual

Communications System Description

Chapter 5
Section 20

Introduction

The communication systems include:

- · radio communication system
- interphone communication system (refer to section 30 of this chapter)
- SELCAL system
- cockpit voice recorder system
- communication crew alerting system
- data communication system (refer to section 40 of this chapter)

The communication systems are controlled using the:

- audio control panels (ACP)
- pilots call panel (PCP)
- control panels for each communication radio
- control display unit (CDU) for controlling the data link (refer to section 40 of this chapter)

Audio Control Panels

The audio control panels (ACP) are used to manage the radio and interphone communication systems. Navigation receiver audio can also be monitored.

Systems are monitored using headphones or speakers. Receiver volume is controlled on the ACP by rotating the knob beneath the respective receiver.

A speaker volume control is located in the center of the speaker.

Microphones are keyed by pushing the desired audio control panel transmitter select switch and holding in a push-to-talk (PTT) switch. The PTT switches are located on:

- · the control wheels
- the audio control panels
- · the glareshield
- any hand microphone

There is a boom microphone on the headset, a microphone in the oxygen mask, and a hand microphone jack at all flight crew member stations.

When the BOOM/OXY switch on the ACP is in the OXY position, the oxygen mask microphone is enabled and the boom microphone is disabled. When the BOOM/OXY switch on the ACP is in the BOOM position, the oxygen mask microphone is disabled and the boom microphone is enabled.

767 Flight Crew Operations Manual

Radio Communication Systems

The radio communication systems consist of:

- the high frequency (HF) communication system
- the very high frequency (VHF) communication system
- the selective calling (SELCAL) system

HF Communication System

Two independent HF communication radios are installed. These are designated HF L (left) and HF R (right). The ACPs are used to control voice transmission and receiver monitoring.

To tune the HF radio, rotate the frequency selectors on the HF communication panel. The left knob changes the digits to the left of the decimal point, and the right knob changes the digits to the right of the decimal point.

The sensitivity is adjusted by rotating the control knob. Rotating clockwise increases the sensitivity to receive weak or distant stations. Rotating counter clockwise decreases the sensitivity to decrease noise and static.

Note: Decreasing sensitivity too far prevents reception, including SELCAL monitoring of the HF radio.

Both HF radios use a common antenna. When either HF radio is transmitting, the antenna is disconnected from the other HF radio, and it cannot be used to transmit or receive. However, both HF radios can receive simultaneously if neither is being used for transmitting.

When an HF transmitter is keyed after a frequency change, the antenna tunes. While the antenna is being tuned, a tone can be heard through the audio system (tuning takes a maximum of 15 seconds).

VHF Communication System

Three independent VHF radios are installed, designated VHF L (left), VHF C (center), and VHF R (right).

Tuning is accomplished through communication panels (CP) for each radio.

Each VHF radio allows the tuning of two independent frequencies, an active and a standby frequency. These can be interchanged with the frequency transfer switch. The ACPs are used to control voice transmission and receiver monitoring.

Selective Calling (SELCAL) System

The SELCAL system monitors all of the communication radios. When the system receives a properly encoded call from a ground station, the crew is alerted through the illumination of the corresponding light on the pilot's call panel.

767 Flight Crew Operations Manual

The flight crew is also alerted to an incoming call by an aural chime and the SELCAL communication message on the EICAS display. Refer to section 50 of this chapter for a list of possible messages.

Aircraft Communication Addressing and Reporting System (ACARS)

Options: ACARS operational

ACARS data and voice modes provide automatic and manual means to transmit and receive operational, maintenance, and administrative information between the airplane and a ground station. ACARS is operational when electrical power is established. The ACARS systems descriptions provided in this section are limited to manual selection of ACARS radio operating modes. Refer to section 40 of this chapter for additional information about ACARS operation and control.

ACARS communicates incoming and outgoing data and messages through:

the center VHF radio

ACARS provides for automatic and manual control, including mode selection, of the dedicated ACARS radio through the ACARS management unit. Refer to section 40 of this chapter for description of this function.

The VHF communication panel for the ACARS dedicated radio does not provide a means to select offline voice mode and ACARS switching panels are not installed. Control of the ACARS dedicated radio may be transferred to the VHF communication panel through menu selection on the CDU/ACARS IDU or depressing the VOICE/VOX mode switch on the ACARS MIDU/CU. Refer to section 40 of this chapter for description of this function.

Voice Recorder System

The cockpit voice recorder records any transmitted or received flight deck audio transmissions from the flight deck made through the audio control panels. It also records flight deck area conversations using an area microphone.

All inputs are recorded continuously anytime AC power is applied to the airplane.

767 Flight Crew Operations Manual

Communication Crew Alerting System

Options: EICAS 1001 computer installed or not

The communication crew alerting system provides aural and visual alerts for normal operations requiring crew awareness that may require crew action. Visual alerts are presented as EICAS communication level messages preceded by a white bullet symbol (•). The aural alert is a single chime. The following table shows communication crew alert categories and the respective aural and visual alerts for each category. Refer to section 50 of this chapter for a list of possible messages.

Communication Alert Categories

Alert Category	Aural	Visual	Remarks
Medium	Chime	EICAS communication alert. Illumination of appropriate switch/light on the PCP or ACP.	Message awareness required. Crew action may be required.
Low	None	EICAS communication alert.	Crew action may be required.

Crew Communication or Selective Calling (SELCAL) Messages

The communication crew alerting system also provides a supplementary method of notifying the flight crew about incoming calls from the cabin, ground personnel, or an incoming radio call. The •SELCAL message is a medium category alert. The flight crew should respond by establishing interphone communications with the calling station or transmitting on the corresponding radio

767 Flight Crew Operations Manual

Communications Interphone Systems

Chapter 5
Section 30

Interphone Communication System

The interphone communication system includes the:

- flight interphone system
- service interphone system
- cabin interphone system
- passenger address (PA) system

The interphone systems allow the flight crew to communicate with the flight attendants, ground personnel, or maintenance technicians. The PA system allows flight attendants or the flight crew to make announcements in the passenger cabin. The flight interphone, service interphone, cabin interphone, and passenger address systems are normally operated through the audio control panel (ACP) in conjunction with the pilot call panel (PCP).

Flight Interphone System

The flight interphone system (FIS) permits communication between flight deck crew members and, on the ground, with ground personnel.

The system is used by the following methods:

- pushing the interphone (INT) position of a control wheel mic/interphone switch to transmit
- selecting interphone (INT) transmitter select switch on the ACP and pushing a PTT switch

Ground personnel are able to communicate on the FIS through a jack located on the APU ground control panel mounted on the nose wheel strut.

The pilots are alerted to an incoming call from the ground crew by the following methods:

- an aural chime sounds in the flight deck
- an illuminated GND CALL light on the PCP
- the EICAS communication message GROUND CALL is displayed

The flight crew should respond to the call using the FIS. Any of the PTT switches may be used to communicate

The flight crew initiates a call to ground personnel by pushing the GND CALL switch. A horn in the nose wheel well activates as long as the switch is pushed. Communication can then take place over the FIS.

767 Flight Crew Operations Manual

Cabin Interphone System

The cabin interphone system (CIS) provides voice communications between the flight deck and the flight attendant stations. Flight deck crew members communicate on the CIS using their ACP and the PCP. The flight crew may use the boom microphones, oxygen mask microphones, or hand microphones to transmit.

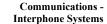
The pilots are alerted to incoming calls from the cabin by the following methods:

- · an aural chime sounds in the flight deck
- EICAS communications messages CABIN ALERT or CABIN CALL

The flight attendants communicate between flight attendant stations or with the flight deck using any of the handsets in the cabin. The system is a party line in that anyone who picks up a handset is automatically connected to the system.

Service Interphone System

The service interphone system consists of additional internal and external jacks connected to the flight/cabin interphone system for use by maintenance personnel. The flight/cabin interphone system can be connected to the service interphone system by placing the service interphone switch in the ON position. To reduce external noise in the flight/cabin interphone system, the service interphone switch can be left OFF during normal flight operations. This disconnects the microphone jacks at all exterior (unpressurized) service interphone stations except the jack on the nose wheel strut. This switch does not affect the interior flight/cabin interphone stations.


Passenger Address System

The passenger address (PA) system allows flight deck crew members and flight attendants to make announcements throughout the cabin. Flight deck crew members can make announcements with any microphone by pushing the PA transmitter select switch on an audio control panel. Then, pressing any of the PTT switches will key the system for PA announcements.

The PA system is monitored on the flight deck by pushing the PA receiver volume control on an audio control panel and adjusting the volume. This will adjust the audio volume to the pilot's headset only. It does not adjust the volume of the output broadcast over the PA system.

The cabin PA announcement priorities are:

- flight deck announcements
- · cabin announcements made from any flight attendant station
- pre-recorded announcements
- · boarding music

767 Flight Crew Operations Manual

PA announcements from any station override all passenger cabin pre-recorded announcements and passenger entertainment outputs.

767 Flight Crew Operations Manual

Intentionally Blank

767 Flight Crew Operations Manual

Communications Data Link System

Chapter 5
Section 40

Aircraft Communication Addressing and Reporting System (ACARS)

The Aircraft Communications Addressing and Reporting System (ACARS) is a data link system designed to automatically communicate flight data, performance data, and routine reports between the airplane and a network of ground stations.

The primary airborne system component is the ACARS management unit (MU). The MU provides the central clock, memory, and data processor for ACARS. For airborne event sensing and flight crew alerting, the MU interfaces with:

• the SELCAL system

The ACARS MU collects, controls, and processes incoming and outgoing data and messages through:

· the VHF radio system

The dedicated ACARS radio is normally operated in data mode for automatic transmission of data and message traffic. Refer to section 20 of this chapter for a description of the ACARS capable VHF or HF radio systems.

Control and Status Display

The flight crew access to ACARS status or control is through:

• control display unit (CDU)

ACARS installations include airline modifiable buyer furnished equipment (BFE). The ACARS system descriptions and menu page illustrations presented represent typical installations. Airline configuration of BFE equipment can make significant changes in operational menus which are not presented here.

Control Through CDUs

Flight crew access to ACARS is through a control display unit (CDU). Selecting the line select key adjacent to the <ACARS prompt will call up the ACARS Main Menu Page. From this page all ACARS functions may be accessed, such as pre-flight initialization, systems status checks, ACARS radio control, message status or display, printer functions, and ACARS configuration.

The specific software providing ACARS functionality is defined by the airline and is not covered here.

767 Flight Crew Operations Manual

Data Mode

ACARS is normally operated in the data mode, allowing automatic transmission of routine reports, engine and performance data. In data mode, the system monitors and stores the times of the following events:

- OUT airplane departure from the gate, based on customer defined parameters (e.g. closure of all passenger entry doors and parking brake released)
- OFF takeoff (main gear tilted)
- ON landing (main gear not tilted)
- IN airplane arrival at destination gate, based on customer defined parameters (e.g. parking brake set and at least one passenger entry door open)

The system automatically transmits OOOI events at occurrence. In data mode, the MU automatically tunes the ACARS dedicated radio to a standard link frequency. ACARS monitors this frequency for messages addressed to that airplane as well as sending messages to the ground.

In addition to transmitting routine data automatically, ACARS allows manual data entry for subsequent transmission to ground stations. Engine parameters, fuel status, and other information can be conveyed to a ground station by entering values on the appropriate page and pressing the SEND key.

Pre-flight data such as flight number, fuel on board, and departure/destination station can be entered in the ACARS system manually, or received by data uplink.

Message Display

ACARS messages to or from the airplane can be displayed on the CDU through the STORED MESSAGES pages. Message titles appear in large characters until displayed. Messages can be sent to the printer by pressing the PRINT line select key.

Voice Mode

The ACARS system provides a voice mode to facilitate voice communications between the airplane and groundstations. The ACARS system descriptions presented are general in scope and represent typical installations. Airline configuration of BFE equipment can make significant changes in operational menus which are not presented here.

767 Flight Crew Operations Manual

Online ACARS Voice Mode

Online voice mode provides an ARINC compatible communication link to ground based telephone systems. ACARS voice mode communications are initiated either from the airplane or the ground. When online voice mode is initiated the ACARS MU will continue to compile, but not transmit, data and message traffic. The MU will notify the flight crew whenever voice mode operations exceed two minutes.

Air-to-Ground Voice Calls (Typical)

To initiate an ACARS voice call, use the ACARS menu pages and request the call. The applicable phone number is automatically dialed with the downlink request and voice mode is automatically selected when the call is connected. When the call is connected, the ACARS system will annunciate the call with an aural chime and the appropriate SELCAL switchlight on the PCP or ACP (VHF C or VHF R) will illuminate.

To complete the call push the applicable microphone selector switch on the ACP and adjust the volume (if required). Push a push-to-talk (PTT) switch for microphone operation. Use a boom microphone headset or other flight interphone system to speak and listen to the call. When the call is stopped the MU will automatically return to data mode.

Ground-to-Air Voice Calls (Typical)

When an ACARS voice radio communication is received, the corresponding SELCAL light illuminates and an aural chime sounds on the flight deck. Received calls are automatically connected. ACARS voice mode is automatically selected and does not require flight crew action from the ACARS menu pages. To receive a call push the illuminated VHF C or VHF R microphone selector switch on the ACP, push a PTT switch, and begin the call.

The flight crew may also respond to a ground initiated voice call by selecting the appropriate responses on the ACARS menu pages and pushing the illuminated CALL microphone selector switch on the ACP.

767 Flight Crew Operations Manual

Intentionally Blank

767 Flight Crew Operations Manual

Communications EICAS Messages

Chapter 5
Section 50

EICAS Communication Alert Messages

This section describes the various EICAS communications alert messages that can be displayed.

Crew Communication Messages

Message	Level	Condition	Crew Action/Remarks
CABIN ALERT	Medium	Pilot alert received over cabin interphone.	Respond to the alert. Message accompanied by aural chime and ALERT cabin call light.
CABIN CALL	Medium	Pilot call received over cabin interphone.	Respond to the call. Message accompanied by aural chime and FWD/MID/AFT cabin call light.
• GROUND CALL	Medium	Pilot call received from the nose wheel well over the flight interphone.	Respond to the call. Message accompanied by aural chime and GND CALL light.

Selective Calling (SELCAL)

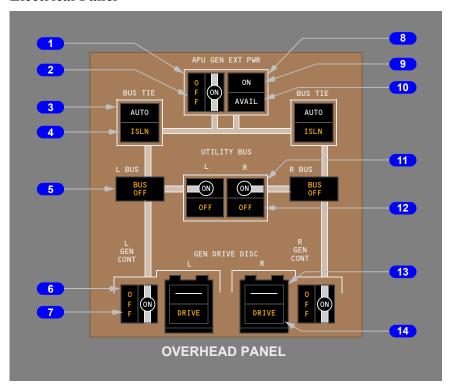
Message	Level	Condition	Crew Action/Remarks
• SELCAL	Medium	SELCAL received on VHF or HF radio.	Determine which radio received call. Respond to the call. Message is accompanied by
			aural chime and VHF/HF SELCAL light.

767 Flight Crew Operations Manual

Intentionally Blank

767 Flight Crew Operations Manual

Electrical	Chapter 6	
Table of Contents	Section 0	
Controls and Indicators	6.10	
Electrical Panel	6.10.1	
Battery/Standby Control Panel	6.10.3	
Hydraulic Generator Test Switch	6.10.4	
System Description	6.20	
Introduction	6.20.1	
AC Electrical System	6.20.1	
AC Electrical System Power Sources	6.20.1	
AC Electrical Power Distribution	6.20.2	
AC Electrical System Schematic (Hydraulic Driven	l	
Generator)	6.20.6	
DC Electrical System	6.20.6	
DC Electrical System Schematic	6.20.8	
Battery/Standby Power System	6.20.9	
Hot Battery Bus		
Battery Bus	6.20.9	
Standby DC Bus	6.20.9	
Standby AC Bus	6.20.10	
Battery/Standby System Schematic	6.20.11	
Hydraulic Driven Generator		
Battery/Standby System Schematic (Hydraulic Driven Operating)	Generator	
EICAS Messages	6.30	
Flectrical FICAS Messages	6 30 1	


767 Flight Crew Operations Manual

Intentionally Blank

767 Flight Crew Operations Manual

ElectricalChapter 6Controls and IndicatorsSection 10

Electrical Panel

1 APU Generator (APU GEN) Control Switch

ON (bar in view) -

• arms APU generator breaker to automatically close.

OFF (bar not visible) -

- · opens APU generator breaker
- resets fault trip circuitry.

2 APU Generator OFF Light

Illuminated (amber) –

- the APU generator breaker is open because of a fault with APU running
- the APU generator control switch is selected OFF.

767 Flight Crew Operations Manual

3 BUS TIE Switches

AUTO -

- · arms automatic AC bus tie circuits
- arms automatic DC bus tie circuits
- · arms automatic flight instrument transfer bus circuits.

OFF (AUTO not visible) -

- commands the AC bus tie open
- commands the DC bus tie open
- · commands the flight instrument bus tie open
- resets fault trip circuitry.

4 AC Bus Isolation (ISLN) Lights

Illuminated (amber) –

- a fault has occurred, automatically opening the AC bus tie breaker
- the BUS TIE switch is OFF.

5 AC BUS OFF Lights

Illuminated (amber) – the AC bus is unpowered.

6 Generator Control (GEN CONT) Switches

ON (bar in view) – arms the generator breaker to close automatically when generator power is available.

OFF (bar not visible)

- · opens generator breaker
- resets fault trip circuitry.

Generator OFF Lights

Illuminated (amber) – the generator breaker is open.

8 External Power (EXT PWR) Switch

Push – if AVAIL light is illuminated, closes external power contactor

Subsequent push – opens external power contactor.

9 External Power ON Light

Illuminated (white) – external power is powering the bus(es).

767 Flight Crew Operations Manual

10 External Power Available (AVAIL) Light

Illuminated (white) – external power is plugged in and power quality is acceptable.

11 UTILITY BUS Switches

ON (bar in view) – if no load shed signal is present, connects utility and galley busses to main AC bus.

OFF (bar not visible) -

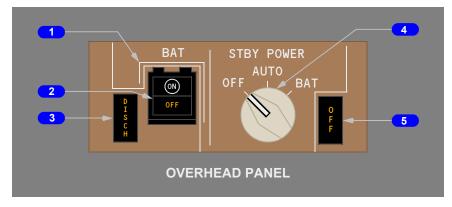
- · disconnects utility and galley busses from main AC bus
- · resets overload load shed circuitry.

12 Utility Bus OFF Lights

Illuminated (amber) – the utility and galley busses are unpowered.

13 Generator Drive Disconnect (GEN DRIVE DISC) Switches

Push -


- disconnects generator drive from the engine
- requires maintenance action on the ground to reconnect the generator drive.

14 Generator DRIVE Lights

Illuminated (amber) –

- the generator drive oil temperature is high
- the generator drive oil pressure is low.

Battery/Standby Control Panel

767 Flight Crew Operations Manual

1 Battery (BAT) Switch

ON -

- Unpowered airplane on the ground:
 - a few annunciator lights illuminate
 - · allows the APU to be started
- Powered airplane inflight or on the ground when AC power is removed or lost:
 - the standby and battery busses are powered.

OFF (ON not visible) – turns battery power off.

2 Battery OFF Light

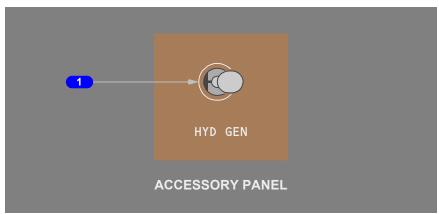
Illuminated (amber) – the battery switch is off.

3 Battery Discharge (DISCH) Light

Illuminated (amber) – the main battery is discharging.

4 Standby (STBY) POWER Selector –

OFF – the standby busses are unpowered.


AUTO – the standby busses transfer to battery power if normal AC power is lost.

BAT – the standby busses are powered from the main battery.

5 Standby Power Bus OFF Light

Illuminated (amber) – standby AC or DC bus not powered.

Hydraulic Generator Test Switch

767 Flight Crew Operations Manual

1 Hydraulic Generator Test Switch

Spring-loaded to center.

HYD GEN – initiates hydraulic driven generator system test.

767 Flight Crew Operations Manual

Intentionally Blank

767 Flight Crew Operations Manual

Electrical System Description

Chapter 6
Section 20

Introduction

The electrical system generates and distributes AC and DC power to other airplane systems, and is comprised of: main AC power, main DC power, and battery/standby power. System operation is automatic. Electrical faults are automatically detected and isolated.

A hydraulic driven generator operates automatically as a backup source of power in the event that both main AC buses become inoperative.

AC Electrical System

The AC electrical system is the main source for airplane electrical power.

AC Electrical System Power Sources

The entire airplane AC electrical load can be supplied by any two main airplane AC power sources.

The main airplane AC electrical power sources are:

- left and right engine integrated drive generators (IDGs)
- · APU generator.

The entire airplane AC electrical load also can be supplied by external power.

The power sources operate isolated from one another.

Integrated Drive Generators (IDGs)

Each engine has an IDG. Each IDG has automatic control and system protection functions.

When an engine starts, with the GEN CONT switch selected ON, the IDG automatically powers the respective main bus. The previous power source is disconnected from that bus.

The IDG can be electrically disconnected from the busses by pushing the GEN CONT switch to OFF. The IDG can also be electrically disconnected from its respective bus by selecting external power prior to engine shutdown. (See External Power in this section.)

The OFF light in the GEN CONT switch illuminates, and the EICAS Advisory message L or R GEN OFF displays whenever the generator control breaker is open.

767 Flight Crew Operations Manual

The DRIVE light illuminates and the EICAS Advisory message L or R GEN DRIVE displays when low oil pressure or high oil temperature is detected in an IDG. The IDG drive can be disconnected from the engine by pushing the respective DRIVE DISC switch. The IDG cannot be reconnected by the flight crew.

APU Generator

The APU generator is electrically identical to the IDG generators. The APU generator can power either or both main busses, and may be used in flight as a replacement to an IDG source.

If no other power source is available when the APU generator becomes available, the APU generator automatically connects to both main AC busses. If the external source is powering both main busses, the external source continues to power both main busses.

The APU Generator OFF light illuminates, and the EICAS advisory message APU GEN OFF displays when the APU is operating and the APU generator breaker is open because of a fault or the APU GEN switch is selected OFF. When the APU GENERATOR switch is ON and a fault is detected, the APU generator cannot connect to the busses.

External Power

External power can power the left and right main busses. When the power source voltage and frequency are within limits, the external power AVAIL light illuminates.

Pushing the EXT PWR switch ON connects external power to both main busses and removes the IDGs and the APU generator from the busses, if they were powering the busses. When external power is connected to a main bus, the EXTERNAL POWER ON light illuminates.

AC Electrical Power Distribution

AC power is distributed through the left and right main busses and the ground service bus.

AC Main Busses

The right IDG normally powers the right main bus and the left IDG normally powers the left main bus. The APU normally powers both main busses when they are not powered by any other source. External power may also be connected and will also power both main busses.

Bus tie breakers, controlled by BUS TIE switches, isolate or parallel the right and left main busses. When both BUS TIE switches are set to AUTO, the bus tie system operates automatically to maintain power to both main busses.

767 Flight Crew Operations Manual

The AC bus ISLN light illuminates and the EICAS advisory message L or R BUS ISOLATED displays when the bus tie breaker is open because of a fault or the BUS TIE switch is OFF.

The BUS OFF light illuminates and the EICAS caution message L or R AC BUS OFF displays if an AC bus is unpowered.

The source order for powering left and right main busses is the:

- respective IDG
- · APU generator
- · opposite IDG.

Utility Busses

Left and right utility busses, powered by their respective main AC bus, are controlled by UTILITY BUS switches. Left and right galley busses are powered by their respective utility busses, and have no direct controls or indicators. The utility bus OFF lights illuminate and the EICAS advisory message L or R UTIL BUS OFF displays when a galley and utility bus are unpowered.

Ground Service Bus

The ground service bus is normally powered by the right main bus. Alternate sources of power for the ground service bus are:

- · the APU generator
- · external power.

The ground service bus powers:

- the main battery charger
- the APU battery charger
- miscellaneous cabin and system loads.

Ground Handling Bus

The ground handling bus can be powered only on the ground and only from the APU generator or from the external power source. It is provided for loads such as cargo handling and equipment energized only during ground operations.

Autoland

During autoland, the busses isolate to allow three independent sources to power the three autopilots:

- the left main system powers the left autopilot and the captain's flight instrument transfer bus
- the right main system powers the right autopilot and the first officer's flight instrument transfer bus
- the battery/standby system powers the center autopilot.

767 Flight Crew Operations Manual

Above 200 feet, loss of a generator results in:

- both bus tie breakers closing and the operating generator powers both left and right AC busses
- the left main system powers the center autopilot
- NO LAND 3 appears on the Autoland Status Annunciator.

Below 200 feet, loss of a generator results in:

- both bus tie breakers remaining open
- the autopilot associated with a failed generator is unpowered
- the flight instruments remain powered through the flight instrument transfer busses
- the autoland continues using the remaining two autopilots.

When the autopilots are disengaged or an autopilot go—around is performed, the electrical system reverts to normal, non–isolated operation.

Flight Instrument Transfer Busses

Normally, the captain's flight instruments are powered by the left main AC Bus, and the first officer's flight instruments are powered by the right main AC Bus. If the respective bus tie breakers are in AUTO, the flight instrument transfer busses transfer to the opposite main AC bus in the event power is lost to a main AC Bus.

If power is lost to both main AC busses, the captain's flight instruments are powered by the hydraulic driven generator.

AC Transfer Busses

Left and right AC transfer busses power items considered necessary for ETOPS flights, which are not powered by the battery/standby system. Transfer busses are normally powered by their associated main AC busses, but also can be powered by the Hydraulic Driven Generator when both AC busses are unpowered.

Electrical Load Shedding

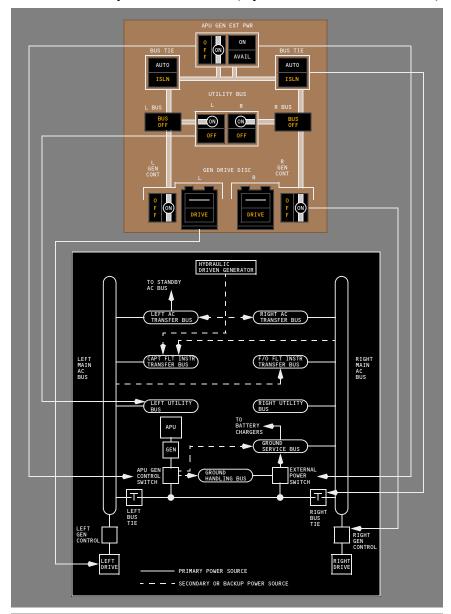
Electrical load shedding occurs automatically to ensure power is available to critical and essential equipment.

If the electrical loads exceed the power available, the electrical system automatically sheds AC loads by priority until the loads are within the capacity of the generators. The load shedding is galley power first, then utility busses. Utility busses are followed by individual equipment items powered by the main AC busses. When an additional power source becomes available or the load decreases, the electrical system automatically restores power to the shed systems (in the reverse order).

767 Flight Crew Operations Manual

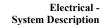
Examples of load shedding that may be observed during normal operations include:

- an electric hydraulic pump prior to engine start
- center tank fuel pumps prior to engine start
- utility busses during engine start.


Examples of load shedding that may be observed during non-normal operations include:

- · utility busses after a generator failure
- center tank fuel pump after an engine failure
- cabin ceiling lights after an engine failure.

On the ground, advancing the thrust levers into the takeoff range with the engines shut down may cause inadvertent load shedding of the utility busses to occur. Returning the thrust levers to idle, then pushing the UTILITY BUS switches OFF, then ON will reset this inadvertent load shedding.


767 Flight Crew Operations Manual

AC Electrical System Schematic (Hydraulic Driven Generator)

DC Electrical System

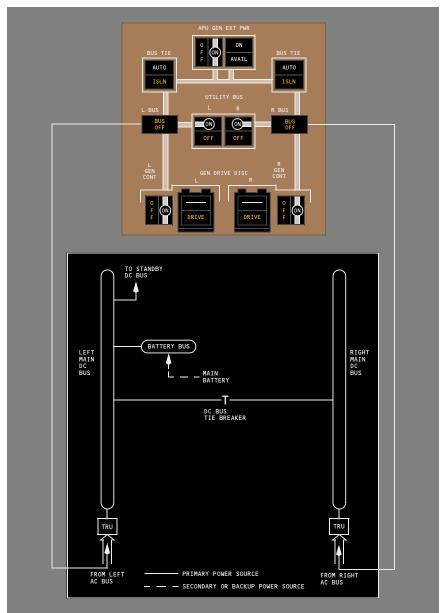
The main DC electrical system uses transformer–rectifier units (TRUs) to produce DC power. The TRUs are powered by the main AC busses.

6.20.7

DO NOT USE FOR FLIGHT

767 Flight Crew Operations Manual

The TRUs operate isolated from one another. If one TRU fails, the DC bus tie breaker closes to keep both DC busses powered. Both BUS TIE switches must be in AUTO for the DC bus tie breaker to close.


There are no flight deck controls for the main DC electrical system.

6.20.8

DO NOT USE FOR FLIGHT

767 Flight Crew Operations Manual

DC Electrical System Schematic

767 Flight Crew Operations Manual

Battery/Standby Power System

The battery/standby power electrical system can supply DC and AC power to selected flight instruments, communications and navigation systems, and other critical systems, if there are main AC and DC electrical power system failures.

The Battery/Standby Power System consists of the following busses:

- · the hot battery bus
- · the battery bus
- the standby AC bus
- the standby DC bus

Hot Battery Bus

The hot battery bus provides power to items which must be continuously powered, such as the clock's time reference.

Prior to establishing electrical power, the main battery powers the hot battery bus.

After establishing electrical power, the main battery charger powers the hot battery bus.

Battery Bus

Prior to establishing electrical power, when the battery switch is ON, the main battery powers the battery bus.

After establishing electrical power, the left DC system powers the battery bus, and the main battery provides a backup source of power.

The Battery DISCH light illuminates when the main battery is discharging. If EICAS is powered, the advisory message MAIN BAT DISCH also displays.

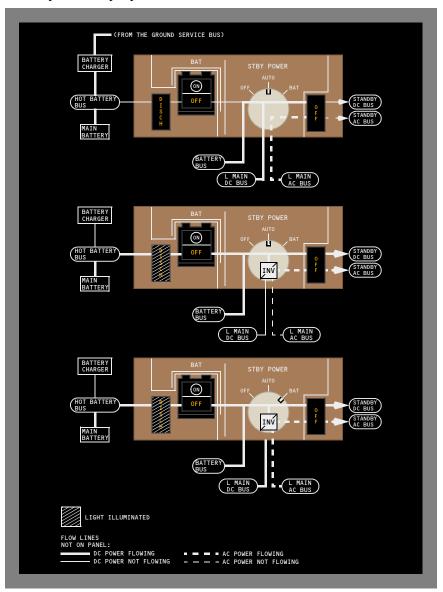
The battery OFF light illuminates and the EICAS advisory message BATTERY OFF displays if the battery switch is OFF after electrical power is established.

Standby DC Bus

The standby DC bus can be powered by several sources. Prior to establishing electrical power, when the battery switch is ON and the standby power selector is in AUTO, the main battery powers the standby DC bus. The Battery DISCH light illuminates when the main battery is discharging. After establishing electrical power, the left DC system powers the standby DC bus and the main battery provides a backup source of power. When the standby power selector is in BAT, the main battery powers the standby DC bus.

The standby bus OFF light illuminates and the EICAS advisory message STANDBY BUS OFF displays if the standby DC bus is not powered.

767 Flight Crew Operations Manual


Standby AC Bus

The standby AC bus can be powered by several sources. Prior to establishing electrical power, when the battery switch is ON and the standby power selector is in AUTO, the main battery powers the standby inverter which provides AC power to the standby AC bus. After establishing electrical power, the left AC system powers the standby AC bus and the main battery and standby inverter provide a backup source of power. When the standby power selector is in BAT, the main battery and standby inverter power the standby AC bus.

The standby bus OFF light illuminates and the EICAS advisory message STANDBY BUS OFF displays if the standby AC bus is not powered.

767 Flight Crew Operations Manual

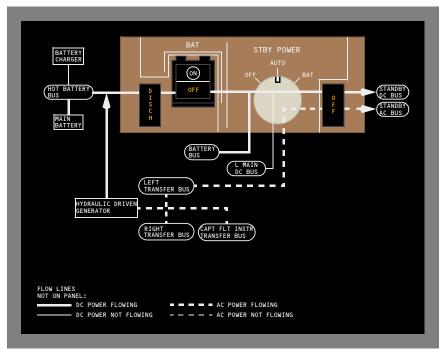
Battery/Standby System Schematic

Hydraulic Driven Generator

The hydraulic driven generator (HDG) activates automatically when both the left and right main AC busses are unpowered. The Hydraulic Driven Generator (HDG) is powered by the Center Hydraulic System.

767 Flight Crew Operations Manual

The HDG provides AC power to:


- the left AC transfer bus
- the right AC transfer bus
- the standby AC bus (through the left AC transfer bus)
- the captain's flight instrument transfer bus

The HDG provides DC power to:

- the hot battery bus
- · the battery bus
- the standby DC bus.

The amount of DC power produced by the HDG is less than the DC power produced by a fully charged battery. When the HDG first begin to operate, the battery DISCH light may illuminate, until the battery power decreases to the power level produced by the HDG.

Battery/Standby System Schematic (Hydraulic Driven Generator Operating)

767 Flight Crew Operations Manual

Electrical EICAS Messages

Chapter 6
Section 30

Electrical EICAS Messages

The following EICAS messages can be displayed.

Message	Level	Light	Aural	Condition
L AC BUS OFF	Caution	BUS	Beeper	AC Bus is unpowered.
R AC BUS OFF		OFF		
APU GEN OFF	Advisory	OFF		APU generator control breaker is open due to a fault with the APU running.
BATTERY OFF	Advisory	OFF		Battery switch is OFF.
L BUS ISOLATED	Advisory	ISLN		Bus tie breaker is open due
R BUS ISOLATED				to an AC electrical system fault.
L GEN DRIVE	Advisory	DRIVE		Generator drive oil pressure
R GEN DRIVE				is low or generator drive oil temperature is high.
L GEN OFF	Advisory	OFF		Generator control breaker is
R GEN OFF				open.
MAIN BAT DISCH	Advisory	DISCH		Main battery is discharging.
STANDBY BUS OFF	Advisory	OFF		Standby AC or DC bus is unpowered.
L UTIL BUS OFF	Advisory	OFF		Galley and utility busses
R UTIL BUS OFF				are unpowered.

767 Flight Crew Operations Manual

Intentionally Blank

Engines, APU	Chapter 7
Table of Contents	Section 0
Controls and Indicators (PW)	7.11
EICAS Displays	7.11.1
Primary Engine Indications	7.11.1
Secondary Engine Indications	7.11.8
Compact Engine Indications	7.11.15
Engine Controls	7.11.16
Thrust Levers	7.11.16
Fuel Control Switches	7.11.17
Engine Control Panel	7.11.18
Electronic Engine Control (EEC)	7.11.19
Thrust Mode Select Panel (TMSP)	7.11.20
EICAS Control Panel	7.11.21
Controls and Indicators (GE)	7.12
EICAS Displays	7.12.1
Primary Engine Indications	7.12.1
Secondary Engine Indications	7.12.7
Compact Engine Indications	7.12.14
Engine Controls	7.12.15
Thrust Levers	7.12.15
Fuel Control Switches	7.12.16
Engine Control Panel	7.12.17
Electronic Engine Control (EEC)	7.12.18
Thrust Mode Select Panel (TMSP)	7.12.19
EICAS Control Panel	7.12.20
Controls and Indicators	7.15
Auxiliary Power Unit (APU)	7.15.1
APU Controls	7.15.1
APU Indications	7.15.2
Engine System Description (PW)	7.21
Introduction	

Engine Indications	7.21.1
Primary Engine Indications	7.21.1
Secondary Engine Indications	7.21.1
Normal Display Format	7.21.2
Compact Display Format	7.21.2
Engine Secondary Data Cue	7.21.3
Engine Pressure Ratio (EPR)	7.21.3
Thrust Management Computer (TMC)	7.21.4
Assumed Temperature Takeoff	
Reduced Climb Thrust	7.21.6
Electronic Engine Control (EEC) – PW4000 Series Engine .	7.21.6
Primary (EPR) Control Mode	7.21.6
Alternate (N1) Control Mode	7.21.7
Overspeed Protection	7.21.7
Idle Selection	7.21.7
Engine Start and Ignition System	7.21.8
Engine Start	7.21.8
Starter Operation	7.21.9
In–Flight Start	7.21.9
Engine Ignition	7.21.9
Engine Start and Ignition System Schematic	7.21.10
Engine Fuel System	7.21.11
Fuel control Unit	7.21.11
Engine and Spar Valves	7.21.11
Fuel Filter	7.21.11
Fuel Flow Measurement	7.21.12
Engine Fuel System Schematic	7.21.12
Engine Oil System – PW4000 Series Engine	7.21.13
Engine Oil System Schematic – PW4000 Series Engine	7.21.14
Thrust Reverser System	7.21.15
Thrust Reverser Schematic	
Airborne Vibration Monitoring System	

Engines, APU -Table of Contents

Engine System Description (GE)7.22
Introduction
Engine Indications
Primary Engine Indications
Secondary Engine Indications
Normal Display Format
Compact Display Format
Engine Secondary Data Cue7.22.3
N1 RPM
Thrust Management Computer (TMC)7.22.4
Assumed Temperature Takeoff 7.22.5
Reduced Climb Thrust
Electronic Engine Control (EEC) 7.22.6
EEC Normal Control Mode 7.22.6
EEC Alternate Mode
Overspeed Protection
Idle Selection 7.22.8
Engine Start and Ignition System
Engine Start
Starter Operation
In–Flight Start7.22.10
Auto Relight
Engine Ignition
Engine Start and Ignition System Schematic 7.22.11
Engine Fuel System
Fuel Metering Unit
Engine and Spar Valves
Fuel Filter
Fuel Flow Measurement
Engine Fuel System Schematic
Engine Oil System
Engine Oil System Schematic

Engines, APU -Table of Contents

DO NOT USE FOR FLIGHT

Thrust Reverser System	
Thrust Reverser Schematic	7.22.17
Airborne Vibration Monitoring System	7.22.18
APU System Description	7.30
Introduction	7.30.1
APU Operation	7.30.1
APU Start	7.30.1
APU Run	7.30.2
APU Shutdown	7.30.2
Protection System	7.30.2
EICAS Messages (PW)	7.41
Engines, APU EICAS Messages	
EICAS Messages (GE)	7.42
Engines APIJ EICAS Messages	7 42 1

767 Flight Crew Operations Manual

Engines, APU
Controls and Indicators (PW)

Chapter 7
Section 11

EICAS Displays

Primary Engine Indications

1 Primary Engine Indications

Displayed full time on the EICAS display:

- EPR
- N1
- EGT

Mode Indications

1 Thrust Reference Mode

Displayed (green) – selected FMS thrust reference mode:

Takeoff:

- TO maximum rated takeoff thrust
- TO 1 * maximum rated takeoff thrust, climb one preselected
- TO 2 * maximum rated takeoff thrust, climb two preselected

Assumed Temperature Takeoff:

- D-TO assumed temperature derated takeoff thrust
- D–TO 1 * assumed temperature derated takeoff thrust, climb one preselected
- D–TO 2 * assumed temperature derated takeoff thrust, climb two preselected

Climb:

- CLB maximum rated climb thrust
- CLB 1 derate one climb thrust
- CLB 2 derate two climb thrust

Cruise:

- CRZ maximum rated cruise thrust
- CRZ 1 * maximum rated cruise thrust, climb one preselected
- CRZ 2 * maximum rated cruise thrust, climb two preselected

Continuous:

- CON maximum rated continuous thrust
- CON 1 * maximum rated continuous thrust, climb one preselected
- CON 2 * maximum rated continuous thrust, climb two preselected

Go-around and Manual:

- G/A maximum go–around thrust
- MAN reference EPR manually selected

Note: * WHITE NUMBER – indicates reduced climb thrust is preselected

2 Total Air Temperature (TAT)

Displayed (cyan) – "TAT" and underline

Displayed (white) - temperature (degrees C)

3 Assumed Temperature

Displayed (green) – selected assumed temperature (degrees C) for reduced thrust takeoff

4 Thrust Reverser Indication

Displayed REV (amber) - reverser in transit

Displayed REV (green) - reverser fully deployed

EPR Indications

Note: When reverse thrust is activated, the following indications are not displayed:

- reference/target EPR indication
- thrust reference mode
- reference EPR

1 EPR Pointer

Displayed (white)

2 Maximum EPR Line

Displayed (amber)

3 EPR bug

Displayed (green) – reference EPR limit

Displayed magenta – target FMC commanded EPR when VNAV is engaged

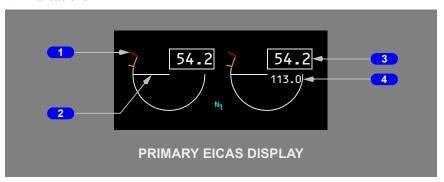
4 Reference EPR

Displayed (green)

5 Actual EPR

Displayed (white)

6 Commanded EPR Sector


Displays momentary difference between engine EPR and EPR commanded by thrust lever position

7 Command Thrust Level

Displayed (white):

- end of command sector
- appears as extension of EPR pointer when engine stabilized
- EPR commanded by thrust lever position

N1 Indications

1 N1 Red Line Limit

Displayed (red) – N1 RPM operating limit

DO NOT USE FOR FLIGHT Controls and Indicators (PW)

Engines, APU -

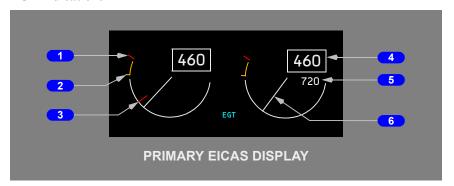
767 Flight Crew Operations Manual

2 N1 Pointer

- (white) points at value equal to that shown in the N1 counter
- (red) operating limit reached or exceeded

3 N1

N1 RPM (%), displayed:


- (white) normal operating range
- (red) operating limit reached or exceeded

4 Maximum Exceedance

Displayed (white):

- · red line limit or transient limit is exceeded
- highest value attained

EGT Indications

EGT Red Line

Displayed (red) – maximum takeoff EGT limit

2 EGT Amber Band

Displayed (amber) - maximum continuous EGT limit

3 EGT Start Limit Line

Displayed (red) – during start until engine is stabilized at minimum idle RPM

4 EGT

EGT (degrees C), displayed:

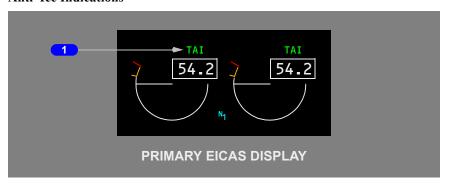
- (white) normal operating range
- (amber) maximum continuous limit reached*
- (red) maximum start or takeoff limit reached

Note: * Pointer and counter remain white during TO or GA for 5 minutes after amber band is entered.

5 EGT Maximum Exceedance

Displayed (white):

- red line limit, transient limit or start EGT is exceeded
- · displays the highest value attained

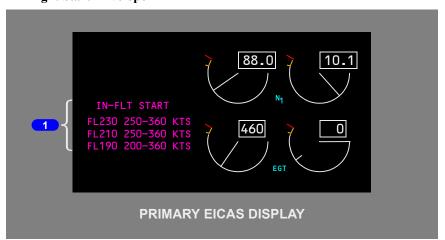

6 EGT Pointer

Displayed:

- (white) normal operating range
- (amber) maximum continuous limit reached
- (red) maximum start or takeoff limit reached

Copyright © The Boeing Company. See title page for details.

Anti-Ice Indications

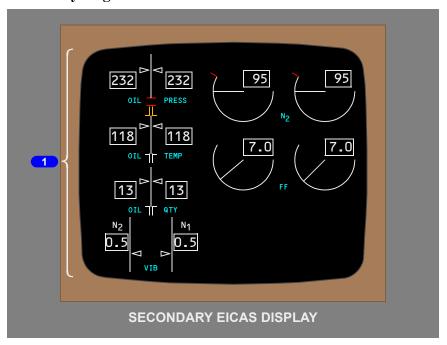


1 Thermal Anti–Ice (TAI) Indication

Displayed (green) -

• engine anti-ice is on

In-Flight Start Envelope

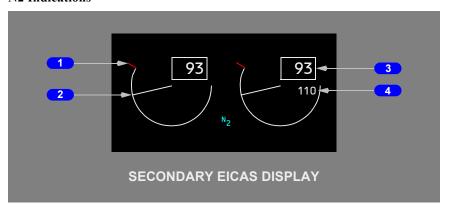

1 In-Flight Start Envelope

Displayed (magenta) – airspeed range for an inflight start for the closest starting flight level and two descending flight levels at two thousand foot intervals when the respective engine fire switch is in and:

- · a FUEL CONTROL switch is in CUT OFF, and
- engine N2 RPM is below idle, and
- primary and secondary EICAS displayed

Copyright © The Boeing Company. See title page for details.

Secondary Engine Indications



1 Secondary Engine Display

Displays:

- N2 RPM
- fuel flow (FF)
- · oil pressure
- · oil temperature
- oil quantity
- vibration

N2 Indications

1 N2 Red Line

N2 RPM operating limit, displayed (red)

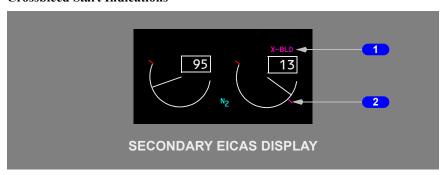
2 N2 Pointer

N2 RPM, displayed:

- (white) normal operating range
- (red) operating limit reached or exceeded

3 N2

N2 RPM (%), displayed:


- (white) normal operating range
- (red) operating limit reached

4 Maximum Exceedance

Displayed (white):

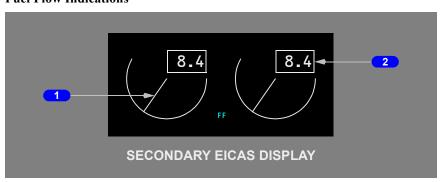
- · red line limit is exceeded
- · highest value attained

Crossbleed Start Indications

1 Crossbleed Start (X-BLD) Indication

Indicates crossbleed air is recommended for an inflight start.

Displayed (magenta):

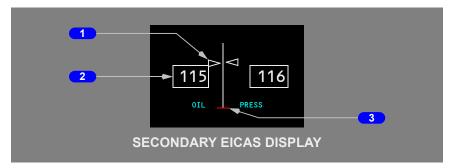

- the inflight start envelope is displayed, and
- airspeed is lower than that for a windmilling start

2 Fuel On Command Bug

Displayed (magenta):

- engine is shutdown on the ground or inflight when X–BLD is displayed
- minimum fuel on selection point during starter cranking

Fuel Flow Indications


1 Fuel Flow Pointer

Displayed (white) – points at a value equal to that shown in the Fuel Flow

2 Fuel Flow (FF)

Displayed (white) – fuel flow to the engine (pounds per hour x 1000)

Oil Pressure Indications

Oil Pressure Pointer

Engine oil pressure, displayed:

- (white) normal operating range
- (red) operating limit reached

2 Oil Pressure (OIL PRESS)

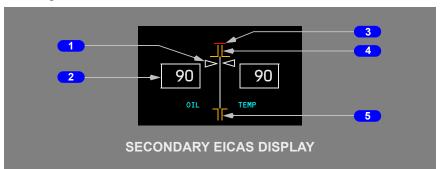
Engine oil pressure (psi), displayed:

- (white) normal operating range
- (red) operating limit reached

3 Oil Pressure Red Line

Displayed (red) – low oil pressure operating limit

1 Engine Oil Pressure (L or R ENG OIL PRESS) Lights


Illuminated (amber):

- respective engine oil pressure is at or below minimum
- · oil pressure switch malfunction

Copyright © The Boeing Company. See title page for details.

7.11.11

Oil Temperature Indications

1 Oil Temperature Pointer

Engine oil temperature, displayed:

- (white) normal operating range
- (amber) caution range reached
- (red) operating limit reached

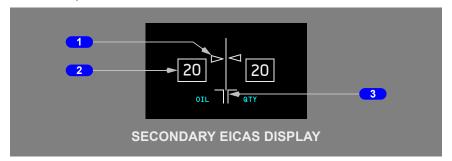
Oil Temperature

Engine oil temperature (degrees C), displayed:

- (white) normal operating range
- (amber) caution range reached
- (red) operating limit reached

3 Oil Temperature Red Line

Displayed (red) – oil temperature operating limit


4 Oil Temperature Amber Band

Displayed (amber) – upper oil temperature caution range

5 Oil Temperature Amber Band

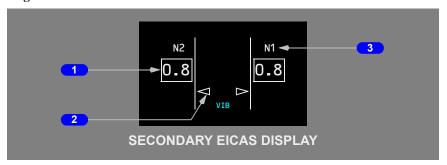
Displayed (amber) – lower oil temperature caution range

Oil Quantity Indications

1 Oil Quantity Pointer

Displayed (white) – points at a value equal to that shown in the Oil Quantity

2 Oil Quantity


Usable oil quantity (quarts), displayed:

• (white) – normal quantity

3 Low Oil Quantity Band

Displayed (white) – awareness range for low oil quantity

Engine Vibration Indications

1 Engine Vibration

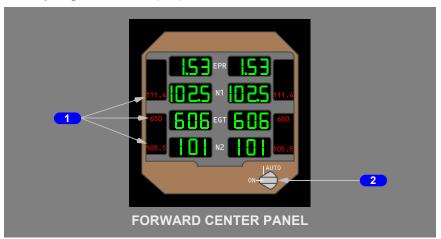
Displayed (white) – normal operating range

2 Engine Vibration Pointer

Displayed (white) – engine vibration

3 Vibration Source

Identifies the vibration source being displayed


Copyright © The Boeing Company. See title page for details.

Displayed (white) – vibration source with the highest vibration:

- N1 rotor vibration
- N2 rotor vibration

If the vibration source BB (broad band vibration) is displayed, the source is unknown and average vibration is displayed

Standby Engine Indicator (SEI)

- **1** Maximum Engine Limits
- 2 Standby Engine Indicator Selector

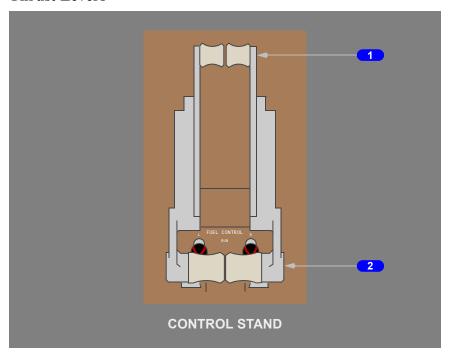
AUTO -

- display is blank with AC power on the airplane and EICAS operative
- standby engine indications in view when:
 - AC power is lost
 - either CRT failed and STATUS selected on the ground
 - · EICAS failed

ON – standby engine indications in view

Compact Engine Indications

1 Compact Engine Indications


The following changes to EICAS and the normal secondary engine display occur:

- EGT and N2 change from round dial displays to digital displays. The EGT digital display and box turn amber or red if the limit is exceeded. The N2 digital display turns red if the limit is exceeded
- FF, OIL PRESS and OIL TEMP are displayed as digital readouts only. The OIL PRESS and OIL TEMP digital displays turn amber or red if limits are exceeded
- OIL QTY and VIB are displayed as digital readouts only. Low oil quantity and high vibrations are displayed the same as in the normal format.

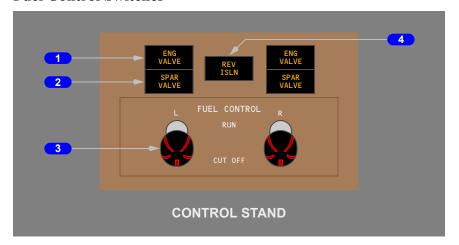
Copyright © The Boeing Company. See title page for details.

Engine Controls

Thrust Levers

1 Reverse Thrust Levers

Controls engine reverse thrust


Reverse thrust can only be selected when the forward thrust levers are closed Actuates automatic speedbrakes (refer to Chapter 9, Flight Controls)

2 Forward Thrust Levers

Controls engine forward thrust

The thrust levers can only be advanced if the reverse thrust levers are down

Fuel Control Switches

1 Engine Valve (ENG VALVE) Lights

Illuminated (amber) – engine fuel valve is not in commanded position

2 SPAR VALVE Lights

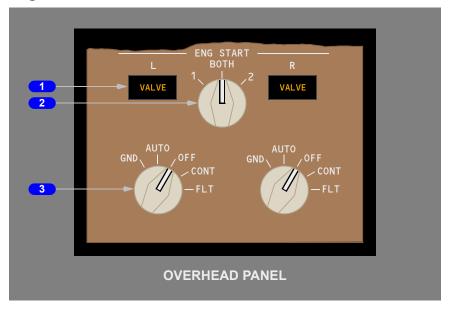
Illuminated (amber) – fuel spar valve is not in commanded position

3 FUEL CONTROL Switches

RUN –

- · normal position for flight
- · opens engine and spar fuel valves
- activates selected ignitor(s)

CUT OFF -


- · closes engine and spar fuel valves
- · terminates ignition

4 Reverser Isolation Valve (REV ISLN) Light

Illuminated (amber) – a fault has been detected in the thrust reverser system

Copyright © The Boeing Company. See title page for details.

Engine Control Panel

1 Engine Start Valve (VALVE) Lights

Illuminated (amber):

- valve is not in commanded position
- N2 RPM exceeds 50% and starter valve open

2 Ignition Selector

BOTH – both igniters in each engine operate when directed by Engine Start Selector

1 or 2 – selected igniter in each engine operate when directed by Engine Start Selector

3 Engine Start Selectors

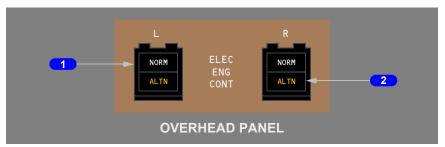
GND (push-in and rotate) –

- opens start valve to supply starter air
- arms selected igniter(s)
- selector magnetically held in GND position until 50% N2 RPM

AUTO -

- selector releases to AUTO at 50% N2 RPM
- · closes start valve and terminates ignition
- selected igniter(s) operate continuously with L.E. slats extended or engine anti-ice on

OFF - no ignition


CONT -

- selected igniter(s) operate continuously
- · no time limit
- engine operates at a minimum of approach idle

FLT -

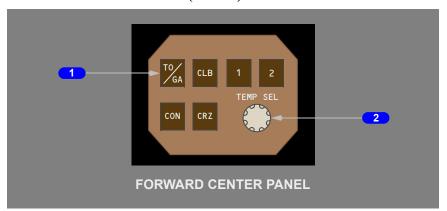
- both igniters operate continuously regardless of ignition selector position
- no time limit

Electronic Engine Control (EEC)

1 EEC (ELEC ENG CONT) Switches

NORM – EEC is operating in normal (EPR) mode

ALTN (NORM not visible) - EEC is operating in alternate (N1) mode


2 EEC Alternate Mode (ALTN) Lights

Illuminated (amber) – EEC is operating in alternate (N1) mode

Copyright $\ensuremath{\mathbb{C}}$ The Boeing Company. See title page for details.

7.11.19

Thrust Mode Select Panel (TMSP)

1 Thrust Reference Mode Select Switches

Push -

- · manually selects desired thrust reference mode
- selected thrust reference mode and reference EPR are displayed

TO/GA -

- selects TO mode on the ground or GA mode inflight
- cancels preselected climb one or two
- · cancels selected assumed temperature
- selecting 1 or 2 with TO or D-TO reference mode displayed:
 - preselects CLB 1 or CLB 2 on the ground if autothrottles not engaged
 - subsequent push cancels any preselected 1 or 2
 - · cancels selected assumed temperature

CLB-

- · selects CLB
- selects CLB 1 or CLB 2 if 1 or 2 is preselected
- selecting 1 or 2 with CLB Reference mode displayed:
 - selects CLB 1 or CLB 2
- with CLB 1 or CLB 2 reference mode displayed:
 - subsequent push of active mode switch cancels 1 or 2
- with CLB 2 reference mode displayed:
 - switch 1 selects CLB 1

CON -

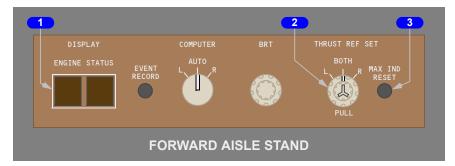
- selects CON mode
- selecting 1 or 2 with CON reference mode displayed:
 - preselects CLB 1 or CLB 2

\overline{CRZ} –

- · selects CRZ mode
- selecting 1 or 2 with CRZ reference mode displayed:
 - preselects CLB 1 or CLB 2

2 Assumed Temperature Selector (TEMP SEL)

Functions only with TO, TO 1* or TO 2* mode displayed


Sets assumed temperature

Rotate clockwise -

- assumed temperature appears on EICAS
- one click equals 1 degree centigrade

Note: * WHITE NUMBER - indicates reduced climb thrust is preselected

EICAS Control Panel

1 ENGINE Display Switch

Push – displays the secondary engine parameters on the lower EICAS CRT If secondary engine parameters are already displayed and no limits have been

If secondary engine parameters are already displayed and no limits have been exceeded, the display blanks

2 Manual Thrust Reference Set (THRUST REF SET) Controls

Outer Knob:

- BOTH both EPR bugs may be set to the same value
- L or R only the selected EPR bug may be set to the desired value. Bugs may be set at different values.

Copyright $\ensuremath{\mathbb{C}}$ The Boeing Company. See title page for details.

7.11.21

Engines, APU -Controls and Indicators (PWDO NOT USE FOR FLIGHT

767 Flight Crew Operations Manual

Inner Knob:

- Push reference EPR is set automatically
- Pull reference EPR is set manually. MAN appears in EPR thrust reference mode display and EPR bug moves to 1.55.
- Rotate in manual mode, sets EPR bug and reference EPR to desired value

3 Maximum Indication Reset (MAX IND RESET) Switch

Push – resets and blanks all maximum exceedance values on EGT, N1 and N2

767 Flight Crew Operations Manual

Engines, APU
Controls and Indicators (GE)

Chapter 7
Section 12

EICAS Displays

Primary Engine Indications

1 Primary Engine Indications

Displayed full time on the EICAS display:

- N1
- EGT

Mode Indications

1 Thrust Reference Mode

Displayed (green) – selected FMS thrust reference mode:

Takeoff:

- TO maximum rated takeoff thrust
- TO 1 * maximum rated takeoff thrust, climb one preselected
- TO 2 * maximum rated takeoff thrust, climb two preselected

Assumed Temperature Takeoff:

- D-TO assumed temperature derated takeoff thrust
- D–TO 1 * assumed temperature derated takeoff thrust, climb one preselected
- D–TO 2 * assumed temperature derated takeoff thrust, climb two preselected

Climb:

- CLB maximum rated climb thrust
- CLB 1 derate one climb thrust
- CLB 2 derate two climb thrust

Cruise:

- CRZ maximum rated cruise thrust
- CRZ 1 * maximum rated cruise thrust, climb one preselected
- CRZ 2 * maximum rated cruise thrust, climb two preselected

Continuous:

- CON maximum rated continuous thrust
- CON 1 * maximum rated continuous thrust, climb one preselected
- CON 2 * maximum rated continuous thrust, climb two preselected

Engines, APU -

767 Flight Crew Operations Manual

Go-around and Manual:

- G/A maximum go–around thrust
- MAN reference N1 manually selected

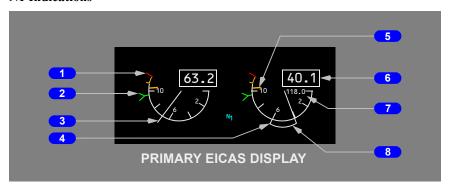
Note: * WHITE NUMBER – indicates reduced climb thrust is preselected

2 Total Air Temperature (TAT)

Displayed (cyan) – "TAT" and underline

Displayed (white) - temperature (degrees C)

3 Assumed Temperature


Displayed (green) – selected assumed temperature (degrees C) for reduced thrust takeoff

4 Thrust Reverser Indication

Displayed:

- REV (amber) reverser in transit
- REV (green) reverser fully deployed

N1 Indications

1 N1 Red Line Limit

Displayed (red) – N1 RPM operating limit

2 N1 Bug

Displayed (green) – reference N1 for:

- thrust reference mode selected by the FMC
- thrust reference mode selected by the thrust mode select panel
- manual mode selected with thrust reference control

Displayed (magenta) – target FMC commanded N1 when VNAV is engaged

Copyright © The Boeing Company. See title page for details.

3 N1 Pointer

Displayed:

- (white) points at value equal to that shown in the N1 counter
- (red) operating limit reached or exceeded

4 Command Thrust Level

Displayed (white):

- · end of command sector
- appears as extension of N1 pointer when engine stabilized
- N1 commanded by thrust lever position

5 Limit N1

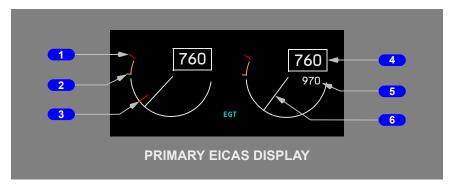
Displayed (amber) – maximum limit N1

6 N1

N1 RPM (%), displayed:

- (white) normal operating range
- (red) operating limit reached or exceeded

7 Maximum Exceedance


Displayed (white):

- · red line limit or transient limit is exceeded
- · highest value attained

8 Command N1 Sector

Displayed (white) – momentary difference between engine N1 and N1 commanded by thrust lever position

EGT Indications

1 EGT Red Line

Displayed (red) – maximum takeoff EGT limit

2 EGT Amber Band

Displayed (amber) – maximum continuous EGT limit

3 EGT Start Limit Line

Displayed (red) – during start until engine is stabilized at minimum idle RPM

4 EGT

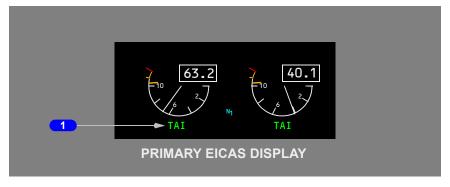
EGT (degrees C), displayed:

- (white) normal operating range
- (amber) maximum continuous limit reached*
- (red) maximum start or takeoff limit reached

Note: * Pointer and counter remain white during TO or GA for 5 minutes after amber band is entered.

5 EGT Maximum Exceedance

Displayed (white):


- red line limit, transient limit or start EGT is exceeded
- displays the highest value attained

6 EGT Pointer

Displayed:

- (white) normal operating range
- (amber) maximum continuous limit reached
- (red) maximum start or takeoff limit reached

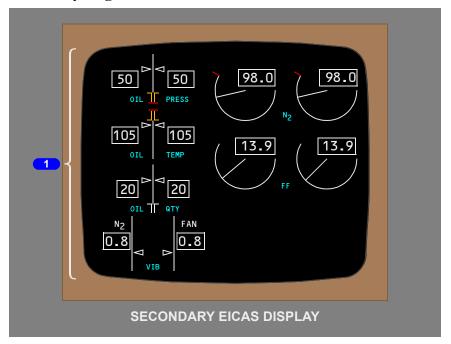
Anti-Ice Indications

Copyright © The Boeing Company. See title page for details.

1 Thermal Anti–Ice (TAI) Indication

Displayed (green) – engine anti-ice is on

In-Flight Start Envelope

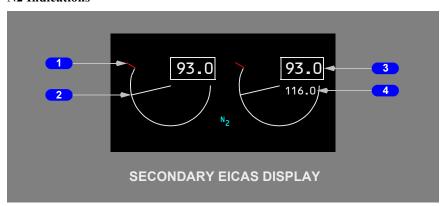


1 In-Flight Start Envelope

Displayed (magenta) – airspeed range for an inflight start for the closest starting flight level and two descending flight levels at two thousand foot intervals when the respective engine fire switch is in and:

- a FUEL CONTROL switch is in CUT OFF, and
- engine N2 RPM is below idle, and
- · primary and secondary EICAS displayed

Secondary Engine Indications



1 Secondary Engine Display

Displays:

- N2 RPM
- fuel flow (FF)
- oil pressure
- oil temperature
- oil quantity
- vibration

N2 Indications

1 N2 Red Line

N2 RPM operating limit, displayed (red)

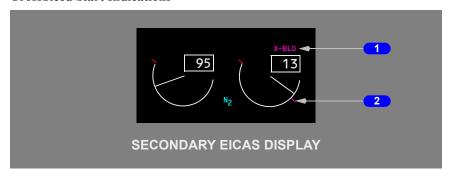
2 N2 Pointer

N2 RPM, displayed:

- (white) normal operating range
- (red) operating limit reached or exceeded

3 N2

N2 RPM (%), displayed:


- (white) normal operating range
- (red) operating limit reached

4 Maximum Exceedance

Displayed (white):

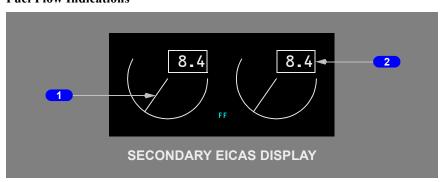
- · red line limit is exceeded
- · highest value attained

Crossbleed Start Indications

1 Crossbleed Start (X-BLD) Indication

Indicates crossbleed air is recommended for an inflight start.

Displayed (magenta):

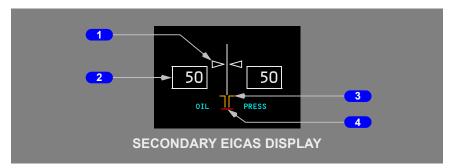

- the inflight start envelope is displayed, and
- · airspeed is lower than that for a windmilling start

2 Fuel On Command Bug

Displayed (magenta):

- engine is shutdown on the ground or inflight when X–BLD is displayed
- minimum fuel on selection point during starter cranking

Fuel Flow Indications


1 Fuel Flow Pointer

Displayed (white) – points at a value equal to that shown in the Fuel Flow

Fuel Flow (FF)

Displayed (white) – fuel flow to the engine (pounds per hour x 1000)

Oil Pressure Indications

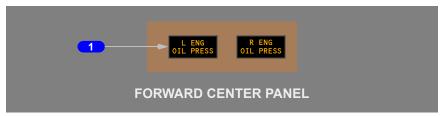
1 Oil Pressure Pointer

Engine oil pressure, displayed:

- (white) normal operating range
- (amber) caution range reached
- (red) operating limit reached

2 Oil Pressure (OIL PRESS)

Engine oil pressure (psi), displayed:

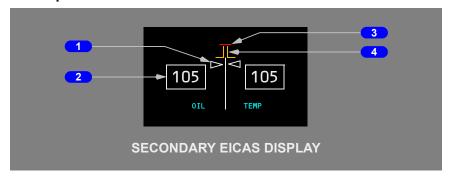

- (white) normal operating range
- (amber) caution range reached
- (red) operating limit reached

3 Oil Pressure Amber Band

Displayed (amber) – caution range for low oil pressure

4 Oil Pressure Red Line

Displayed (red) – low (minimum) oil pressure operating limit



1 Engine Oil Pressure (L or R ENG OIL PRESS) Lights

Illuminated (amber):

- · respective engine oil pressure is at or below minimum
- · oil pressure switch malfunction

Oil Temperature Indications

1 Oil Temperature Pointer

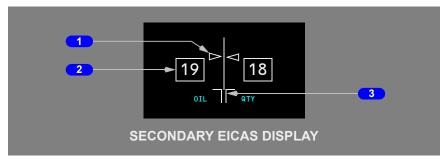
Engine oil temperature, displayed:

- (white) normal operating range
- (amber) caution range reached
- (red) operating limit reached

2 Oil Temperature

Engine oil temperature (degrees C), displayed:

- (white) normal operating range
- (amber) caution range reached
- (red) operating limit reached


3 Upper Oil Temperature Red Line

Displayed (red) – maximum oil temperature operating limit

4 Oil Temperature Amber Band

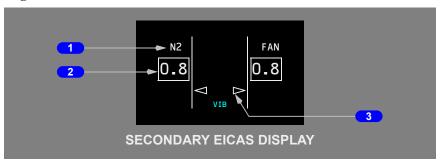
Displayed (amber) – oil temperature caution range

Oil Quantity Indications

1 Oil Quantity Pointer

Displayed (white) – points at a value equal to that shown in the Oil Quantity

2 Oil Quantity


Usable oil quantity (quarts), displayed:

• (white) – normal quantity

3 Low Oil Quantity Band

Displayed (white) – awareness range for low oil quantity

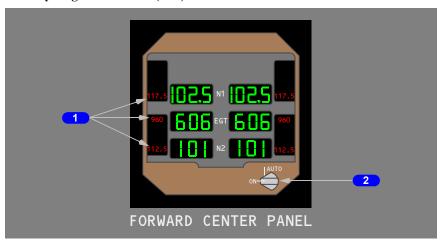
Engine Vibration Indications

1 Vibration Source

Identifies the vibration source being displayed.

Displayed (white) – vibration source with the highest vibration:

- FAN low pressure compressor
- LPT low pressure turbine
- N2 high pressure compressor
- BB broad band engine vibration


2 Engine Vibration

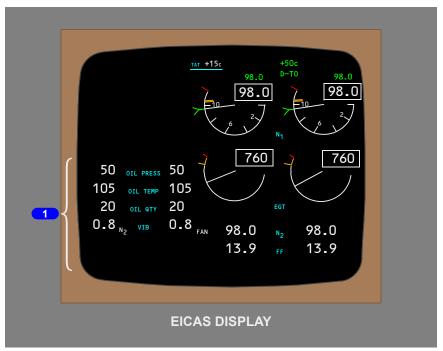
Displayed (white) – display of engine vibration in units

3 Engine Vibration Pointer

Displayed (white) – engine vibration

Standby Engine Indicator (SEI)

- 1 Maximum Engine Limits
- 2 Standby Engine Indicator Selector

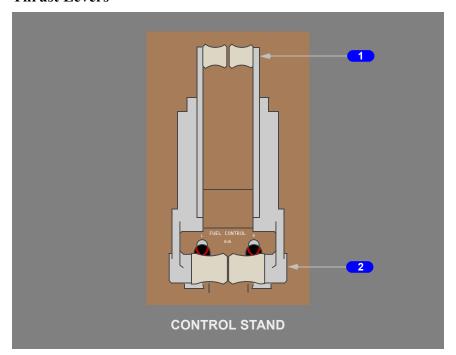

AUTO -

- display is blank with AC power on the airplane and EICAS operative
- standby engine indications in view when:
 - AC power is lost
 - either CRT failed and STATUS selected on the ground
 - · EICAS failed

ON – standby engine indications in view

February 14, 2007 D632T001-300 7.12.13

Compact Engine Indications


1 Compact Engine Indications

The following changes to EICAS and the normal secondary engine display occur:

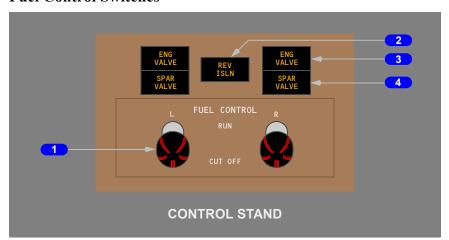
- N2 changes from round dial display to digital display. The N2 digital display turns red if the limit is exceeded.
- FF, OIL PRESS and OIL TEMP are displayed as digital readouts only.
 The OIL PRESS and OIL TEMP digital displays turn amber or red if limits are exceeded.
- OIL QTY and VIB are displayed as digital readouts only. Low oil quantity and high vibrations are displayed the same as in the normal format.

Engine Controls

Thrust Levers

1 Reverse Thrust Levers

Controls engine reverse thrust


Reverse thrust can only be selected when the forward thrust levers are closed Actuates automatic speedbrakes (refer to Chapter 9, Flight Controls)

2 Forward Thrust Levers

Controls engine forward thrust

The thrust levers can only be advanced if the reverse thrust levers are down

Fuel Control Switches

1 FUEL CONTROL Switches

RUN -

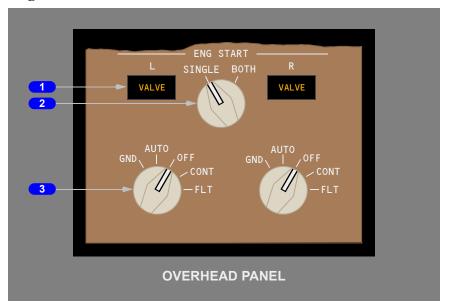
- · normal position for flight
- opens engine and spar fuel valves
- activates selected ignitor(s)

CUT OFF -

- closes engine and spar fuel valves
- · terminates ignition

2 Reverser Isolation Valve (REV ISLN) Light

Illuminated (amber) – a fault has been detected in the thrust reverser system


3 Engine Valve (ENG VALVE) Lights

Illuminated (amber) – engine fuel valve is not in commanded position

4 SPAR VALVE Lights

Illuminated (amber) – fuel spar valve is not in commanded position

Engine Control Panel

1 Engine Start Valve (VALVE) Lights

Illuminated (amber):

- valve is not in commanded position
- N2 RPM exceeds 50% and starter valve open

2 Ignition Selector

BOTH – both igniters in each engine operate when directed by Engine Start Selector

SINGLE – one igniter in each engine operates when directed by Engine Start Selector. The ignitor automatically alternates with each engine start.

Note: Auto relight is enabled regardless of engine start and ignition selector positions. Both ignitors operate when N2 drops below idle speed.

3 Engine Start Selectors

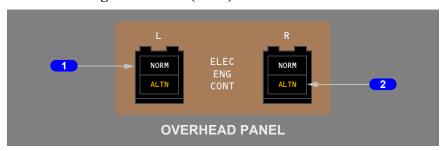
GND (push-in and rotate) –

- opens start valve to supply starter air
- arms selected igniter(s)
- selector magnetically held in GND position until 50% N2 RPM

AUTO -

- selector releases to AUTO at 50% N2 RPM
- · closes start valve and terminates ignition
- selected igniter(s) operate continuously with L.E. slats extended or engine anti-ice on

OFF - no ignition


CONT -

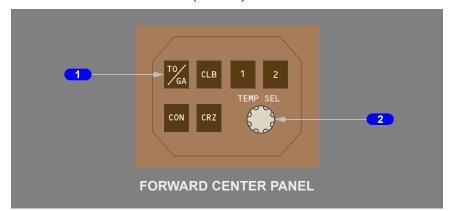
- selected igniter(s) operate continuously
- · no time limit
- engine operates at a minimum of approach idle

FLT -

- both igniters operate continuously regardless of ignition selector position
- no time limit

Electronic Engine Control (EEC)

1 EEC (ELEC ENG CONT) Switches


NORM – normal EEC mode is selected

ALTN (NORM not visible) - alternate EEC mode is selected

2 EEC Alternate Mode (ALTN) Lights

Illuminated (amber) – EEC is operating in alternate mode

Thrust Mode Select Panel (TMSP)

1 Thrust Reference Mode Select Switches

Push -

- manually selects desired thrust reference mode
- selected thrust reference mode and reference N1 are displayed

TO/GA -

- selects TO mode on the ground or GA mode inflight
- cancels preselected climb one or two
- · cancels selected assumed temperature
- selecting 1 or 2 with TO or D-TO reference mode displayed:
 - preselects CLB 1 or CLB 2 on the ground if autothrottles not engaged
 - subsequent push cancels any preselected 1 or 2
 - · cancels selected assumed temperature

CLB-

- · selects CLB
- selects CLB 1 or CLB 2 if 1 or 2 is preselected
- selecting 1 or 2 with CLB Reference mode displayed:
 - selects CLB 1 or CLB 2
- with CLB 1 or CLB 2 reference mode displayed:
 - subsequent push of active mode switch cancels 1 or 2
- with CLB 2 reference mode displayed:
 - · switch 1 selects CLB 1

CON -

- selects CON mode
- selecting 1 or 2 with CON reference mode displayed:
 - preselects CLB 1 or CLB 2

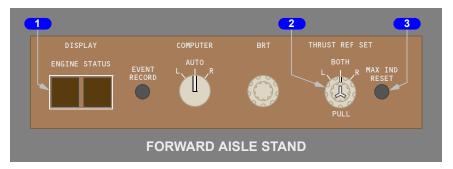
Engines, APU -

\overline{CRZ} –

- selects CRZ mode
- selecting 1 or 2 with CRZ reference mode displayed:
 - preselects CLB 1 or CLB 2

2 Assumed Temperature Selector (TEMP SEL)

Functions only with TO, TO 1* or TO 2* mode displayed


Sets assumed temperature

Rotate clockwise -

- assumed temperature appears on EICAS
- one click equals 1 degree centigrade

Note: * WHITE NUMBER - indicates reduced climb thrust is preselected.

EICAS Control Panel

1 ENGINE Display Switch

Push – displays the secondary engine parameters on the lower EICAS CRT

If secondary engine parameters are already displayed and no limits have been exceeded, the display blanks

2 Manual Thrust Reference Set (THRUST REF SET) Controls

Outer Knob:

- BOTH both N1 bugs may be set to the same value
- L or R only the selected N1 bug may be set to the desired value. Bugs may be set at different values

Inner Knob:

- Push reference N1 is set automatically
- Pull reference N1 is set manually. MAN appears in N1 thrust reference mode display and N1 bug moves to 104%
- Rotate in manual mode, sets N1 bug and reference N1 to desired value

3 Maximum Indication Reset (MAX IND RESET) Switch

Push - resets and blanks all maximum exceedance values N1, EGT and N2

Intentionally Blank

767 Flight Crew Operations Manual

Engines, APU Chapter 7 Controls and Indicators Section 15

Auxiliary Power Unit (APU)

APU Controls

1 APU RUN Light

Illuminated (white) - APU is at operating speed

2 APU FAULT Light

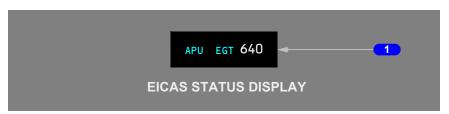
Illuminated (amber):

- the APU has automatically shut down
- the APU fuel valve disagrees with the commanded position

3 APU Selector

OFF -

- · closes the APU bleed air valve, if open
- initiates APU cooling cycle
- shuts down APU when cooling cycle complete
- resets auto shutdown fault logic


ON (APU operating position) –

- opens the APU fuel valve and inlet door
- activates AC or DC fuel pump
- powers the APU controller
- permits the APU bleed valve to open if the APU Bleed Switch is on when APU reaches operating speed

START (momentary position, spring-loaded to ON) – initiates automatic start sequence

767 Flight Crew Operations Manual

APU Indications

1 APU Status Display

EGT – APU exhaust gas temperature displayed in degrees centigrade

767 Flight Crew Operations Manual

Engines, APU Engine System Description (PW)

Chapter 7
Section 21

Introduction

The airplane is powered by two Pratt and Whitney PW4060 engines. The engines are rated at 60,200 pounds of takeoff thrust each.

The engines are two—rotor axial flow turbofans of high compression and bypass ratio. The N1 rotor consists of the fan, a low pressure compressor and turbine section on a common shaft. The N2 rotor consists of a high pressure compressor and turbine section on a common shaft. The N1 and N2 rotors are mechanically independent. The N2 rotor drives the engine accessory gearbox.

Each engine has individual flight deck controls. Thrust is set by positioning the thrust levers. The thrust levers are positioned automatically by the autothrottle system or manually by the flight crew.

Each engine is controlled by an electronic engine controller (EEC). The EECs monitor autothrottle and flight crew inputs through the thrust levers to automatically control the engines.

Engine indications are displayed on the engine indication and crew alerting system (EICAS) display.

Engine Indications

Primary and secondary engine indications are provided. Engine indications are displayed on the EICAS display. In addition, annunciator lights and a liquid crystal standby engine indicator are provided to monitor engine operation.

Primary Engine Indications

EPR, N1, and EGT are the primary engine indications. The primary engine indications are always displayed on the upper EICAS display.

Secondary Engine Indications

N2, fuel flow, oil pressure, oil temperature, oil quantity, and engine vibration are secondary engine indications. Secondary engine indications are displayed on the lower EICAS display. The secondary engine indications can be displayed by pushing the Engine Display Switch (the ENGINE switch on the EICAS Control Panel). The secondary engine indications are automatically displayed when:

- the displays initially receive electrical power, or
- a secondary engine parameter is exceeded.

Normal Display Format

Primary engine indications and the N2 and fuel flow indications are digital readouts and round dial/moving pointer indications. The digital readouts display numerical values while the moving pointers indicate relative value.

Oil pressure, oil temperature, oil quantity and vibration indications are both digital readouts and vertical indication/moving pointers. All digital readouts are enclosed by boxes. The dial and vertical indications display the normal operating range, caution range, and operating limits.

Normal operating range is displayed on a dial or vertical indication in white.

The oil temperature vertical indication has caution ranges displayed by amber bands. If oil temperature reaches the caution range, the digital readout, digital readout box, and pointer all change color to amber.

N1, EGT, N2, oil pressure, and oil temperature indications have operating limits indicated by red lines. If one of these indications reaches the red line, the digital readout, box, and pointer change color to red for that indication.

The EGT indication has a maximum continuous limit represented by an amber band. If EGT reaches the maximum continuous limit, the digital indication, box, pointer, and dial all change color to amber. The EGT indication is inhibited from changing to amber during takeoff or go—around for five minutes. The inhibit is extended to ten minutes for single—engine operation. The red line limits for these parameters are not inhibited. The EGT indication has a maximum takeoff limit displayed by a red line. If EGT reaches the maximum takeoff limit, the digital indication, box, pointer and dial, all change color to red.

The maximum EPR limit is indicated by an amber line on the EPR dial. The EPR indication does not change color when maximum EPR is reached. The reference/target EPR indication displays the FMS reference or target EPR. The commanded EPR indication displays the EEC calculated EPR commanded by thrust lever position.

Compact Display Format

In compact format, primary and secondary engine indications are combined on the same display. The EPR and N1 displays are the same as the normal displays. All other indications change to digital readouts only. If an amber or red line parameter for a digital indication is exceeded, the digital indication changes color to amber or red (as does the box that appears around an EGT indication).

Primary and secondary engine indications are displayed on EICAS in compact format whenever a CRT fails.

Engine Secondary Data Cue

A series of blue 'v's are visible on the lower left corner of the upper EICAS CRT any time engine data is displayed on the lower EICAS CRT. If for some reason the engine data is not visible, the Status Display Switch may be used to allow the engine data to come up partially compacted on the upper EICAS CRT display.

Engine Pressure Ratio (EPR)

Engine Pressure Ratio is the primary thrust parameter. Annunciations associated with EPR are:

- Maximum EPR
- · Thrust Reference Mode
- · Reference/Target EPR indication
- Reference EPR
- Assumed Temperature
- · Thrust Reverser Indication
- · Command Thrust Level
- · Commanded EPR Sector

The maximum EPR is the maximum certified thrust limit for all phases of flight and varies with existing ambient conditions. The maximum EPR is indicated by dual amber radials on the periphery of the EPR indicator. This value is acquired from the EEC or the TMC. With the EEC operating normally, the thrust levers can be moved to the forward stop and the engines will not exceed the displayed maximum EPR.

The command thrust level is a display of thrust lever position and appears as an extension of the EPR pointer when the engine is stabilized. A change in thrust lever position moves the command thrust level and displays the commanded thrust on the EPR indicator. This allows for precise thrust control.

The command sector is a display of the momentary difference between the command thrust level and actual EPR and appears as a white band on the EPR indicator. As the engine accelerates or decelerates to the command thrust level the command sector is erased. This allows for monitoring of engine acceleration and deceleration.

Thrust reverser indication (REV) is displayed above the EPR indicator when the reverser is activated. The annunciation is amber when the reverser is unlocked or in transit. When the reverser is fully deployed, the annunciation changes color to green and the forward thrust reference displays are inhibited.

Thrust Management Computer (TMC)

The thrust management computer calculates a reference EPR based on existing pressure altitude and ambient temperature data from the air data system for the following modes:

- TO takeoff
- D-TO assumed temperature takeoff
- CLB climb
- CLB 1 climb one
- CLB 2 climb two
- CRZ cruise
- CON continuous
- GA go-around

These modes can be selected with the thrust mode select panel (TMSP). The inner thrust reference set control on the EICAS control panel must be pushed in for the thrust reference modes to be displayed on EICAS. The selected thrust reference mode is displayed above the EPR indicators. The digital reference EPR is displayed adjacent to the mode display. When the EPR bug is green, it is positioned on the EPR scale at the same value as the digital reference EPR.

The thrust mode select switches provide the capability of selecting different thrust modes for each phase of flight. The TO/GA switch is used to select takeoff thrust on the ground and go-around thrust inflight.

The assumed temperature for a reduced thrust takeoff can be set by:

- using the assumed temperature selector on the TMSP
- entering the assumed temperature into the CDU TAKEOFF REF page

The 1 and 2 switches are used to select reduced climb thrust. Reduced climb thrust one or two can be preselected in conjunction with takeoff or assumed temperature takeoff thrust prior to takeoff. The CLB switch is used to select climb thrust inflight. If reduced climb thrust one or two was preselected, pushing the climb switch inflight selects CLB 1 or CLB 2.

The CON switch is used to select maximum continuous thrust inflight. The CRZ switch is used to select cruise thrust inflight. The assumed temperature selector or the CDU is used to set assumed temperatures when reduced takeoff thrust is desired.

DO NOT USE FOR FLIGHT Engine System Description (PW)

767 Flight Crew Operations Manual

To manually set Reference EPR values the thrust reference set control is pulled out, MAN appears as the thrust mode annunciation and the EPR bug slews to 1.55. Manual reference EPR values can then be set by rotating the inner control. The outer control of the thrust reference set control is used to select the desired EPR indicator(s) for manual EPR display. The autothrottles do not respond to manually set reference EPR values. When the inner control is pulled out, the autothrottles remain in the active TMC mode. The TMSP remains operable and the autothrottles respond to TMSP mode changes, but selected thrust reference mode displays are inhibited.

When the AFDS VNAV mode is engaged, the EPR bug may be magenta. When the EPR bug is magenta, it is positioned at a nominal target EPR by the FMC, which may not correlate with the digital reference EPR. In VNAV, the FMC controls Thrust mode selection automatically to meet thrust requirements for the active vertical mode of operation. The FMC does not have the capability to select reduced climb thrust values, these values must be selected manually with the 1 or 2 TMSP switches

The thrust reference mode, reference EPR and EPR bug are not displayed when the reversers are fully deployed.

Assumed Temperature Takeoff

The thrust management computer calculates the reference EPR for assumed temperature reduced thrust takeoff. The assumed temperature can be entered manually on the CDU TAKEOFF REF page or selected with the assumed temperature selector on the TMSP. The assumed temperature is displayed above the thrust reference mode

When the assumed temperature selector on the TMSP is initially rotated clockwise, a reference temperature is displayed on EICAS. This temperature also appears on the CDU TAKEOFF REF page as THRUST.

Further clockwise rotation of the selector increases the assumed temperature by 1 degree centigrade per click. The reduced thrust annunciation of D–TO appears when the assumed temperature selected is above ambient. If the ambient temperature is greater than the initially displayed reference temperature, D–TO and reduced thrust occur when the assumed temperature selected exceeds ambient

Counterclockwise rotation of the selector reduces the assumed temperature by one degree centigrade per click.

Engines, APU - Engine System Description (NOT USE FOR FLIGHT

767 Flight Crew Operations Manual

Assumed temperature takeoff thrust is limited to a 25% reduction of takeoff thrust or selected climb thrust, whichever is the greater thrust value. When the limit is reached, further adjustment to the assumed temperature by rotating the assumed temperature selector on the TMSP or changing the value entered in the CDU TAKEOFF REF page does not change the displayed assumed temperature or reference thrust value.

Reduced Climb Thrust

Two levels of reduced climb thrust are available with the 1 and 2 mode switches on the thrust mode select panel. Climb 1 is approximately 90% of climb thrust and climb 2 is approximately 80% of climb thrust. Climb one or two can be preselected in conjunction with the TO, D–TO, CON and CRZ thrust reference modes.

Above 10,000 feet, reduced climb thrust gradually changes to reach full climb thrust by 12,000 feet. The 1 or 2 annunciation disappears from the display by 12,500 feet.

Electronic Engine Control (EEC) – PW4000 Series Engine

The thrust system consists of a dual channel, full authority Electronic Engine Control unit without any hydromechanical backup. Each EEC is powered, when the engines are operating, by a dedicated permanent magnet alternator (PMA) independent of airplane electrical power. The EEC commands constant engine output for a given thrust lever position. EPR is the prime thrust setting parameter, N1 is alternate.

The EEC continuously computes the maximum thrust limit which is presented as an amber radial on the EPR display. Maximum rated thrust is available in any phase of flight by moving the thrust levers to the full forward positions.

Primary (EPR) Control Mode

Both engines normally operate in the primary mode to control thrust. In primary control mode operation, target EPR for current thrust lever position is computed as a ratio to the full throttle position. During rapid thrust lever movements, the difference between the engines actual EPR and the EEC commanded EPR is displayed as the command sector on the EICAS EPR display.

The EICAS advisory message L or R ENGINE CONTROL displays when faults are detected in the engine control systems. This message is designed to prevent dispatch with these faults.

The dual channel system provides redundancy of inputs to the engine fuel control.

Alternate (N1) Control Mode

If the EEC is unable to maintain EPR control, the EEC will automatically revert to the alternate control mode. The alternate control mode may be manually selected by using the flight deck EEC switches. When operating in alternate control mode, the ALTN light illuminates and the EICAS advisory message L or R ENG EEC MODE displays to indicate the EEC has reverted to the alternate mode.

In the alternate control mode, target N1 for current thrust lever position is computed as a ratio to the full throttle position. Due to changes in thrust produced at constant N1 setting during changes in ambient conditions, alternate control mode operations during climbs and descents require thrust lever adjustment to maintain constant thrust. Thrust is controlled in a manner similar to conventional fuel controls.

The alternate control mode has a dual channel system providing redundancy of inputs to the engine fuel controls. Automatic thrust limit protection is not available. In the alternate mode, the EICAS caution message L or R ENG LIM PROT displays to indicate the commanded N1 exceeds the maximum N1.

Overspeed Protection

In either control mode the EEC also provides N1 and N2 red line overspeed protection. If N1 or N2 approaches overspeed, the EEC commands reduced fuel flow. The EICAS advisory message L or R ENG RPM LIM displays to indicate N1 or N2 is at the red line limit.

The EEC does not provide EGT overtemperature protection.

If engine limit protection is not available, advancing the thrust levers full forward should be considered only during emergency situations when all other available actions have been taken and terrain contact is imminent.

Idle Selection

There are two engine idle speeds: minimum idle and approach idle. Minimum idle is a lower thrust than approach idle and selected for ground operation and all phases of flight except approach and landing. Approach idle is selected whenever this higher idle setting is required for proper system operation. The EEC selects these idle speeds automatically.

Rotating the engine start selectors to continuous manually selects approach idle.

The EICAS advisory message L or R ENG LOW IDLE displays to indicate an engine failed to go to approach idle.

Engines, APU - Engine System Description (NOT USE FOR FLIGHT

767 Flight Crew Operations Manual

The EICAS advisory message IDLE DISAGREE displays to indicate the engines are at different idle settings. Either one engine has failed to go to approach idle when required or one engine has failed to return to minimum idle. Inflight, to ensure that approach idle is available if required, the thrust lever on the engine with the lower RPM should be advanced to match the engine with the higher RPM.

Engine Start and Ignition System

Air from the pneumatic duct is used to power the air driven starter, which is connected to the N2 rotor. The starter air source may be from a ground cart, APU or the other running engine.

The engine start selectors control the start valves. Ignition and fuel flow are controlled through the fuel control switches.

A maximum start limit line (red) is displayed on the EGT indication when the fuel control switch is moved to CUT OFF. It remains displayed after the fuel control switch is moved to RUN until the engine is stabilized at idle. The EGT indication changes color to red if the EGT start limit is reached during starting.

Engine Start

Pushing in and rotating the engine start selector to the GND position, opens the start valve, engages the air driven starter to the N2 rotor and closes the engine bleed air valve if it is open. The VALVE light illuminates and the EICAS advisory message L or R ENG STARTER displays to indicate the start valve failed to open.

As N2 rotation accelerates to maximum motoring RPM, the fuel control switch is positioned to RUN.

Maximum motoring speed is reached when acceleration is less than approximately 1% in 5 seconds. Minimum N2 for selecting RUN is indicated by a magenta fuel on command bug. The fuel control switch opens the spar and engine fuel valves allowing the fuel to flow to the fuel control unit and activates the selected ignition. The ignition selector may be used to select BOTH, or either 1 or 2 ignitor(s). Normally, only one ignitor is used for ground start while both ignitors are used for inflight starts. At approximately 50% N2, the engine start selector automatically moves to the AUTO position. The starter automatically cuts out and the start valve closes stopping the flow of air to the starter. This allows the engine bleed valve to return to a position that agrees with the engine bleed air switch. If the start valve fails to close automatically, the corresponding valve light will illuminate and the EICAS caution message L or R STARTER CUTOUT will display. The engine start selector must be manually moved to the AUTO or OFF position to terminate starter operation.

Starter Operation

Continuous operation of the starter must be limited in accordance with the following starter duty cycles:

Normal Duty Cycle

Two consecutive aborted starts with EGT cooling periods. After second consecutive cooling period, let N2 drop to zero before re–engagement.

Extended Duty Cycle

- Zero to five minutes on let N2 run down to zero before re–engaging starter
- Five to ten minutes on followed by a ten minute cooling period
- Ten to fifteen minutes maximum on followed by a fifteen minute cooling period

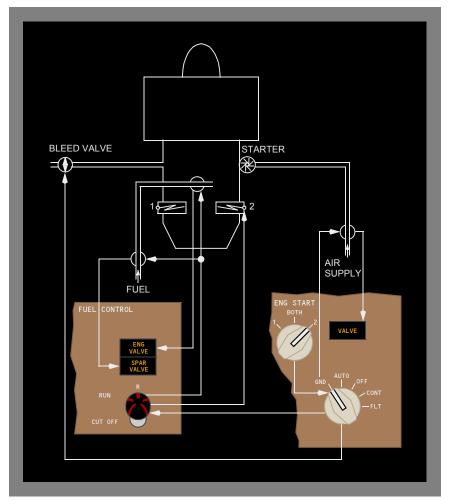
Re-engagement Speed

- 0% N2 recommended
- 0-20% N2 normal

Re-engagement is not recommended above 20% N2 except in case of fire. Re-engagement above 30% N2 may result in starter or gearbox damages.

In-Flight Start

Inflight start envelope information is displayed on the EICAS primary display when an engine is not running in flight, the respective engine fire switch is not pulled and both EICAS primary and secondary displays are selected. The inflight start envelope indicates the airspeed range necessary to ensure an inflight start at the current flight level. If the current flight level is above the maximum start altitude, the maximum start altitude and respective airspeed range are displayed.


A crossbleed start indication (X–BLD) appears above the N2 indication and a fuel on command bug is displayed if airspeed is below that recommended for a windmilling start.

Engine Ignition

Each engine has two ignitors. Dual ignitors are always used for inflight starts.

Main AC power is the normal power source for ignition. Standby AC power provides a backup source.

Engine Start and Ignition System Schematic

Engine Fuel System

Fuel is supplied by fuel pumps located in the fuel tanks. The fuel flows through a spar fuel valve located in the main tank. It then passes through the first stage engine fuel pump where additional pressure is added.

The fuel flows through a fuel/oil heat exchanger where it is preheated. A fuel filter removes contaminants

A second stage engine fuel pump adds more pressure before the fuel reaches the fuel control unit. The fuel is then controlled to meet the existing thrust requirements. The fuel then flows through the engine fuel valve and fuel flow meter before entering the engine.

Fuel control Unit

The engine fuel control system incorporates a fuel control unit which operates in conjunction with the EEC. The fuel control system schedules fuel flow to meet engine thrust requirements as dictated by the thrust lever position and the specific engine operating conditions. The EEC controls the metered fuel and prevents engine limits from being exceeded.

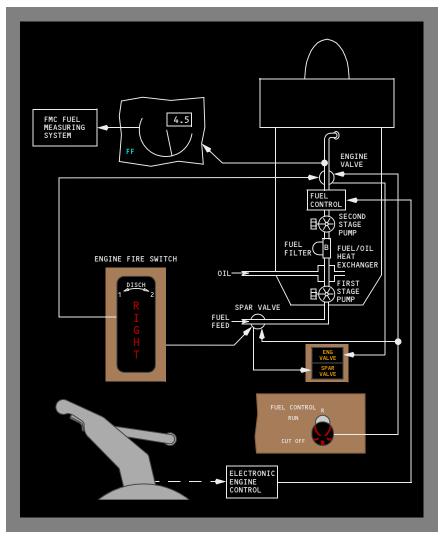
Engine and Spar Valves

The spar and engine fuel valves allow fuel flow to the engine when both valves are open. The valves open when the engine fire switch is IN and the fuel control switch is in the RUN position. Both valves close when either the fuel control switch is in CUT OFF or the engine fire switch is OUT.

The ENG VALVE and SPAR VALVE lights illuminate momentarily as the valves open or close. If the valves do not agree with the fuel control switch or the respective fire switch position after allowing for the normal operating time, the lights remain illuminated and the EICAS advisory message L or R FUEL SPAR VAL or L or R ENG FUEL VAL displays.

Fuel Filter

The fuel is filtered by a filter with bypass capabilities. If the filter becomes clogged with contaminates, fuel will bypass the filter allowing contaminated fuel to enter the fuel control unit.


The EICAS advisory message L or R ENG FUEL FILT displays to indicate the affected engine filter is approaching a level sufficient to cause filter bypass.

Erratic engine operation and flameout may occur due to fuel contamination.

Fuel Flow Measurement

Fuel flow is measured after passing through the engine fuel valve. Fuel flow is displayed on the secondary engine display. Fuel flow information is also provided to the FMS.

Engine Fuel System Schematic

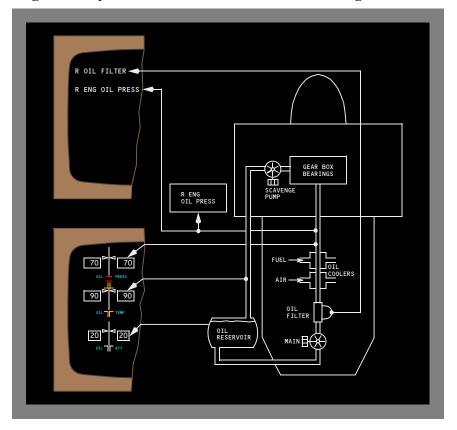
Engine Oil System - PW4000 Series Engine

The oil system provides pressurized oil to lubricate and cool the engine main bearings, gears and accessory drives. The oil system also provides automatic fuel heating for fuel system icing protection.

As an engine is started, a quantity of oil will transfer from the oil reservoir to the engine bearing compartments and gearbox. This results in a decrease of indicated oil quantity. During engine shutdown, the indicated oil quantity increases as the oil is returned to the reservoir. In addition, oil temperature will tend to vary with engine RPM such that, as RPM is increased, temperature increases. As RPM is decreased, temperature decreases.

Oil is pressurized by a main (engine—driven) oil pump. From the pump, the oil flows through the oil filter where contaminants are removed. Should the oil filter become saturated with contaminants, oil will automatically bypass the filter. The EICAS advisory message L or R OIL FILTER displays indicating the oil filter is bypassed. The oil flows through the oil coolers where fuel and air are used as the heat sink, and is then delivered to the engine main bearings, gears, and accessory drives. The oil is then returned to the reservoir.

Oil pressure, temperature, and quantity are displayed on the secondary engine display.


Oil pressure is measured prior to entering the engine. The L or R ENG OIL PRESS light illuminates and the L or R ENG OIL PRESS EICAS advisory message displays to indicate the oil pressure is low. When the oil pressure is at or below the minimum limit, the EICAS indication changes to red.

Oil temperature is measured after leaving the scavenge pump, prior to entering the reservoir. When the oil temperature is in the caution range, the EICAS indication changes to amber.

There is no minimum oil quantity limit (no amber or red line limit). There are no operating limitations for the engine oil quantity; therefore, there are no flight crew procedures based solely on a response to low oil quantity.

February 14, 2007

Engine Oil System Schematic – PW4000 Series Engine

Thrust Reverser System

Each engine has a hydraulically actuated fan air thrust reverser. Reverse thrust is available only on the ground.

The reverse thrust levers can be raised only when the forward thrust levers are in the idle position. An interlock stop limits thrust to idle reverse while the reverser is in transit

The EECs control thrust limits during reverser operation.

When the reverse thrust levers are pulled aft to the interlock position:

- the autothrottle disengages
- · the auto speedbrakes deploy

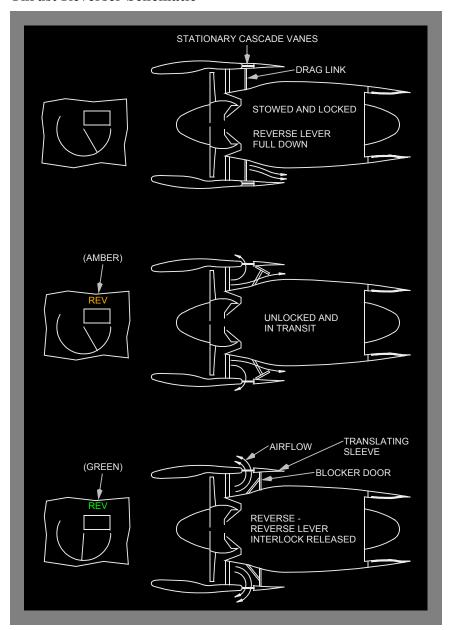
When the reverser system is activated:

- reverser isolation valve opens allowing the reverser translating sleeves to hydraulically move aft
- the fan flow blocker doors rotate into place to direct fan air through stationary cascade guide vanes
- the reverser indication (REV) is displayed above each digital EPR indication (REV is displayed in amber when the reverser is in transit)

When the interlock releases:

- the reverse thrust levers can be raised to the maximum reverse thrust position
- the REV indication changes to green when the reverser is fully deployed

Pushing the reverse thrust levers to the full down position retracts the reversers to the stowed and locked position. While the reverser is in transit, the REV annunciation changes color to amber. The thrust levers cannot be moved forward until the reverse thrust levers are fully down. When the reverser reaches the stowed position, the amber REV annunciation disappears.


Each thrust reverser is automatically protected against unintentional reverse thrust. If an uncommanded thrust reverser movement is sensed, an autostow feature automatically applies hydraulic power to stow the reverser.

The EICAS advisory message L or R REV ISLN VAL is displayed and the REV ISLN light illuminates when a fault exists in the reverser system.

The light and message are inhibited in flight.

An electromechanical lock prevents uncommanded reverser deployment in the event of thrust reverser system failures.

Thrust Reverser Schematic

Airborne Vibration Monitoring System

The airborne vibration monitoring system monitors engine vibration levels. The vibration indications are displayed on the secondary engine display. The vibration source indication is also displayed. If the vibration monitoring system cannot determine the source (N1 or N2), broadband (BB) is displayed for the affected engine. Broadband vibration is the average vibration detected.

Certain engine malfunctions can result in airframe vibrations from the windmilling engine. As the airplane transitions from cruise to landing, there can be multiple, narrow regions of altitudes and airspeeds where the vibration level can become severe. In general, airframe vibrations can best be reduced by descending and reducing airspeed. However, if after descending and reducing airspeed, the existing vibration level is unacceptable, and if it is impractical to further reduce airspeed, the vibration level may be reduced to a previous, lower level by a slight increase in airspeed.

Intentionally Blank

767 Flight Crew Operations Manual

Engines, APU Engine System Description (GE)

Chapter 7
Section 22

Introduction

The airplane is powered by two General Electric CF6-80C2B6F engines. The engines are rated at 60,200 pounds of takeoff thrust each.

The engines are two—rotor axial flow turbofans of high compression and bypass ratio. The N1 rotor consists of the fan, a low pressure compressor and turbine section on a common shaft. The N2 rotor consists of a high pressure compressor and turbine section on a common shaft. The N1 and N2 rotors are mechanically independent. The N2 rotor drives the engine accessory gearbox.

Each engine has individual flight deck controls. Thrust is set by positioning the thrust levers. The thrust levers are positioned automatically by the autothrottle system or manually by the flight crew. See Chapter 11, Flight Management, Navigation, Section 40, for a description of FMC thrust management functions.

Each engine is controlled by an electronic engine controller (EEC). The EECs monitor autothrottle and flight crew inputs through the thrust levers to automatically control the engines.

Engine indications are displayed on the engine indication and crew alerting system (EICAS) display.

Engine Indications

Primary and secondary engine indications are provided. Engine indications are displayed on the EICAS display. In addition, annunciator lights and a liquid crystal standby engine indicator are provided to monitor engine operation.

Primary Engine Indications

N1 and EGT are the primary engine indications. The primary engine indications are always displayed on the upper EICAS display.

Secondary Engine Indications

N2, fuel flow, oil pressure, oil temperature, oil quantity, and engine vibration are secondary engine indications. Secondary engine indications are displayed on the lower EICAS display. The secondary engine indications can be displayed by pushing the Engine Display Switch (the ENGINE switch on the EICAS Control Panel).

The secondary engine indications are automatically displayed when:

- the displays initially receive electrical power, or
- a secondary engine parameter is exceeded.

Normal Display Format

Primary engine indications and the N2 and Fuel Flow indications are digital readouts and round dial/moving pointer indications. The digital readouts display numerical values while the moving pointers indicate relative value.

Oil pressure, oil temperature, oil quantity and vibration indications are both digital readouts and vertical indication/moving pointers. All digital readouts are enclosed by boxes. The dial and vertical indications display the normal operating range, caution range, and operating limits (as applicable).

Normal operating range is displayed on a dial or vertical indication in white.

The oil pressure and oil temperature vertical indications have caution ranges displayed by amber bands. If oil pressure or oil temperature reaches the caution range, the digital readout, digital readout box, and pointer all change color to amber.

N1, EGT, N2, oil pressure, and oil temperature indications have operating limits indicated by red lines. If one of these indications reaches the red line, the digital readout, box, and pointer change color to red for that indication.

The EGT indication has a maximum continuous limit represented by an amber band. If EGT reaches the maximum continuous limit, the digital indication, box, pointer, and dial all change color to amber.

The EGT indication is inhibited from changing to amber during takeoff or go—around for five minutes. The red line limits for these parameters are not inhibited.

The EGT indication has a maximum takeoff limit displayed by a red line. If EGT reaches the maximum takeoff limit, the digital indication, box, pointer and dial, all change color to red.

The maximum N1 limit is indicated by an amber line on the N1 dial. The N1 indication does not change color when maximum N1 is reached. The reference/target N1 indication displays the FMS reference or target N1.

Compact Display Format

In compact format, primary and secondary engine indications are combined on the same display. The N1 and EGT displays are the same as the normal displays. All other indications change to digital readouts only. If an amber or red line parameter for a digital indication is exceeded, the digital indication changes color to amber or red (as does the box that appears around an EGT indication).

Primary and secondary engine indications are displayed on EICAS in compact format whenever a CRT fails.

767 Flight Crew Operations Manual

Engine Secondary Data Cue

A series of blue 'v's are visible on the lower left corner of the upper EICAS CRT any time engine data is displayed on the lower EICAS CRT. If for some reason the engine data is not visible, the Status Display Switch may be used to allow the engine data to come up partially compacted on the upper EICAS CRT display.

N1 RPM

N1 RPM is the primary thrust parameter. Annunciations associated with N1 are:

- Maximum N1
- · Thrust Reference Mode
- Reference/Target N1 Indication
- · Reference N1
- Assumed Temperature
- · Thrust Reverser Indication
- · Command Thrust Level
- · Command Sector

The maximum N1 is the maximum certified thrust limit for all phases of flight and varies with existing ambient conditions. The maximum N1 is indicated by dual amber radials on the periphery of the N1 indicator. This value is acquired from the EEC or the TMC. With the EEC operating normally, the thrust levers can be moved to the forward stop and the engines will not exceed the displayed maximum N1.

The command thrust level is a display of thrust lever position and appears as an extension of the N1 pointer when the engine is stabilized. A change in thrust lever position moves the command thrust level and displays the commanded thrust on the N1 indicator. This allows for precise thrust control.

The command sector is a display of the momentary difference between the command thrust level and actual N1 and appears as a white band on the N1 indicator. As the engine accelerates or decelerates to the command thrust level the command sector is erased. This allows for monitoring of engine acceleration and deceleration.

Thrust reverser indication (REV) is displayed above the N1 indicator when the reverser is activated. The annunciation is amber when the reverser is unlocked or in transit. When the reverser is fully deployed, the annunciation changes color to green and the forward thrust reference displays are inhibited.

767 Flight Crew Operations Manual

Thrust Management Computer (TMC)

The thrust management computer calculates a reference N1 based on existing pressure altitude and ambient temperature data from the air data system for the following modes:

- TO takeoff
- D-TO assumed temperature takeoff
- CLB climb
- CLB 1 climb one
- CLB 2 climb two
- CRZ cruise
- CON continuous
- GA go-around

These modes can be selected with the thrust mode select panel (TMSP). The inner thrust reference set control on the EICAS control panel must be pushed in for the thrust reference modes to be displayed on EICAS. The selected thrust reference mode is displayed above the N1 indicators. The digital reference N1 is displayed adjacent to the mode display. When the N1 bug is green, it is positioned on the N1 scale at the same value as the digital reference N1.

The thrust mode select switches provide the capability of selecting different thrust modes for each phase of flight. The TO/GA switch is used to select takeoff thrust on the ground and go-around thrust inflight.

The assumed temperature for a reduced thrust takeoff can be set by:

- using the assumed temperature selector on the TMSP
- entering the assumed temperature into the CDU TAKEOFF REF page

The 1 and 2 switches are used to select reduced climb thrust. Reduced climb thrust one or two can be preselected in conjunction with takeoff or assumed temperature takeoff thrust prior to takeoff. The CLB switch is used to select climb thrust inflight. If reduced climb thrust one or two was preselected, pushing the climb switch inflight selects CLB 1 or CLB 2.

The CON switch is used to select maximum continuous thrust inflight. The CRZ switch is used to select cruise thrust inflight. The assumed temperature selector or the CDU is used to set assumed temperatures when reduced takeoff thrust is desired.

DO NOT USE FOR FLIGHT Engine System Description (GE)

Engines, APU -

7.22.5

767 Flight Crew Operations Manual

To manually set Reference N1 values the thrust reference set control is pulled out, MAN appears as the thrust mode annunciation and the N1 bug slews to 104%. Manual reference N1 values can then be set by rotating the inner control. The outer control of the thrust reference set control is used to select the desired N1 indicator(s) for manual N1 display. The autothrottles do not respond to manually set reference N1 values. When the inner control is pulled out, the autothrottles remain in the active TMC mode. The TMSP remains operable and the autothrottles respond to TMSP mode changes, but selected thrust reference mode displays are inhibited.

When the AFDS VNAV mode is engaged, the N1 bug may be magenta. When the N1 bug is magenta, it is positioned at a nominal target N1 by the FMC, which may not correlate with the digital reference N1. In VNAV, the FMC controls Thrust mode selection automatically to meet thrust requirements for the active vertical mode of operation. The FMC does not have the capability to select reduced climb thrust values, these values must be selected manually with the 1 or 2 TMSP switches

The thrust reference mode, reference N1 and N1 bug are not displayed when the reversers are fully deployed.

Assumed Temperature Takeoff

The thrust management computer calculates the reference N1 for assumed temperature reduced thrust takeoff. The assumed temperature can be entered manually on the CDU TAKEOFF REF page or selected with the assumed temperature selector on the TMSP. The assumed temperature is displayed above the thrust reference mode

When the assumed temperature selector on the TMSP is initially rotated clockwise, a reference temperature is displayed on EICAS. This temperature also appears on the CDU TAKEOFF REF page as THRUST.

Further clockwise rotation of the selector increases the assumed temperature by 1 degree centigrade per click. The reduced thrust annunciation of D–TO appears when the assumed temperature selected is above ambient. If the ambient temperature is greater than the initially displayed reference temperature, D-TO and reduced thrust occur when the assumed temperature selected exceeds ambient

Counterclockwise rotation of the selector reduces the assumed temperature by one degree centigrade per click.

Engines, APU - Engine System Description (NOT USE FOR FLIGHT

767 Flight Crew Operations Manual

Assumed temperature takeoff thrust is limited to a 25% reduction of takeoff thrust or selected climb thrust, whichever is the greater thrust value. When the limit is reached, further adjustment to the assumed temperature by rotating the assumed temperature selector on the TMSP or changing the value entered in the CDU TAKEOFF REF page does not change the displayed assumed temperature or reference thrust value.

Reduced Climb Thrust

Two levels of reduced climb thrust are available with the 1 and 2 mode switches on the thrust mode select panel. Climb 1 is approximately 90% of climb thrust and climb 2 is approximately 80% of climb thrust. Climb one or two can be preselected in conjunction with the TO, D–TO, CON and CRZ thrust reference modes.

Above 10,000 feet, reduced climb thrust gradually changes to reach full climb thrust by 12,000 feet. The 1 or 2 annunciation disappears from the display by 12,500 feet.

Electronic Engine Control (EEC)

Each EEC has full authority over engine operation. The EEC uses thrust lever inputs to automatically control forward thrust and reverse thrust. The EEC has two control modes: normal and alternate. In normal and alternate modes, the EEC uses N1 RPM as the parameter for setting thrust.

EEC Normal Control Mode

In the normal mode, the EEC sets thrust by controlling N1 based on thrust lever position. N1 is commanded by positioning the thrust levers either automatically with the autothrottles, or manually by the flight crew.

Maximum N1 represents the maximum rated thrust available from the engine. The EEC continuously computes maximum N1.

Maximum rated thrust is available in any phase of flight by moving the thrust levers to the full forward positions.

The EICAS advisory message L or R ENG CONTROL and ENGINE CONTROLS displays when faults are detected in the engine control systems.

DO NOT USE FOR FLIGHT Engine System Description (GE) Engines, APU -

767 Flight Crew Operations Manual

EEC Alternate Mode

If the required signals are not available to operate in the normal mode, the EEC automatically uses the alternate mode. In the alternate mode, the EEC schedules N1 as a function of thrust lever position. The alternate mode provides soft and hard levels of control:

- Soft When the EEC automatically switches an engine to the alternate mode and the EEC mode switch remains in NORM, the EEC is in the soft alternate mode (the switch position is NORM, the EEC mode is alternate). At a fixed thrust lever position, thrust does not change.
- Hard When ALTN is manually selected on an EEC mode switch, that engine is switched to the hard alternate mode (the switch position is ALTN, the EEC mode is alternate). Reference and target N1, and maximum and commanded N1 values are displayed on the N1 indication during the hard alternate mode. Thrust may change to set the commanded N1 when ALTN is manually selected.

For the normal, soft alternate, and hard alternate modes, actual, command, reference/target, maximum, and red line N1 information is displayed.

Automatic reversion or manual selection to the alternate mode is indicated by the EICAS advisory message L or R ENG EEC MODE and illumination of the ALTN light on the associated EEC mode switch. Selecting the alternate mode on both engines eliminates thrust lever stagger at equal thrust settings, or asymmetric thrust when the thrust levers are operated together.

The autothrottles remain engaged whenever the EEC automatically switches to the alternate mode. The alternate mode N1 reference/target values are computed by the TMC.

Note: Autothrottles remains engaged in the soft or hard alternate mode.

The alternate mode schedule (N1 schedule) provides equal or greater thrust than the normal mode for the same thrust lever position.

Thrust protection is not provided in the alternate mode and maximum rated thrust is reached at a thrust lever position less than full forward. As a result, thrust overboost can occur at full forward thrust lever positions. The EICAS caution message L or R ENG LIMIT PROT is displayed if the thrust lever position commands an N1 greater than the maximum rated thrust (maximum N1). N1 and N2 red line protection is still available in the alternate control mode.

Overspeed Protection

The EEC also provides N1 and N2 red line overspeed protection. If N1 or N2 approaches overspeed, the EEC commands reduced fuel flow.

The EICAS advisory message L or R ENG RPM LIM is displayed when N1 or N2 is at the red line limit.

 Copyright © The Boeing Company. See title page for details. 7.22.7 August 19, 2009 D632T001-300

Engines, APU - Engine System Description (NOT USE FOR FLIGHT

767 Flight Crew Operations Manual

The EEC does not provide EGT overtemperature protection.

If engine limit protection is not available, advancing the thrust levers full forward should be considered only during emergency situations when all other available actions have been taken and terrain contact is imminent

Idle Selection

There are two engine idle speeds: minimum idle and approach idle. Minimum idle is a lower thrust than approach idle and selected for ground operation and all phases of flight except approach and landing. Approach idle is selected whenever this higher idle setting is required for proper system operation. The EEC selects these idle speeds automatically.

Rotating the engine start selectors to continuous manually selects approach idle.

The EICAS advisory message L or R ENG LOW IDLE displays to indicate an engine failed to go to approach idle.

The EICAS advisory message IDLE DISAGREE displays to indicate the engines are at different idle settings. Either one engine has failed to go to approach idle when required or one engine has failed to return to minimum idle. Inflight, to ensure that approach idle is available if required, the thrust lever on the engine with the lower RPM should be advanced to match the engine with the higher RPM.

Engine Start and Ignition System

Air from the pneumatic duct is used to power the air driven starter, which is connected to the N2 rotor. The starter air source may be from a ground cart, APU or the other running engine.

The engine start selectors control the start valves. Ignition and fuel flow are controlled through the fuel control switches.

A maximum start limit line (red) is displayed on the EGT indication when the fuel control switch is moved to CUT OFF. It remains displayed after the fuel control switch is moved to RUN until the engine is stabilized at idle. The EGT indication changes color to red if the EGT start limit is reached during starting.

Engine Start

Pushing in and rotating the engine start selector to the GND position, opens the start valve, engages the air driven starter to the N2 rotor and closes the engine bleed air valve if it is open. The VALVE light illuminates and the EICAS advisory message L or R ENG STARTER displays to indicate the start valve failed to open. As N2 rotation accelerates to maximum motoring RPM or 20% N2, the fuel control switch is positioned to RUN. Maximum motoring speed is reached when acceleration is less than approximately 1% in 5 seconds. Minimum N2 for selecting RUN is indicated by a magenta fuel on command bug. The fuel control switch opens the spar and engine fuel valves allowing the fuel to flow to the fuel control unit and activates the selected ignition.

The ignition selector may be used to select SINGLE or BOTH ignitor(s). With the ignition selector in SINGLE, each EEC channel alternates between the two ignitors on each engine.

Normally, only one ignitor is used for ground start while both ignitors are used for inflight starts. At approximately 50% N2, the engine start selector automatically moves to the AUTO position. The starter automatically cuts out and the start valve closes stopping the flow of air to the starter. This allows the engine bleed valve to return to a position that agrees with the engine bleed air switch. If the start valve fails to close automatically, the corresponding valve light will illuminate and the EICAS caution message L or R STARTER CUTOUT will display. The engine start selector must be manually moved to the AUTO or OFF position to terminate starter operation.

Starter Operation

Continuous operation of the starter must be limited in accordance with the following starter duty cycles:

Normal Duty Cycle

Five minutes on, followed by one-half minute off per minute on

Extended Duty Cycle

Two consecutive five minute cycles require a ten minute cooling period before each additional five minute cycles

Re-engagement Speed

- 0% N2 recommended
- 0-20% N2 normal

Re-engagement is not recommended above 20% N2 except in case of fire.

Re-engagement above 30% N2 may result in starter or gearbox damages.

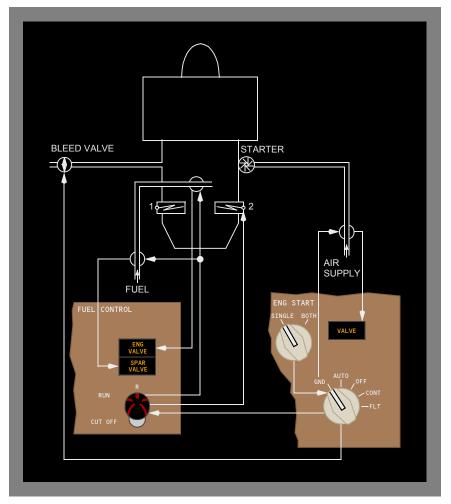
767 Flight Crew Operations Manual

In-Flight Start

Inflight start envelope information is displayed on the EICAS primary display when an engine is not running in flight, the respective engine fire switch is not pulled and both EICAS primary and secondary displays are selected. The inflight start envelope indicates the airspeed range necessary to ensure an inflight start at the current flight level. If the current flight level is above the maximum start altitude, the maximum start altitude and respective airspeed range are displayed.

A crossbleed start indication (X–BLD) appears above the N2 indication and a fuel on command bug is displayed if airspeed is below that recommended for a windmilling start.

Auto Relight


In the air or on the ground, an automatic relight feature is enabled if N2 drops below idle speed. If this occurs, the EEC will energize both ignition systems for the affected engine(s).

Engine Ignition

Each engine has two ignitors. Dual ignitors are always used for inflight starts.

Main AC power is the normal power source for ignition. Standby AC power provides a backup source.

Engine Start and Ignition System Schematic

August 17, 2007 D632T001-300 7.22.11

767 Flight Crew Operations Manual

Engine Fuel System

Fuel is supplied by fuel pumps located in the fuel tanks. The fuel flows through a spar fuel valve located in the main tank. It then passes through the first stage engine fuel pump where additional pressure is added. Final pressure is generated by a second stage fuel pump prior to entering a fuel/oil heat exchanger where it is preheated. A fuel filter removes contaminants. The fuel is then controlled to meet the existing thrust requirements. The fuel then flows through the engine fuel valve and fuel flow meter before entering the engine.

Fuel Metering Unit

The engine fuel control system incorporates a fuel metering unit which operates in conjunction with the EEC. The fuel control system schedules fuel flow to meet engine thrust requirements as dictated by the thrust lever position and the specific engine operating conditions. The EEC controls the metered fuel and prevents engine limits from being exceeded.

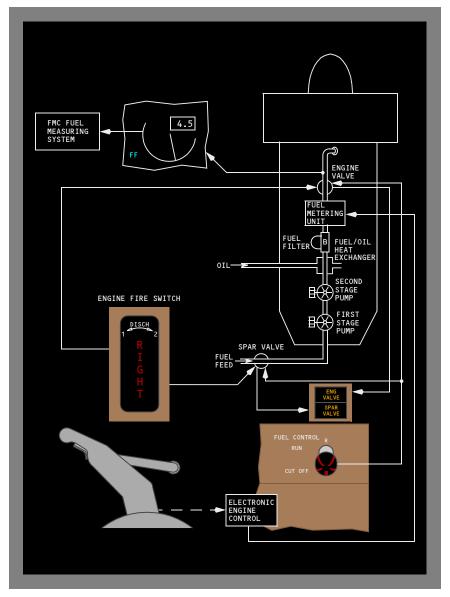
Engine and Spar Valves

The spar and engine fuel valves allow fuel flow to the engine when both valves are open. The valves open when the engine fire switch is IN and the fuel control switch is in the RUN position. Both valves close when either the fuel control switch is in CUT OFF or the engine fire switch is OUT.

The ENG VALVE and SPAR VALVE lights illuminate momentarily as the valves open or close. If the valves do not agree with the fuel control switch or the respective fire switch position after allowing for the normal operating time, the lights remain illuminated and the EICAS advisory message L or R FUEL SPAR VAL or L or R ENG FUEL VAL displays.

Fuel Filter

The fuel is filtered by a filter with bypass capabilities. If the filter becomes clogged with contaminates, fuel will bypass the filter allowing contaminated fuel to enter the fuel control unit.


The EICAS advisory message L or R ENG FUEL FILT displays to indicate the affected engine filter is approaching a level sufficient to cause filter bypass.

Erratic engine operation and flameout may occur due to fuel contamination.

Fuel Flow Measurement

Fuel flow is measured after passing through the engine fuel valve. Fuel flow is displayed on the secondary engine display. Fuel flow information is also provided to the FMS.

Engine Fuel System Schematic

Engine Oil System

The oil system provides pressurized oil to lubricate and cool the engine main bearings, gears and accessory drives. The oil system also provides automatic fuel heating for fuel system icing protection.

Copyright © The Boeing Company. See title page for details.

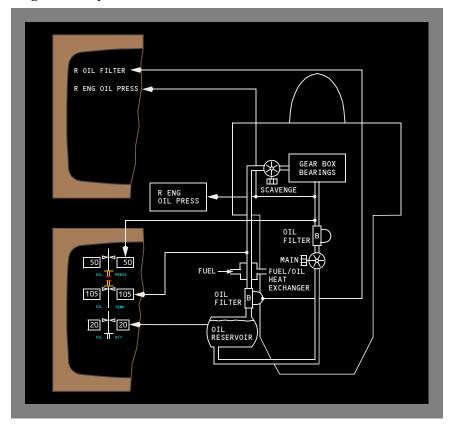
Engines, APU - Engine System Description (NOT USE FOR FLIGHT

767 Flight Crew Operations Manual

Oil is pressurized by a main (engine—driven) oil pump. From the pump, the oil flows through the oil filter where contaminants are removed and then delivered to the engine main bearings, gears, and accessory drives. The oil is returned by means of a scavenge pump.

The oil enters the fuel/oil heat exchanger where fuel is used as the heat sink and then flows through a second filter before returning to the reservoir.

Should an oil filter become saturated with contaminants, oil will automatically bypass the filter. The EICAS advisory message L or R OIL FILTER displays indicating the oil filter is bypassed.


Oil pressure, temperature, and quantity are displayed on the secondary engine display.

Oil pressure is measured prior to entering the engine. The L or R ENG OIL PRESS light illuminates and the EICAS advisory message L or R ENG OIL PRESS displays to indicate the oil pressure is low. When the oil pressure is at or below the variable limits, the EICAS indication changes to amber.

Oil temperature is measured after leaving the scavenge pump, prior to entering the second filter.

There is no minimum oil quantity limit (no amber or red line limit). There are no operating limitations for the engine oil quantity; therefore, there are no flight crew procedures based solely on a response to low oil quantity.

Engine Oil System Schematic

Thrust Reverser System

Each engine has a pneumatically actuated fan air thrust reverser. Reverse thrust is available only on the ground.

The reverse thrust levers can be raised only when the forward thrust levers are in the idle position. An interlock stop limits thrust to idle reverse while the reverser is in transit.

The EECs control thrust limits during reverser operation.

When the reverse thrust levers are pulled aft to the interlock position:

- the autothrottle disengages
- the auto speedbrakes deploy

Copyright © The Boeing Company. See title page for details.

Engines, APU Engine System Description (NOT USE FOR FLIGHT

767 Flight Crew Operations Manual

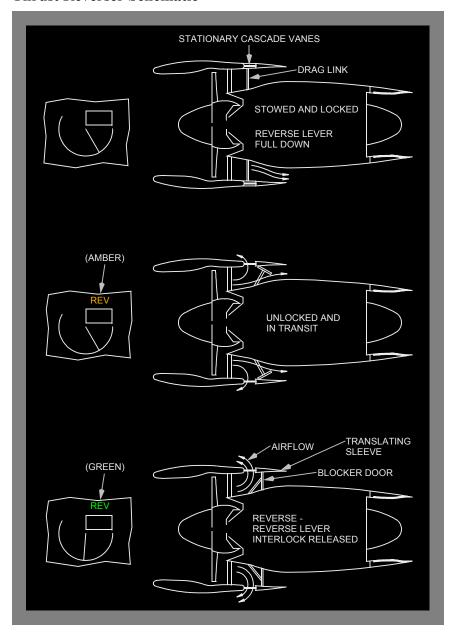
When the reverser system is activated:

- reverser isolation valve opens allowing the reverser translating sleeves to pneumatically move aft
- the fan flow blocker doors rotate into place to direct fan air through stationary cascade guide vanes
- the reverser indication (REV) is displayed above each digital N1 indication (REV is displayed in amber when the reverser is in transit)

When the interlock releases:

- the reverse thrust levers can be raised to the maximum reverse thrust position
- the REV indication changes to green when the reverser is fully deployed

Pushing the reverse thrust levers to the full down position retracts the reversers to the stowed and locked position. While the reverser is in transit, the REV annunciation changes color to amber. The thrust levers cannot be moved forward until the reverse thrust levers are fully down. When the reverser reaches the stowed position, the amber REV annunciation disappears.


Each thrust reverser is automatically protected against unintentional reverse thrust. If an uncommanded thrust reverser movement is sensed, an autostow feature automatically applies pneumatic pressure to stow the reverser.

The EICAS advisory message L or R REV ISLN VAL is displayed and the REV ISLN light illuminates when a fault exists in the reverser system.

The light and message are inhibited in flight.

An electromechanical lock prevents uncommanded reverser deployment in the event of additional system failures.

Thrust Reverser Schematic

August 17, 2007 D632T001-300 7.22.17

767 Flight Crew Operations Manual

Airborne Vibration Monitoring System

The airborne vibration monitoring system monitors engine vibration levels. The vibration indications are displayed on the secondary engine display. The vibration source indication is also displayed. If the vibration monitoring system cannot determine the source (FAN, LPT or N2), broadband (BB) is displayed for the affected engine. Broadband vibration is the average vibration detected.

Certain engine malfunctions can result in airframe vibrations from the windmilling engine. As the airplane transitions from cruise to landing, there can be multiple, narrow regions of altitudes and airspeeds where the vibration level can become severe. In general, airframe vibrations can best be reduced by descending and reducing airspeed. However, if after descending and reducing airspeed, the existing vibration level is unacceptable, and if it is impractical to further reduce airspeed, the vibration level may be reduced to a previous, lower level by a slight increase in airspeed.

767 Flight Crew Operations Manual

Engines, APU APU System Description

Chapter 7
Section 30

Introduction

The auxiliary power unit (APU) is a self–contained gas turbine engine located in the airplane tail cone. The APU air inlet door is located between the horizontal and vertical stabilizers on the right side of the airplane.

While the primary purpose of the APU is to supply electrical power and bleed air on the ground before engine start, the APU can also be started inflight, and operated up to the airplane maximum certified altitude.

Electrical power has priority over bleed air. Electrical power is available throughout the airplane operating envelope. Inflight, APU bleed air is available up to approximately 17,000 feet.

Refer to the following chapters for additional information:

- Chapter 2, Air Systems, for a description of APU bleed air operation
- Chapter 6, Electrical, for a description of APU electrical operation
- Chapter 8, Fire Protection, for a description of the APU fire protection system
- Chapter 12, Fuel, for a description of the APU fuel system

APU Operation

APU Start

APU start requires both the APU battery and the aircraft main battery.

Fuel for the APU is supplied from the left manifold. A dedicated DC fuel pump is energized when the APU Selector is placed in the ON position if no AC power is available. When AC power is available, the left forward AC fuel pump is signaled to operate regardless of its switch position, and the DC fuel pump is signaled off.

Rotating the APU selector to START begins the automatic start sequence. The APU fuel valve opens and at the same time the APU inlet door begins to open. A fuel pump also begins to operate.

When the inlet door is open, the electric starter engages. After the APU reaches the proper speed, ignition and fuel are provided, and the APU accelerates to its normal operating speed.

The starter duty cycle is a maximum of three consecutive starts or attempts within a sixty minute period.

767 Flight Crew Operations Manual

APU Run

When the APU RUN light illuminates, the APU may be used to supply electrical power and bleed air.

APU Shutdown

To protect the unit from thermal shock, the APU control system incorporates a time-delay feature permitting APU cooling before shutdown. If the APU is supplying pneumatic power, rotating the APU selector to OFF begins the shutdown cycle by closing the APU bleed air valve. If the APU bleed valve has been closed for a sufficient length of time when the selector is moved to OFF, the APU shuts down without delay.

If the selector is inadvertently moved to OFF, but the RUN light is still illuminated, momentarily moving the selector to START cancels the shutdown signal.

Protection System

On the ground, placing the Battery Switch OFF also results in an APU shutdown. This is not a recommended procedure however, because while the APU will go through a cooldown cycle, APU fire detection may not be available. In flight, Battery Switch position does not affect APU operation.

An amber FAULT light on the APU control panel illuminates whenever a fault is sensed. In addition, an EICAS advisory message APU FAULT is displayed, and the APU shuts down immediately. Fault detection circuitry is reset by positioning the APU Selector to OFF.

The FAULT light also comes on when the APU fuel valve is not in the commanded position. Therefore, during APU start and shutdown, the light illuminates momentarily. The EICAS advisory APU FUEL VAL appears if the valve fails to reach the commanded position.

With the APU Selector positioned to OFF, both the APU FAULT light and the associated APU FAULT EICAS message are inhibited. Only a failure of the APU fuel valve to close causes the APU FAULT light and the associated APU FUEL VAL message.

767 Flight Crew Operations Manual

Engines, APU EICAS Messages (PW)

Chapter 7
Section 41

Engines, APU EICAS Messages

The following EICAS messages can be displayed.

APU

Message	Level	Light	Aural	Condition
APU FAULT	Advisory	FAULT		The APU has automatically shut down
APU FUEL VAL	Advisory	FAULT		The APU fuel valve position disagrees with the commanded position

Engine

Control

Message	Level	Light	Aural	Condition
L ENG CONTROL	Advisory			Faults are detected in the
R ENG CONTROL				engine control system
L ENG EEC MODE	Advisory	ALTN		The electronic engine control
R ENG EEC MODE				is not receiving adequate inputs and an alternate N1
				control mode is being used by
				the EEC to control thrust
L ENG LIM PROT	Caution	ALTN	Beeper	The electronic engine control
R ENG LIM PROT				is operating in the ALTN control mode and the
				commanded N1 exceeds
				maximum N1
L ENG LOW IDLE	Advisory			An engine has failed to go to
R ENG LOW IDLE				approach idle
L ENG RPM LIM	Advisory			N1 or N2 RPM is at the red
R ENG RPM LIM				line limit
L ENG	Caution			Engine was shutdown by the
SHUTDOWN				fuel control switch or fire switch
R ENG SHUTDOWN				SWILCII
SHOIDOWN				

Copyright © The Boeing Company. See title page for details.

767 Flight Crew Operations Manual

Message	Level	Light	Aural	Condition
IDLE DISAGREE	Advisory			The engines are at different idle settings

Fuel

Message	Level	Light	Aural	Condition
L ENG FUEL FILT R ENG FUEL FILT	Advisory			An impending fuel filter bypass condition exists on the affected engine
L ENG FUEL VAL R ENG FUEL VAL	Advisory	ENG VALVE		The engine fuel valve position disagrees with commanded position
L FUEL SPAR VAL R FUEL SPAR VAL	Advisory	SPAR VALVE		The fuel spar valve position disagrees with commanded position

Oil

Message	Level	Light	Aural	Condition
L ENG OIL PRESS R ENG OIL PRESS	Advisory	L ENG OIL PRESS R ENG OIL PRESS		Engine oil pressure is low
L OIL FILTER R OIL FILTER	Advisory			Affected engine oil filter contamination has been detected

Start

Message	Level	Light	Aural	Condition
L ENG STARTER R ENG STARTER	Advisory	VALVE		Engine starter valve is not in the commanded position
L STARTER CUTOUT	Caution	VALVE	Beeper	The engine start valve is open when commanded closed
R STARTER CUTOUT				

Engines, APU -EICAS Messages (PW)

767 Flight Crew Operations Manual

Thrust Reverser

Message	Level	Light	Aural	Condition
L REV ISLN VAL	Advisory	REV ISLN		Fault is detected in the affected engine reverser
				system

767 Flight Crew Operations Manual

Intentionally Blank

767 Flight Crew Operations Manual

Engines, APU EICAS Messages (GE)

Chapter 7
Section 42

Engines, APU EICAS Messages

The following EICAS messages can be displayed.

APU

Message	Level	Light	Aural	Condition
APU FAULT	Advisory	FAULT		The APU has automatically shut down
APU FUEL VAL	Advisory	FAULT		The APU fuel valve position disagrees with the commanded position

Engine

Control

Message	Level	Light	Aural	Condition
L ENG CONTROL	Advisory			Faults are detected in the
R ENG CONTROL				engine control system
L ENG EEC MODE	Advisory	ALTN		The electronic engine control is not receiving
R ENG EEC MODE				adequate inputs and an alternate N1 control mode is being used by the EEC to control thrust
L ENG LIM PROT	Caution	ALTN	Beeper	The electronic engine
R ENG LIM PROT				control is operating in the ALTN control mode and the throttles are advanced into the overboost range
L ENG LOW IDLE	Advisory			An engine has failed to go
R ENG LOW IDLE				to approach idle
L ENG RPM LIM	Advisory			N1 or N2 RPM is at the red
R ENG RPM LIM				line limit
L ENG SHUTDOWN	Caution			Engine was shutdown by the fuel control switch or
R ENG SHUTDOWN				fire switch

Copyright © The Boeing Company. See title page for details.

767 Flight Crew Operations Manual

Message	Level	Light	Aural	Condition
IDLE DISAGREE	Advisory			The engines are at different idle settings

Fuel

Message	Level	Light	Aural	Condition
L ENG FUEL FILT R ENG FUEL FILT	Advisory			An impending fuel filter bypass condition exists on the affected engine
L ENG FUEL VAL R ENG FUEL VAL	Advisory	ENG VALVE		The engine fuel valve position disagrees with commanded position
L FUEL SPAR VAL R FUEL SPAR VAL	Advisory	SPAR VALVE		The fuel spar valve position disagrees with commanded position

Oil

Message	Level	Light	Aural	Condition
L ENG OIL PRESS R ENG OIL PRESS	Advisory	L ENG OIL PRESS R ENG OIL PRESS		Engine oil pressure is low
L OIL FILTER R OIL FILTER	Advisory			Affected engine oil filter contamination has been detected

Start

Message	Level	Light	Aural	Condition
L ENG STARTER R ENG STARTER	Advisory	VALVE		Engine starter valve is not in the commanded position
L STARTER CUTOUT	Caution	VALVE	Beeper	The engine start valve is open when commanded closed
R STARTER CUTOUT				

Engines, APU -EICAS Messages (GE)

767 Flight Crew Operations Manual

Thrust Reverser

Message	Level	Light	Aural	Condition
L REV ISLN VAL R REV ISLN VAL	Advisory	REV ISLN		Fault is detected in the affected engine reverser system

767 Flight Crew Operations Manual

Intentionally Blank

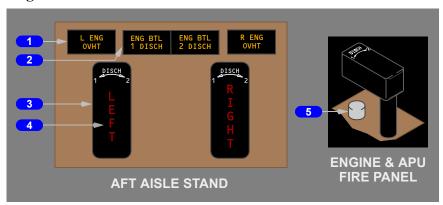
767 Flight Crew Operations Manual

Fire Protection Table of Contents	Chapter 8 Section 0
Controls and Indicators	8.10
Engine Fire Protection	8.10.1
Engine Fire Panel	8.10.1
Fuel Control Switches	8.10.2
Fire Warning Light	8.10.2
Cargo and APU Fire Protection	8.10.2
Cargo and APU Fire Panel	8.10.2
Wheel Well Fire Light	8.10.4
APU Ground Control Fire Protection Panel	8.10.4
Fire/Overheat Test Panel	8.10.6
System Description	8.20
Introduction	8.20.1
Engine Fire Protection	8.20.1
Engine Fire and Overheat Detection	8.20.1
Engine Fire Warning	8.20.1
Engine Overheat Caution	8.20.2
Engine Fire Extinguishing	8.20.2
Engine/APU Fire and Override Switches	8.20.2
APU Fire Protection	8.20.3
APU Fire Detection	8.20.3
APU Fire Warning	8.20.3
APU Fire Extinguishing	8.20.3
Main Gear Wheel Well Fire Protection	8.20.4
Main Gear Wheel Well Fire Detection	8.20.4
Main Gear Wheel Well Fire Warning	8.20.4
Cargo Compartment Fire Protection	8.20.4
Cargo Compartment Smoke Detection	8.20.4
Cargo Compartment Fire Warning	8.20.5
Cargo Compartment Fire Extinguishing	8.20.5

Fire Protection -Table of Contents

DO NOT USE FOR FLIGHT

767 Flight Crew Operations Manual


Lavatory Fire Protection	8.20.5
Lavatory Fire Detection and Annunciation	8.20.5
Lavatory Fire Extinguishing	8.20.6
Fire and Overheat Detection System Fault Test	8.20.6
System EICAS Messages	8.30
Fire Protection EICAS Messages	8.30.1

767 Flight Crew Operations Manual

Fire Protection Chapter 8 Controls and Indicators Section 10

Engine Fire Protection

Engine Fire Panel

1 Engine Overheat (L/R ENG OVHT) Lights

Illuminated (amber) – engine overheat is detected

2 Engine Bottle Discharged (ENG BTL DISCH) Lights

Illuminated (amber) – the extinguisher bottle is discharged or has low pressure

3 Engine Fire Switches

In – normal position, mechanically locked; unlocks automatically for fire warning

Out – closes the associated engine and spar fuel valves, and

- closes the associated engine bleed air valves
- trips the associated engine generator off
- shuts off hydraulic fluid to the associated engine-driven hydraulic pump
- arms both engine fire extinguisher bottles

Rotate to position 1 or 2 – discharges the selected fire extinguisher into the engine nacelle

4 Engine Fire Warning Lights

Illuminated (red) – an engine fire is detected

5 Engine and APU Fire Override Switches

Push – unlocks the respective engine or APU fire switch

August 17, 2007 D632T001-300 8.10.1

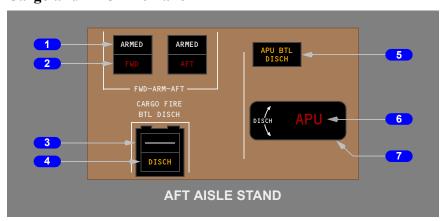
767 Flight Crew Operations Manual

Fuel Control Switches

1 FUEL CONTROL Switch Fire Warning Lights

Illuminated (red) – an associated engine fire is detected

Fire Warning Light



FIRE Warning Light

Illuminated (red) - an engine, APU, wheel well, or cargo fire is detected

Cargo and APU Fire Protection

Cargo and APU Fire Panel

767 Flight Crew Operations Manual

1 CARGO FIRE ARM Switches and Lights

Push FWD ARMED - Light Illuminates

- arms all cargo fire extinguisher bottles
- turns off both recirculation fans

Push AFT ARMED – Light Illuminates

- arms all cargo fire extinguisher bottles
- turns off both the recirculation fans
- inhibits high flow operation of both packs

Off – normal position

2 CARGO FIRE Warning Lights (FWD or AFT)

Illuminated (red) – smoke is detected in associated cargo compartment

3 CARGO FIRE Bottle Discharge (BTL DISCH) Switch

Push – discharges the fire extinguisher bottles into the ARMED cargo compartment

4 CARGO FIRE Bottle Discharged (DISCH) Light

Illuminated (amber) – either extinguisher bottle has discharged or has low pressure

5 APU Fire Bottle Discharged (APU BTL DISCH) Light

Illuminated (amber) – the extinguisher bottle is discharged or has low pressure

6 APU Fire Warning Light

Illuminated (red) – an APU fire is detected

7 APU Fire Switch

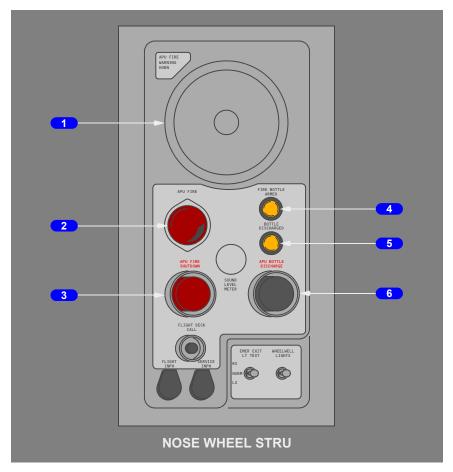
In – normal position, mechanically locked; unlocks automatically if fire warning occurs

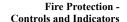
Out – closes the APU fuel valve, and:

- trips the APU generator off
- closes the APU air supply valve
- shuts down the APU
- arms the APU fire extinguisher bottle

Rotate – either direction discharges the APU fire extinguisher into the APU compartment

767 Flight Crew Operations Manual


Wheel Well Fire Light



1 Wheel (WHL) WELL FIRE Warning Light

Illuminated (red) – a fire is detected in one or both of the main gear wheel wells

APU Ground Control Fire Protection Panel

767 Flight Crew Operations Manual

1 APU Fire Warning Horn

Sounds intermittently during ground operation for an APU fire

2 APU FIRE Light

Illuminated (red) – an APU fire is detected

The APU automatically shuts down for a detected fire

3 APU FIRE SHUTDOWN Switch

Push -

- closes the APU fuel valve and trips the APU generator off
- closes the APU air supply valve and shuts down the APU
- arms the APU fire extinguisher bottle

4 APU FIRE BOTTLE ARMED Light

Illuminated (amber) - the APU fire extinguisher is armed

5 APU Fire BOTTLE DISCHARGED Light

Illuminated (amber) - the APU fire extinguisher bottle is discharged or has low pressure

6 APU BOTTLE DISCHARGE Switch

Push – discharges the APU fire extinguisher bottle into the APU compartment

767 Flight Crew Operations Manual

Fire/Overheat Test Panel

1 Wheel (WHL) WELL Fire Test Switch

Push and hold – initiates a wheel well fire test

2 System Fail (FAIL P – RESET) Light

Illuminated (amber) – indicates the failure of the detectors in one of the following systems:

- · engine fire
- · engine overheat
- APU fire
- · cargo fire

3 System Fail (SYS FAIL) Reset Switch (FAIL P – RESET)

Push – extinguishes the FAIL light and resets the monitor for other systems

4 ENG/APU/CARGO Test Switch

Push and hold – initiates an engine, APU, and cargo fire/overheat test

767 Flight Crew Operations Manual

Fire Protection System Description

Chapter 8
Section 20

Introduction

There are fire detection and extinguishing systems for the:

- engines
- APU
- forward and aft cargo compartments
- lavatories

The main gear wheel wells have a fire detection system, but no fire extinguishing system. The system will not detect hot brakes alone, without an associated fire.

Overheat detection systems are installed for both engines, struts, and pneumatic ducts in the wing and body areas.

Refer to Chapter 2, Air Systems, for a description of equipment smoke evacuation, equipment overheat detection and bleed air duct leak.

Engine Fire Protection

Engine fire protection consists of these systems:

- · engine fire and overheat detection
- · engine fire warning
- engine overheat caution
- · engine fire extinguishing

Engine Fire and Overheat Detection

There are detector loops in each engine nacelle to provide both fire and overheat detection. The SYS FAIL light illuminates and the EICAS advisory message FIRE/OVHT SYS displays to indicate failure of the fire/overheat detection system. The SYS FAIL light and advisory message can be reset to allow monitoring of the remaining systems.

Engine Fire Warning

The indications of an engine fire warning are:

- the fire bell sounds
- the master WARNING lights illuminate
- the engine fire switch LEFT or RIGHT fire warning light illuminates
- the discrete FIRE warning light illuminates
- the engine FUEL CONTROL switch fire warning light illuminates
- the EICAS warning message L or R ENGINE FIRE displays
- the engine fire switch unlocks

767 Flight Crew Operations Manual

The fire warning lights remain illuminated as long as the fire signal exists. The fire bell may be silenced by any of the following actions:

- · extinguishing the fire
- · pushing either master warning/caution reset switch
- pulling the appropriate fire switch

Engine Overheat Caution

The indications of an engine overheat caution are:

- the caution beeper sounds
- the master CAUTION lights illuminate
- the L or R ENG OVHT light illuminates
- the EICAS caution message L or R ENG OVHT displays

The overheat lights remain illuminated as long as the overheat condition exists.

Engine Fire Extinguishing

There are two engine fire extinguisher bottles. Either or both bottles can be discharged into either engine.

When an engine fire switch is pulled out, the associated engine:

- · fuel is shut off
- · bleed valves are closed
- generator is tripped off
- · hydraulic fluid is shut off to the engine-driven hydraulic pump
- · fire extinguishing bottles are armed

Rotating the fire switch in either direction discharges a single extinguisher bottle into the associated engine. Rotating the engine fire switch in the other direction discharges the second extinguisher bottle into the same engine.

If an extinguisher bottle is discharged or has low pressure:

- the ENG BTL 1 or 2 DISCH light illuminates
- the EICAS advisory message ENG BTL 1 or 2 displays

Engine/APU Fire and Override Switches

The engine and APU fire switches are mechanically locked in the down position to avoid inadvertent activation. When a fire is detected, the respective switch is electrically unlocked and may then be pulled out. Manual unlocking of the switch is accomplished by pushing the fire override switch located beneath the fire switch.

APU Fire Protection

APU fire protection consists of these systems:

- · APU fire detection
- · APU fire warning
- · APU fire extinguishing

APU Fire Detection

There are fire detector loops in the APU compartment. There is no APU overheat detection. The SYS FAIL light illuminates and the EICAS advisory message FIRE/OVHT SYS displays to indicate failure of the APU fire detection system. The SYS FAIL light and advisory message can be reset to allow monitoring of the remaining systems.

APU Fire Warning

The indications of an APU fire warning are:

- the fire bell sounds
- the master WARNING lights illuminate
- the APU fire warning light illuminates
- the discrete FIRE warning light illuminates
- the EICAS warning message APU FIRE displays
- the APU automatically shuts down
- · the APU fire switch unlocks

In addition to the above APU fire warnings, if the airplane is on the ground the horn on the nose gear strut sounds and the fire warning light on the APU ground control panel illuminates.

The fire warning lights remain illuminated as long as the fire signal exists. The fire bell (and horn if APU fire on the ground) may be silenced by any of the following actions:

- extinguishing the fire
- pushing either master warning/caution reset switch
- pulling the APU fire switch
- pushing the APU fire shutdown switch if on the ground

APU Fire Extinguishing

Option - One APU Fire Extinguishing Bottle

There is one APU fire extinguisher bottle. When the APU fire switch is pulled out, the APU:

- · fuel is shut off
- · bleed air valve is closed

767 Flight Crew Operations Manual

- generator is tripped off
- · fire extinguishing bottle is armed

Rotating the switch in either direction discharges the extinguisher bottle into the APU compartment. When the bottle is discharged or has low pressure:

- · the APU BTL DISCH light illuminates
- the EICAS advisory message APU BTL displays

Main Gear Wheel Well Fire Protection

The main gear wheel well has fire detection and warning only. There is no fire extinguishing system. The nose gear wheel well does not have a fire detection system.

Main Gear Wheel Well Fire Detection

The main wheel well fire detection system consists of a single fire detection loop.

Main Gear Wheel Well Fire Warning

The indications for a main wheel well fire are:

- the fire bell sounds
- the master WARNING lights illuminate
- the WHL WELL FIRE warning light illuminates
- the discrete FIRE warning light illuminates
- the EICAS warning message WHEEL WELL FIRE displays

The fire warning lights remain illuminated as long as the fire signal exists. The fire bell may be silenced by any of the following actions:

- extinguishing the fire
- · pushing either master warning/caution reset switch

Cargo Compartment Fire Protection

Cargo compartment fire protection consists of these systems:

- · cargo compartment smoke detection
- · cargo compartment fire warning
- · cargo compartment fire extinguishing

Cargo Compartment Smoke Detection

The forward and aft cargo compartments each have smoke detectors installed

The SYS FAIL light illuminates and the EICAS advisory message FIRE/OVHT SYS displays to indicate failure of the cargo compartment smoke detection system. The SYS FAIL light can be reset to allow monitoring of the remaining systems.

Cargo Compartment Fire Warning

The indications of a cargo compartment fire are:

- the fire bell sounds
- · the master WARNING lights illuminate
- the FWD or AFT cargo fire warning light illuminates
- the discrete FIRE warning light illuminates
- the EICAS warning message FWD or AFT CARGO FIRE displays

The fire warning lights remain illuminated as long as the fire signal exists. The fire bell may be silenced by any of the following actions:

- extinguishing the fire and clearing the smoke
- pushing either master warning/caution reset switch
- pushing the illuminated cargo compartment ARMED switch

Cargo Compartment Fire Extinguishing

Fire extinguisher bottles are installed for cargo compartment fire extinguishing. Pushing the FWD or AFT cargo compartment ARMED switch arms the extinguishers for that compartment.

Pushing the cargo fire bottle discharge switch initiates discharge of the fire bottles. The first bottle discharges immediately into the selected compartment. The CARGO BTL 1 advisory message is displayed on EICAS within a few seconds after pressing the cargo fire bottle DISCH switch. The second fire bottle discharges at a later time or at a reduced flow rate into the selected compartment. The CARGO BTL 2 advisory messages is displayed on EICAS within a few seconds after the bottle starts to discharge. The DISCH light illuminates when either bottle discharges.

Lavatory Fire Protection

Lavatory fire protection consists of these systems:

- · lavatory fire detection and annunciation
- automatic fire extinguishing in the lavatory waste container cabinet

Lavatory Fire Detection and Annunciation

Each lavatory has a single smoke detector. When smoke is detected, aural annunciations sound in the lavatory and in the cabin. Depending on configuration, cabin lavatory smoke detection annunciation will consist of a horn, a chime, a flashing lavatory call light or illumination of the master call light at the associated flight attendant station.

There is no cockpit annunciation of smoke detected in a lavatory.

767 Flight Crew Operations Manual

Lavatory Fire Extinguishing

Each lavatory has a fire extinguisher located in the waste container cabinet, with:

- automatic fire extinguisher operation
- no cockpit annunciations of lavatory fire extinguisher operations

Fire and Overheat Detection System Fault Test

Automatic testing of the engine fire and overheat detectors, APU fire detectors and cargo compartment smoke detectors occurs when electrical power is initially applied. The FIRE/OVHT test panel permits manual testing of the various fire and overheat sensors.

767 Flight Crew Operations Manual

Fire Protection System EICAS Messages

Chapter 8
Section 30

Fire Protection EICAS Messages

The following EICAS messages can be displayed.

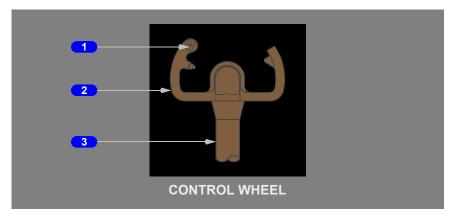
Message	Level	Light	Aural	Condition
APU BTL	Advisory	APU BTL DISCH		APU fire extinguisher bottle pressure is low
APU FIRE	Warning	APU	Fire Bell	Fire is detected in the APU
CARGO BTL 1 CARGO BTL 2	Advisory	DISCH		Cargo fire extinguisher bottle 1 or bottle 2 pressure is low
AFT CARGO FIRE FWD CARGO FIRE	Warning	AFT FWD	Fire Bell	Smoke is detected in the affected cargo compartment
ENG BTL 1 ENG BTL 2	Advisory	ENG BTL 1 DISCH ENG BTL 2 DISCH		Engine fire extinguisher bottle 1 or bottle 2 pressure is low
L ENGINE FIRE R ENGINE FIRE	Warning	LEFT RIGHT	Fire Bell	Fire is detected in the engine
L ENG OVHT R ENG OVHT	Caution	L ENG OVHT R ENG OVHT	Beeper	An overheat is detected in the engine
FIRE/OVHT SYS	Advisory	FAIL P-RESET		Fire or overheat detection is inoperative for loops as shown on the status page
WHEEL WELL FIRE	Warning	WHL WELL FIRE	Fire Bell	Fire is detected in a main wheel well

767 Flight Crew Operations Manual

Intentionally Blank

767 Flight Crew Operations Manual	
Flight Controls	Chapter 9
Table of Contents	Section 0
Controls and Indicators	9.10
Pitch and Stabilizer Trim System	9.10.1
Control Wheel and Column	9.10.1
Stabilizer Trim System	9.10.2
Stabilizer Trim Lights	9.10.3
Aileron and Rudder Trim Controls	9.10.3
Aileron Trim Indicator	9.10.3
Aileron and Rudder Trim	9.10.4
Rudder System	9.10.4
Rudder/Brake Pedals	9.10.4
EICAS Status Display	
Yaw Damper Switches	
Rudder System Light	
Flight Control Shutoff Switches	
Speedbrakes	
Speedbrake Lever	
Speedbrake and Aileron Lights	
Flap System	
Flap Controls	
Flap Position Indicator/Alternate Flaps Selector	9.10.10
System Description	9.20
Introduction	9.20.1
Pilot Controls	9.20.1
Flight Control Surfaces	9.20.2
Flight Control Surface Locations	9.20.2
Pitch Control	9.20.2
Elevator	
Actuator Control Hydraulic Power Distribution	9.20.4
Stabilizer Trim Control	9.20.5
Electric Trim	9.20.5

Alternate Trim	9.20.5
Automatic Trim	9.20.5
Non-normal Operation	9.20.5
Pitch Enhancement System (PES)	9.20.6
Roll Control	9.20.6
Ailerons	9.20.6
Yaw Control	9.20.7
Rudder	9.20.7
Rudder Ratio	9.20.7
Yaw Damping	9.20.8
Spoilers	9.20.8
Spoiler Speedbrake Operation	9.20.8
Flaps and Slats	9.20.9
Flap and Slat Sequencing	9.20.9
Flap Load Relief	9.20.10
Flap/Slat Non–Normal Operation	9.20.10
Alternate Flap Operation	9.20.10
Leading Edge Disagreement	9.20.10
Leading Edge Asymmetry	9.20.11
Trailing Edge Disagreement	9.20.11
Trailing Edge Asymmetry	9.20.11
Load Relief Inoperative	9.20.11
Hydraulic Driven Generator	9.20.11
EICAS Messages	9.30
Flight Controls EICAS Messages	9.30.1


767 Flight Crew Operations Manual

Flight Controls Controls and Indicators

Chapter 9
Section 10

Pitch and Stabilizer Trim System

Control Wheel and Column

Pitch Trim Switches

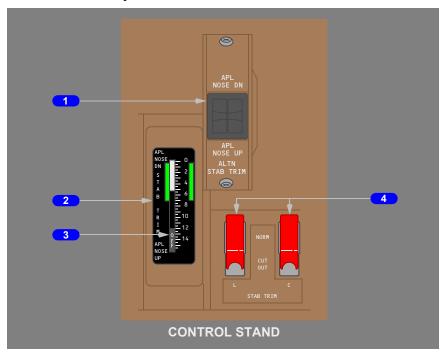
Spring-loaded to neutral.

Push (both switches) – electrically signals stabilizer movement.

Control Wheel

Rotate – deflects the ailerons and spoilers in the desired direction.

Moves and remains displaced with aileron trim.


3 Control Column

Push/Pull -

- · deflects the elevator
- · movement opposing stabilizer trim stops trimming

767 Flight Crew Operations Manual

Stabilizer Trim System

1 Alternate Stabilizer Trim (ALTN STAB TRIM) Switches

Spring-loaded to neutral.

Push (both switches) -

- · electrically signals stabilizer movement
- neutralizes conflicting trim commands

2 Stabilizer Trim (STAB TRIM) Indicator

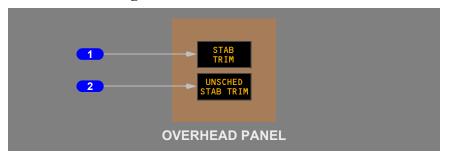
- indicates stabilizer position in units of trim
- the green bands indicate the allowable takeoff trim range

3 Stabilizer Trim OFF Flag

Trim indicator inoperative.

4 Stabilizer (STAB) Cutout Switches

NORM – hydraulic power is supplied to the related stabilizer trim control module.


CUTOUT – shuts off the respective left or center hydraulic system power to the related stabilizer trim control module.

9.10.3

767 Flight Crew Operations Manual

Stabilizer Trim Lights

1 Stabilizer Trim (STAB TRIM) Light

Illuminated (amber) – stabilizer trim rate is one—half the normal control wheel stabilizer trim switch rate.

2 Unscheduled Stabilizer Trim (UNSCHED STAB TRIM) Light

Illuminated (amber) – uncommanded stabilizer motion detected.

Aileron and Rudder Trim Controls

Aileron Trim Indicator

1 AILERON TRIM Indicator

Indicates units of aileron trim.

767 Flight Crew Operations Manual

Aileron and Rudder Trim

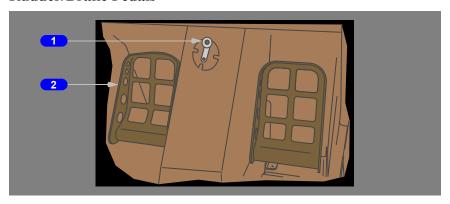
RUDDER TRIM Indicator

Indicates units of rudder trim.

2 AILERON Trim Switches

Spring-loaded to neutral.

Push (both switches) – moves the control wheel, ailerons, and spoilers in the desired direction


3 RUDDER Trim Control

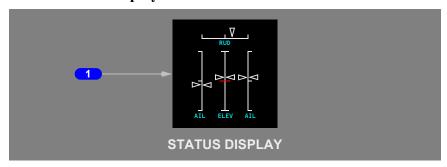
Spring-loaded to neutral.

Rotate – moves the rudder pedals and rudder in the desired direction.

Rudder System

Rudder/Brake Pedals

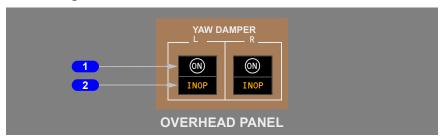
1 Rudder Pedals Adjustment Crank


Pull and Rotate – adjusts rudder pedals forward or aft.

2 Rudder Pedals

Push – deflects the rudder in the desired direction.

Refer to Chapter 14, Landing Gear, for brakes and nosewheel steering description.


EICAS Status Display

1 Rudder, Aileron, and Elevator (RUD, AIL, ELEV) Position

Indicates rudder, aileron, and elevator flight control surface deflection.

Yaw Damper Switches

1 YAW DAMPER Switches

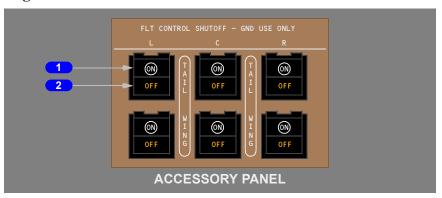
ON - yaw damper is commanded on.

Off (ON not visible) – the yaw damper is commanded off.

2 Yaw Damper Inoperative (INOP) Lights

Illuminated (amber) – the yaw damper is off or inoperative.

767 Flight Crew Operations Manual


Rudder System Light

1 RUDDER RATIO Light

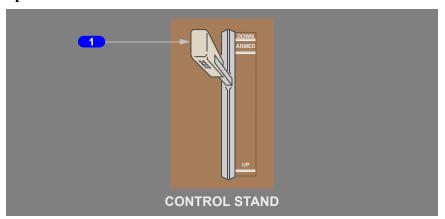
Illuminated (amber) – the rudder ratio system is failed.

Flight Control Shutoff Switches

1 Flight (FLT) CONTROL SHUTOFF Switches

ON – the flight control valve is commanded open.

Off (ON not visible) – the flight control valve is commanded closed.


Plight Control Shutoff OFF Lights

Illuminated (amber) – the flight control valve is closed.

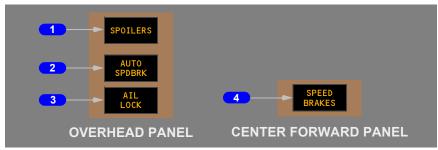
Speedbrakes

Speedbrake Lever

SPEEDBRAKE LEVER

DOWN (detent) – all spoiler panels are retracted.

ARMED -


- the auto speedbrake system is armed
- after landing, the speedbrake lever automatically moves to UP and the spoiler panels extend

UP – the required spoiler panels extend to their maximum in–flight or on–ground positions (intermediate positions can be selected).

On the ground:

- speedbrake lever moves to DOWN and all spoiler panels retract if either thrust lever is advanced to the takeoff thrust position
- the speedbrake lever moves to UP and all spoiler panels extend if either reverse thrust lever is raised to the reverse idle detent

Speedbrake and Aileron Lights

767 Flight Crew Operations Manual

1 SPOILERS Light

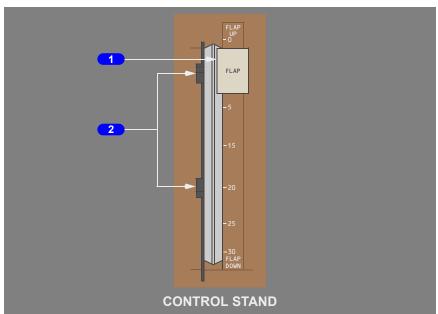
Illuminated (amber) – one or more spoiler pairs are inoperative.

2 Auto Speedbrake (AUTO SPDBRK) Light

Illuminated (amber) – a fault is detected in the automatic speedbrake system.

3 Aileron Lockout (AIL LOCK) Light

Illuminated (amber) – aileron lockout actuator disagrees with the commanded position.


4 SPEED BRAKES Light

Illuminated (amber) – the speedbrakes are extended when:

- radio altitude is 800 feet or below, or
- flaps are in a landing position

Flap System

Flap Controls

1 FLAP Lever

Positions the slats and flaps hydraulically.

Up – the slats and flaps are retracted.

Flight Controls -Controls and Indicators

767 Flight Crew Operations Manual

1 –

- the slats extend to the midrange position
- · the flaps remain retracted

5, 15, and 20 -

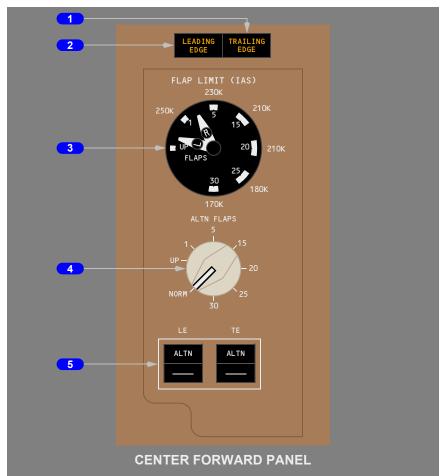
- the slats remain in the midrange position
- the flaps extend to the commanded position
- the inboard ailerons droop in conjunction with flap extension
- the flap load relief system arms at flaps 20

25 -

- the slats extend to the fully extended position
- the flaps extend to 25

30 -

- the slats remain in the fully extended position
- the flaps extend to 30


2 Flap Gates

1 – prevents inadvertent retraction of the slats.

20 – prevents inadvertent retraction of the flaps past the go–around position.

767 Flight Crew Operations Manual

Flap Position Indicator/Alternate Flaps Selector

TRAILING EDGE Light

Illuminated (amber) -

- a flap disagree exists
- a flap asymmetry exists
- the flap load relief system is not operating when required

2 LEADING EDGE Light

Illuminated (amber) -

- a slat disagree exists
- · a slat asymmetry exists

3 Flap Position Indicator

Indicates flap position.

UP – the slats and flaps are retracted.

Between UP and 1 – the slats are between the retracted and midrange position.

1 to 30 – the flaps are in the indicated position.

4 Alternate (ALTN FLAPS) Flaps Selector

NORM – normal flap operation, alternate system not in use.

UP – the slats and flaps are retracted.

1 -

- the slats extend to the midrange position
- the flaps remain retracted

5 to 20 -

- the slats remain in the midrange position
- the flaps extend to the commanded position

Alternate flaps switches must be in ALTN for the slats and flaps to move.

5 Alternate (ALTN) Flaps Switches

ALTN -

- arms the selected LE slat or TE flap alternate drive unit
- shuts off hydraulic power to the selected LE slat or TE flap drive system.

Off (ALTN not visible) – alternate flaps and slats command inactive.

767 Flight Crew Operations Manual

Intentionally Blank

767 Flight Crew Operations Manual

Flight Controls System Description

Chapter 9
Section 20

Introduction

The primary flight controls are elevators, ailerons, and rudders. The control column, control wheel, and rudder pedals control these flight control surfaces. The primary flight controls are powered by redundant hydraulic systems; there is no manual reversion.

Secondary flight controls include a moveable horizontal stabilizer, spoilers, and leading and trailing edge flaps. Spoilers operate differentially to assist ailerons for roll control and symmetrically as speedbrakes.

There are six guarded flight control shutoff switches that control hydraulic power to the ailerons, spoilers, elevators and rudder. The flight control shutoff OFF light illuminates and the EICAS advisory message L, C, or R WING HYD VAL or L, C, or R TAIL HYD VAL displays when a flight control valve is closed. If two or more OFF lights illuminate the EICAS advisory message FLT CONT VALS displays.

Pilot Controls

The pilot controls consist of:

- · two control columns
- two control wheels
- two pairs of rudder pedals
- control wheel stabilizer trim switches
- the speedbrake lever
- · the flap lever
- · aileron trim switches
- · rudder trim switch
- · alternate stabilizer trim switches

The columns and wheels are connected through jam override mechanisms. If a jam occurs in a column or wheel, the pilots can maintain control by applying force to the other column or wheel to overcome the jam. When a restricted portion of the flight controls are bypassed, some control effectiveness may be lost.

The rudder pedals are rigidly connected between the two sides.

The speedbrake lever allows manual or automatic symmetric actuation of the spoilers.

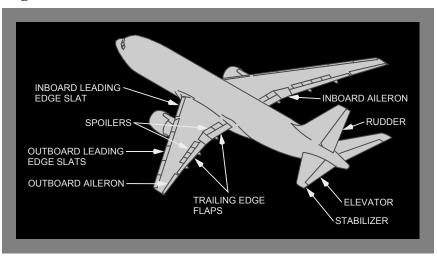
767 Flight Crew Operations Manual

Flight Control Surfaces

Pitch control is provided by:

- two elevators
- · a movable horizontal stabilizer

Roll control is provided by:


- · four ailerons
- twelve spoilers

Yaw control is provided by a single rudder.

Flaps and slats provide high lift for takeoff, approach, and landing.

Symmetric spoilers are used as speedbrakes.

Flight Control Surface Locations

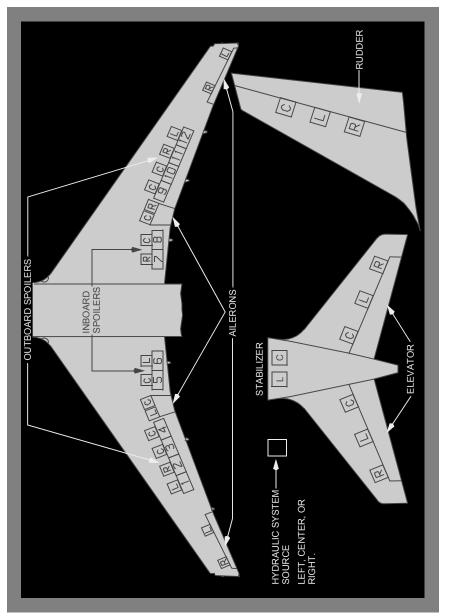
Pitch Control

The pitch control surfaces consist of two elevators and a stabilizer.

Elevator

Moving the control column signals hydraulic actuators to move the elevators.

Elevator positions are shown on the EICAS status display. Separate pointers indicate the left and right elevator deflection. A full-scale indication corresponds to the maximum elevator deflection


767 Flight Crew Operations Manual

If one control column should jam, applying significant forward or aft force to the other causes the two columns to override. Pitch control is then available using the free control column path.

Two elevator feel systems provide artificial feel forces to the pilots control columns. Mechanical springs provide feel following a loss of the left and center hydraulic systems.

767 Flight Crew Operations Manual

Actuator Control Hydraulic Power Distribution

Stabilizer Trim Control

The stabilizer is powered by the left and center hydraulic systems. Stabilizer position commands are sent to the stabilizer trim control modules, which control hydraulic power to the stabilizer. There are two modules, one for each stabilizer hydraulic source.

Stabilizer position is displayed on two stabilizer position indicators located on the control stand. Green bands indicate the normal trim settings for takeoff.

There are three modes of stabilizer trim control:

- electric
- alternate
- · automatic

Electric Trim

Dual electric pitch trim switches located on the control wheel must be pushed simultaneously to command trim changes.

To set Stabilizer Trim less than 1.5 units with flaps up, requires use of Alternate Trim system.

Alternate Trim

Alternate trim control is provided by the alternate stabilizer trim switches on the control stand. Pushing both switches simultaneously commands trim changes and provides an increased range of stabilizer travel. The signals neutralize any other conflicting trim inputs.

Automatic Trim

The stabilizer is controlled automatically by the autopilot.

Automatic stabilizer trim uses only one trim control module and trims at one—half the electric or alternate trim rate.

Non-normal Operation

If a single autopilot is engaged, electric trimming causes the autopilot to disengage. If multiple autopilots are engaged, the electric trim switches are inhibited. Alternate trimming does not cause autopilot disengagement.

The UNSCHED STAB TRIM light illuminates and the EICAS caution message UNSCHD STAB TRIM displays when uncommanded stabilizer motion is detected

The light and message also occur if alternate trim is used with an autopilot engaged.

767 Flight Crew Operations Manual

The left and center stabilizer cutout switches control hydraulic power to the respective stabilizer trim control module. Placing both switches in the CUTOUT position removes all hydraulic power from the stabilizer.

The control column can be used to interrupt stabilizer trim commands. This feature allows the pilot to quickly stop uncommanded trim changes. The stabilizer trim commands are interrupted if the control column is displaced in the opposing direction

The STAB TRIM light illuminates and the EICAS advisory message STAB TRIM displays when the electric or alternate stabilizer trim rate is one—half the normal control wheel stabilizer trim switch rate.

If the malfunction is unique to the electric trim control, full trim rate is available by using alternate trim.

Pitch Enhancement System (PES)

The Pitch Enhancement System (PES) consists of a hydraulic motor in the right system driving a pump which uses trapped left trim system fluid to operate the stabilizer. It will automatically activate if both the left and center hydraulic systems are lost in flight. Only electric trim is available at approximately 1/4 the normal rate. Alternate and automatic trim will be inoperative.

Roll Control

Two ailerons are located on each wing on either side of the outboard trailing edge flap. Aileron surface deflections are proportional to control wheel displacement. Spoilers begin to extend to augment roll control after several degrees of control wheel rotation. Control wheel forces increase as control displacement increases.

The control wheels are connected so that, if one control wheel jams, using significant force causes the control wheels to override. Roll control is then available using the free control wheel.

The inboard ailerons droop in conjunction with trailing edge flap extension.

Ailerons

Aileron positions are shown on the EICAS status display. A full–scale indication corresponds to maximum aileron deflection.

Dual aileron trim switches located on the aft aisle stand must be pushed simultaneously to command trim changes. Hydraulic power from one of the three hydraulic systems is necessary to accurately set aileron trim.

The amount of aileron trim is indicated on a scale on the top of each control column.

Note: If the flight crew inadvertently activates aileron trim while an autopilot is engaged, the repositioning of the aileron neutral point is not apparent to the crew. When the autopilot is disengaged, the control wheels and ailerons move to the new (possibly undesired) neutral point and the airplane will roll proportional to the amount of trim input.

The aileron lockout control system permits full travel of the outboard ailerons at low speeds and locks out the outboard ailerons at high speeds. This provides the required roll authority at low airspeeds and prevents over controlling at high airspeeds.

The AIL LOCK light illuminates and the EICAS advisory message AILERON LOCKOUT displays to indicate aileron lockout actuator disagrees with the commanded position. At high airspeeds it may indicate that one or both of the outboard ailerons failed to lockout. When the message and light appear at low airspeeds it may indicate that one or both of the outboard ailerons failed to unlock.

Yaw Control

Yaw control is provided by a single rudder. Two yaw dampers operate through the rudder control system to improve directional stability.

Rudder

Rudder position is shown on the EICAS status display. On the ground, a full scale indication corresponds to the maximum rudder deflection.

The rudder trim control can be used to command trim changes. The rudder trim indicator shows the units of rudder trim that are commanded.

Rudder Ratio

The control commands from the rudder pedals and trim control are modified by a rudder ratio changer. As airspeed increases the ratio changer desensitizes these inputs from the pilot to reduce the rudder deflection.

The ratio changer receives air data computer airspeed inputs and provides control commands to an actuator powered by the left hydraulic system. The actuator then dampens the pilots inputs to the rudder.

767 Flight Crew Operations Manual

The RUDDER RATIO light illuminates and the EICAS advisory message RUDDER RATIO displays to indicate the rudder ratio system is failed. Rudder structural protection is provided by automatic depressurization of the left hydraulic system actuator which limits rudder displacement at high airspeeds. However, abrupt rudder pedal input should be avoided at high airspeeds. At low airspeeds the two remaining rudder actuators provide sufficient control for full rudder displacement.

If the left hydraulic system is providing normal pressure to the ratio changer, a fault may result in limited displacement of the rudder at all airspeeds. This requires that crosswind and auto land limitations be observed.

Yaw Damping

The yaw damper systems improve turn coordination and dutchroll damping. The yaw damper INOP light illuminates and the EICAS advisory message L or R YAW DAMPER displays, when a yaw damper is inoperative.

Spoilers

There are six spoiler panels located on the upper wing surface of each wing. Spoilers on opposing wings are symmetrically paired.

Spoiler panels are used as speedbrakes to increase drag and reduce lift, both in flight and on the ground. The spoilers also supplement roll control in response to control wheel commands.

Spoiler Speedbrake Operation

The speedbrakes are controlled by the speedbrake lever located on the control stand. The speedbrake lever has three marked positions:

- DOWN
- ARMED
- UP

The speedbrake lever can be place in intermediate positions between ARMED and UP.

In the ARMED position, when the landing gear is fully on the ground (not tilted) and the thrust levers are at idle, the speedbrake lever is driven aft to the UP position and the spoiler panels are fully extended.

On the ground when either reverse thrust lever is moved to the reverse idle detent, the speedbrake lever is driven to the up position and the spoiler panels are fully extended. The speedbrake lever does not need to be in the ARMED position.

The SPEEDBRAKES light illuminates if speedbrakes are extended when radio altitude is 800 feet or below or the flaps are in landing position.

Flight Controls -System Description

DO NOT USE FOR FLIGHT

767 Flight Crew Operations Manual

The EICAS caution message SPEEDBRAKES EXT displays and the master caution lights and beeper activate when the SPEEDBRAKES light illuminates.

The AUTO SPDBRK light illuminates and the EICAS advisory message AUTO SPEEDBRAKE displays to indicate a fault is detected in the automatic speedbrake system which may result in the loss of automatic speedbrake extension.

If the speedbrake lever is armed, the message and light indicate a fault which may result in an inadvertent speedbrake extension in flight. The speedbrake lever should be returned to the DOWN position. The speedbrakes can still be operated manually.

The SPOILERS light illuminates and the EICAS advisory message SPOILERS displays to indicated that one or more spoiler pairs are inoperative.

Flaps and Slats

The trailing edge flaps and leading edge slats are high lift devices that increase wing lift and decrease stall speed during takeoff, approach, and landing.

Flap and slat positions are indicated by two pointers in the flap position indicator. There are L and R pointers for the left and right wing flaps and slats. The right pointer is normally hidden from view by the left pointer.

In the flaps 1 position, only the slats move. Flaps 5, 15, 20 are takeoff flap positions. Flaps 25 and 30 are landing flaps positions. Flaps 20 is used for some non-normal landing conditions.

Flap and Slat Sequencing

When the flap lever is in the UP detent, all flaps and slats are commanded retracted and the flap position indicator points to UP. Moving the flap lever aft allows selection of flap detent positions 1, 5, 15, 20, 25, and 30.

Starting from flaps UP, selection of flaps 1 commands the slats to move to the midrange position. The flaps remain retracted. The position indicator pointers move mid—way between UP and 1 when the slats are in transit. The pointers move to the 1 indication when all slats are in the midrange position.

Selection of the flaps 5, 15, or 20 positions commands the flaps to move to the position selected. The inboard ailerons droop in conjunction with flap extension. The slats remain in the midrange position. The position indicator provides only trailing edge flap position indications for all flap settings greater than 1.

Selection of flaps 25 commands both the flaps and slats to move to landing positions.

Selection of flaps 30 commands the flaps to extend to the primary landing position.

767 Flight Crew Operations Manual

During retraction flap and slat sequencing is reversed.

The flap gate at the flaps 20 detent prevents inadvertent retraction of the flaps past the go-around position. The flap gate at flaps 1 prevents inadvertent retraction of the slats

Flap Load Relief

The flap load relief system protects the flaps from excessive airloads.

If the flap airspeed placard limit is exceeded with the flaps in the 25 or 30 position, the flaps automatically retract to position 20.

When airspeed is reduced, the flaps automatically re–extend.

Flap/Slat Non-Normal Operation

Alternate Flap Operation

The alternate mode allows direct manual operation of either the flaps and/or slats through electric motors. The alternate flaps switches:

- allow independent selection of either flaps or slats
- · disable normal control
- · arm the alternate mode
- engage the electric motors
- the flap lever no longer controls the selected flaps and/or slats

The alternate flaps selector extends and retracts the flaps and slats. Alternate mode flap and slat extension is limited procedurally to flaps 20. Flap load relief is not available in the alternate mode.

Trailing edge flap asymmetry protection is not available in the alternate mode.

Slat and flap operation time in the alternate mode is greatly increased.

Leading Edge Disagreement

The LEADING EDGE light illuminates and the EICAS caution message LE SLAT DISAGREE displays when the leading edge slat positions disagree with commanded position.

The disagree indicates that the slats are not driving toward their new commanded position.

A LE SLAT DISAGREE may also occur if the flap lever is not in a detent for an extended period of time. In this case, the light and message can be removed by moving the flap lever to the desired detent.

Leading Edge Asymmetry

The LEADING EDGE light illuminates and the EICAS caution message LE SLAT ASYM displays when the leading edge slats are not symmetrically extended. Hydraulic power to the slats is automatically shut off.

Trailing edge flaps extension is inhibited until the slats extend to position 1. Therefore, if a slat asymmetry occurs between the UP and 1 positions, the flap indicator may not move until flaps 5 or greater is selected.

Trailing Edge Disagreement

The TRAILING EDGE light illuminates and the EICAS caution message TE FLAP DISAGREE displays when the trailing edge flap positions disagree with commanded position.

The disagree indicates that the flaps are not driving toward their new commanded position.

A TE FLAP DISAGREE may also occur if the flap lever is not in a detent for an extended period of time. In this case, the light and message can be removed by moving the flap lever to the desired detent.

Trailing Edge Asymmetry

The TRAILING EDGE light illuminates and the EICAS caution message TE FLAP ASYM displays when the trailing edge flaps are not symmetrically extended. Hydraulic power to the flaps is automatically shut off.

Load Relief Inoperative

The TRAILING EDGE light illuminates and the EICAS advisory message FLAP LD RELIEF is displayed when the flap load relief system fails to operate when required.

Hydraulic Driven Generator

When the hydraulic driven generator is supplying electrical power, hydraulic flow to the slats and flaps is reduced, resulting in increased slat and flap operating time.

767 Flight Crew Operations Manual

Intentionally Blank

767 Flight Crew Operations Manual

Flight Controls **EICAS Messages**

Chapter 9
Section 30

Flight Controls EICAS Messages

The following EICAS messages can be displayed.

Message	Level	Light	Aural	Condition
AILERON LOCKOUT	Advisory	AIL LOCK		An aileron lockout actuator disagrees with the commanded position.
AUTO SPEEDBRAKE	Advisory	AUTO SPDBRK		A fault is detected in the automatic speedbrake system.
FLAP LD RELIEF	Advisory	TRAILING EDGE		The flap load relief system fails to operate when required.
FLT CONT VALS	Advisory	OFF		Two or more flight control valves are closed.
LE SLAT ASYM	Caution	LEADING EDGE	Beeper	The leading edge slats are not symmetrically extended.
LE SLAT DISAGREE	Caution	LEADING EDGE	Beeper	The leading edge slat positions disagree with the commanded position.
RUDDER RATIO	Advisory	RUDDER RATIO		The rudder ratio system is failed.
SPEEDBRAKES EXT	Caution	SPEED BRAKES	Beeper	The speedbrakes are extended when the flaps are in a landing position, or when radio altitude is 800 feet or below.
SPOILERS	Advisory	SPOILERS		One or more spoiler pairs are inoperative.
STAB TRIM	Advisory	STAB TRIM		The stabilizer trim rate is one–half of the normal control wheel stabilizer trim switch rate.

Message	Level	Light	Aural	Condition
C TAIL HYD VAL	Advisory	OFF		A tail flight control valve
L TAIL HYD VAL				is closed.
R TAIL HYD VAL				
TE FLAP ASYM	Caution	TRAILING EDGE	Beeper	The trailing edge flaps are not symmetrically extended.
TE FLAP DISAGREE	Caution	TRAILING EDGE	Beeper	The trailing edge flap positions disagree with the commanded position.
UNSCHD STAB TRIM	Caution	UNSCHED STAB TRIM	Beeper	Uncommanded stabilizer motion is detected.
C WING HYD VAL L WING HYD VAL R WING HYD VAL	Advisory	OFF		A wing flight control valve is closed.
L YAW DAMPER R YAW DAMPER	Advisory	INOP		The yaw damper is inoperative.

Flight Instruments, Displays	Chapter 10
Table of Contents	Section 0
EFIS Controls and Indicators	10.10
Attitude Director Indicator (ADI) Display	10.10.1
ADIs with Flight Mode Annunciations (FMA) on T	•
ADI Speed Tape	
ADI Failure Flags and Annunciations	10.10.10
Horizontal Situation Indicator (HSI) Display Modes .	10.10.12
MAP Mode	10.10.12
CTR MAP Mode	10.10.16
APP Mode	10.10.20
CTR APP Mode	10.10.22
VOR Mode	10.10.24
CTR VOR Mode	10.10.26
PLAN Mode	10.10.28
HSI Symbology	10.10.31
Heading, Track, and Wind	10.10.31
Radio Navigation	10.10.33
Map	10.10.36
Radar	10.10.39
TCAS	
Look-Ahead Terrain	
Predictive Windshear	
HSI Failure Flags and Annunciations	10.10.48
Instrument Switching	10.10.49
Left Instrument Source Selector Panel (Upper)	10.10.49
Left Instrument Source Selector Panel (Lower)	10.10.50
Right Instrument Source Selector Panel (Upper)	10.10.51
Right Instrument Source Selector Panel (Lower)	
EFI/IRS Interface Diagram	
Heading Reference Switch	
EFIS Control Panel	10.10.56

Flight Instruments, Displays DO NOT USE FOR FLIGHT Table of Contents

EFIS System Description
Introduction
EFIS Symbol Generators
EFIS Control Panels
Attitude Director Indicator
Attitude Display
Mode Annunciations
Flight Director Commands
Glide Slope and Localizer Deviation Displays
Attitude Comparator
Height Alert
Radio Altitude and Decision Height
Pitch Limit Indicator
Ground Speed Display
Airspeed Display
Horizontal Situation Indicator (HSI)
Display Orientation
Track
MAP Mode
VOR Mode
APP Mode
PLAN Mode
Weather Radar Display
Terrain Display
Traffic
Predictive Windshear
EFIS Failure Flags and Annunciations
Light Sensing and Brightness Control
Conventional Instruments Controls and Indicators10.30
Conventional Flight Instruments
Mach/Airspeed Indicator (Electric)
Primary Altimeter (Electric)
Radio Distance Magnetic Indicator

DO NOT USE FOR FLIGHT Flight Instruments, Displays -

Vertical Speed Indicator
Clock
Standby Flight Instruments
Standby Attitude Director Indicator (Standby ADI) 10.30.7
Standby Airspeed Indicator (Pneumatic)
Standby Altimeter (Pneumatic)
Standby Magnetic Compass
Flight Recorder
Conventional Instruments System Description
Introduction
Primary Flight Instruments
Mach/Airspeed Indicator
Primary Altimeter
Radio Distance Magnetic Indicator (RDMI) 10.40.1
Vertical Speed Indicator
Standby Flight Instruments
Standby Attitude Director Indicator (Standby ADI) 10.40.2
Standby Airspeed Indicator (Pneumatic)
Standby Altimeter (Pneumatic)
Standby Magnetic Compass
Clock
Flight Recorder
Air Data System
Pitot–Static System Schematic
Total Air Temperature (TAT)
True Airspeed/Static Air Temperature (TAS/SAT) 10.40.5
EICAS Messages
Flight Instruments, Displays EICAS Messages

Flight Instruments, Displays DO NOT USE FOR FLIGHT Table of Contents

767 Flight Crew Operations Manual

Intentionally Blank

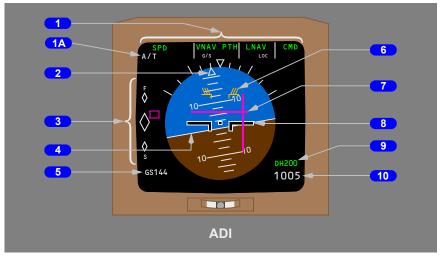
DO NOT USE FOR FLIGHT

767 Flight Crew Operations Manual

Flight Instruments, Displays EFIS Controls and Indicators

Chapter 10 Section 10

Attitude Director Indicator (ADI) Display

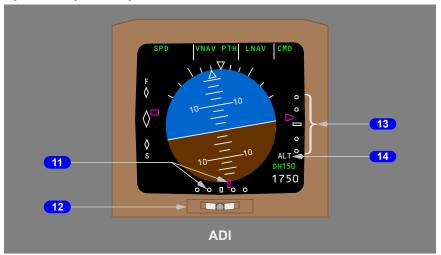

ADIs with Flight Mode Annunciations (FMA) on Top

Option: Flight Mode Annunciations on top.

Option: Speed tape with rolling digits.


Option: Fast/Slow airspeed indicator.

767 Flight Crew Operations Manual



Options: Height alerting at 1,000, 1,500, or 2,500 feet.

Options: Height alerting at 1,000, 1,500, or 2,500 feet.

1 Flight Mode Annunciations

Displays Autopilot Flight Director System (AFDS) mode status. Refer to Automatic Flight, Chapter 4, for description.

1A Autothrottle Annunciation

These airplane(s) have A/T annunciated below the thrust mode.

Copyright © The Boeing Company. See title page for details.

Flight Instruments, Displays DO NOT USE FOR FLIGHT EFIS Controls and Indicator

767 Flight Crew Operations Manual

2 Bank Pointer and Scale

Indicates IRS bank in reference to the bank scale.

3 Speed Tape

Displays airspeed information. Refer to "ADI Speed Tape", this section, for description.

3 Fast/Slow Indicator

Option: Fast/Slow airspeed indicator.

Displays airspeed information.

- indicates deviation from the airspeed selected by the FMC or the IAS/MACH selector, or limit speed
- small diamonds indicate 10 knots fast (F), or slow (S).

4 Horizon Line and Pitch Angle Scale

Indicates the IRS horizon relative to the airplane symbol.

Pitch scale is in 2.5 degree increments.

5 Current Mach

Displays current Mach.

- displays when Mach is 0.40 or above
- blanks when Mach is 0.38 or below.

5 Ground Speed

Indicates ground speed in knots.

5A Ground Speed

Indicates ground speed in knots.

6 Pitch Limit Indicator

Indicates pitch limit (stick shaker activation point for the existing flight conditions).

• displays when flaps are not up, or at slow speeds with the flaps up.

7 Flight Director Command Bars

Indicates flight director pitch and roll steering commands.

- displays when the respective F/D switch is ON, valid command steering is available, and the selected flight director and autopilot in (CMD) are not the same
- blanks when the respective FD switch is OFF, or when command steering becomes invalid, or when the selected flight director and autopilot in (CMD) are the same.

8 Airplane Symbol

Indicates airplane attitude with reference to the IRS horizon.

9 Decision Height

Displays selected decision height.

- blanks when negative decision height is selected
- display changes from green to amber, increases in size and "DH" flashes momentarily when airplane descends below decision height (decision height alerting)
- decision height alert is reset automatically if airplane climbs 75 feet or more above the selected decision height, or after the airplane lands
- decision height alert is reset manually if the RST switch is pushed.

10 Radio Altitude

Displays radio altitude.

- blank above 2500 feet AGL
- changes color from white to amber when below selected decision height on descent
- changes color from amber back to white when airplane climbs 75 feet or more above the selected decision height, or after the airplane lands
- changes color from amber back to white when the RST switch is pushed.

11 Localizer Pointer and Deviation Scale

The localizer pointer indicates position relative to the airplane.

- scale indicates deviation
- pointer not displayed when localizer is unusable
- scale and pointer not displayed when an ILS frequency is not selected
- a two dot expanded localizer scale (not shown here) displays when LOC is engaged and deviation is slightly more than one half dot on the four dot scale. The expanded scale is more sensitive, with one dot deviation equal to one half dot deviation on the four dot scale

Flight Instruments, Displays DO NOT USE FOR FLIGHT EFIS Controls and Indicator

767 Flight Crew Operations Manual

12 Slip Indicator

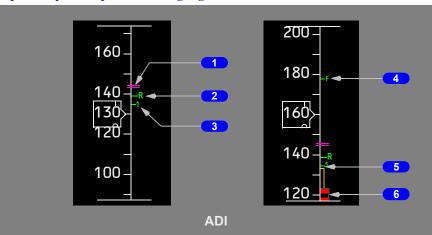
Indicates coordinated flight.

(13) Glide Slope Pointer and Deviation Scale

The glideslope pointer indicates glideslope position relative to the airplane.

- · scale indicates deviation
- pointer not displayed when glide slope unusable or when track and the front course on the ILS panel differ by more than 90°
- scale and pointer not displayed when an ILS frequency is not selected

14 Height Alert


Options: Height alerting at 1,000, 1,500, or 2,500 feet.

Indicates airplane has decended through a specified altitude.

- blanks if the RST switch is pushed.
- displays during descent from 2,500 feet to 500 feet AGL

ADI Speed Tape

Option: Speed Tape with rolling digits.

1 FMC/MCP Command Airspeed Bug

Displays when the FMC/MCP command airspeed as selected by the FMC or the IAS/MACH selector is in the displayed range.

2 VR (Rotation Speed) Bug

Indicates rotation speed.

- displays after manual entry on the TAKEOFF REF page
- · blanks 2 minutes after takeoff.

4 VF (Maneuvering Speed) Bug

- displays maneuvering speed for existing flap setting
- displays 10 seconds after takeoff
- if VF is within 4 knots of VR, both VR and V1 bugs are blanked
- blanks above 20,000 feet.

3 V1 (Decision Speed) Bug

Indicates Decision Speed

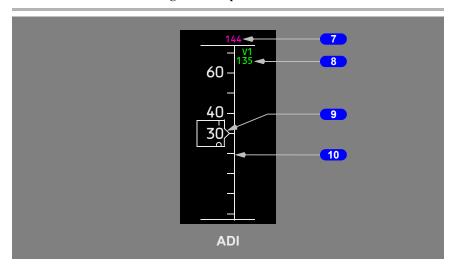
- displays after manual entry on the TAKEOFF REF page
- replaces digital V1 display when V1 speed is within the displayed range
- blanks 2 minutes after takeoff.

5 Minimum Maneuvering Speed

Top of amber bar indicates minimum maneuvering speed. This airspeed provides:

- 1.3g maneuver capability to stick shaker below approximately 20,000 feet
- 1.3g maneuver capability to low speed buffet (or an alternative approved maneuver capability as preset by maintenance) above approximately 20,000 feet.

Displayed shortly after takeoff.


Note: 1.3g maneuver capability occurs at 40 degrees of bank in level flight.

6 Minimum Operating Speed

Indicates the minimum operating speed

- below 20,000 feet airspeed where stick shaker activates
- above 20,000 feet initial buffet onset speed.

10.10.7

7 FMC/MCP Command Airspeed

Displays in this location when the FMC/MCP command airspeed bug as selected by the FMC or IAS/MACH selector is above the displayed range.

8 V1 (Decision Speed)

Indicates decision speed.

- · displays after manual entry on the TAKEOFF REF page
- displays during initial takeoff roll when V1 is above the displayed range.

9 Airspeed Pointer and Digital Display

• indicates current airspeed when above 30 knots

10 Speed Tape Scale

Scrolls up or down in response to airspeed changes.

11 Maximum Speed

Indicates maximum permissible airspeed as limited by the lowest of the following:

- Vmo/Mmo
- landing gear placard speed
- · flap placard speed.

12 Maximum Maneuvering Speed

Bottom of the amber bar indicates the maximum maneuvering speed. This airspeed provides 1.3g maneuver capability to high speed buffet (or an alternative approved maneuver capability set by maintenance). May be displayed when operating at high altitude at relatively high gross weights.

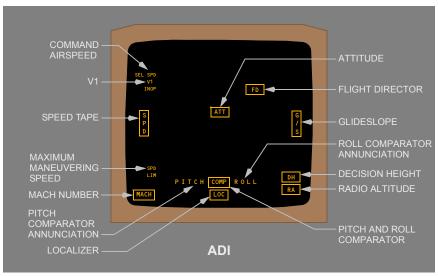
Note: 1.3g maneuver capability occurs at 40 degrees of bank in level flight.

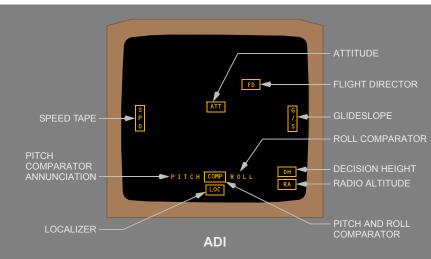
13 FMC/MCP Command Airspeed

Displayed in this location when the FMC/MCP command airspeed bug as selected by the FMC or IAS/MACH selector is below the displayed range.

14 Speed Trend Vector

Indicates predicted airspeed in 10 seconds based on current acceleration or deceleration

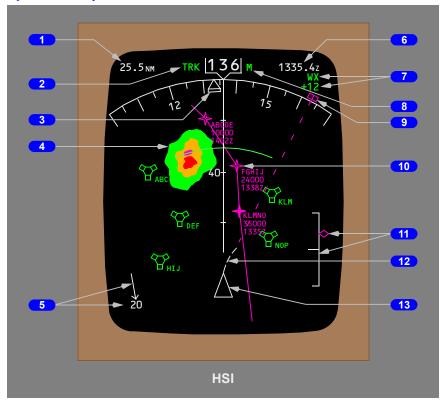

15 Landing Reference Bug


Displays the VREF speed as selected on the APPROACH REF page.

Copyright © The Boeing Company. See title page for details.

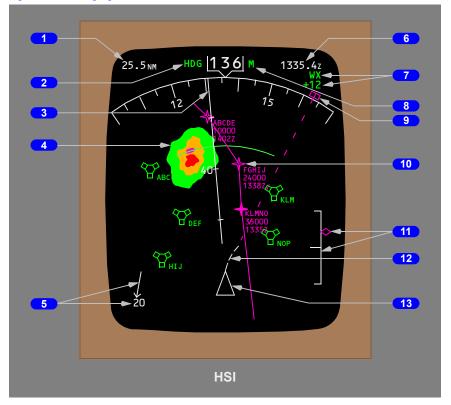
ADI Failure Flags and Annunciations

Note: ADI failure flags replace the appropriate display to indicate source system failure, or lack of computed information.



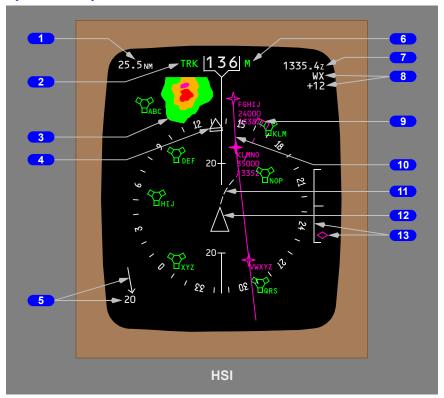
Intentionally Blank

Horizontal Situation Indicator (HSI) Display Modes

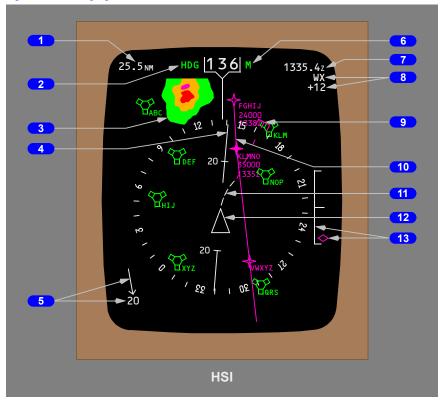

MAP Mode

Option: Track up HSI orientation.

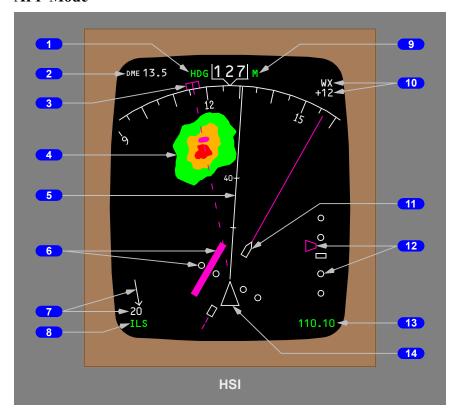
- 1 Distance to the Active Waypoint
- Current Track
- 3 Heading Pointer
- 4 Weather Radar Returns
- **5** Wind Direction and Speed
- 6 Estimated Time of Arrival at the Active Waypoint
- **7** Weather Radar Annunciations
- 8 Magnetic/True Reference
- Selected Heading Bug
- 10 Active LNAV Route
- 11 Vertical Pointer and Deviation Scale
- 12 Position Trend Vector
- 13 Airplane Symbol


Option: Heading up HSI orientation.

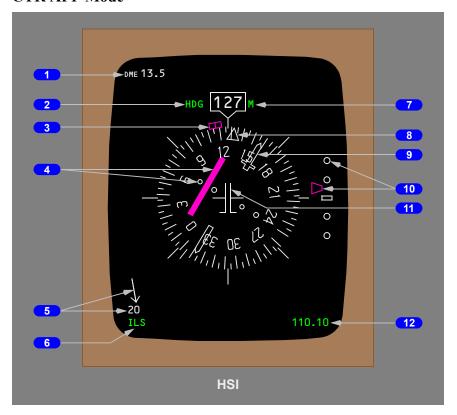
- 1 Distance to the Active Waypoint
- 2 Current Heading
- 3 Track Line
- 4 Weather Radar Returns
- **5** Wind Direction and Speed
- **6** Estimated Time of Arrival at the Active Waypoint
- **7** Weather Radar Annunciations
- 8 Magnetic/True Reference
- Selected Heading Bug
- 10 Active LNAV Route
- 11 Vertical Pointer and Deviation Scale
- 12 Position Trend Vector
- 13 Airplane Symbol


CTR MAP Mode

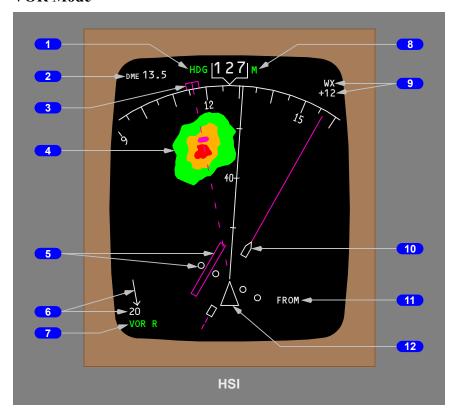
Option: Track up HSI orientation.


- 1 Distance to the Active Waypoint
- 2 Current Track
- **3** Weather Radar Returns
- 4 Heading Pointer
- **5** Wind Direction and Speed
- 6 Magnetic/True Reference
- **7** Estimated Time of Arrival at the Active Waypoint
- 8 Weather Radar Annunciations
- 9 Selected Heading Bug
- 10 Active LNAV Route
- 11 Position Trend Vector
- 12 Airplane Symbol
- 13 Vertical Pointer and Deviation Scale

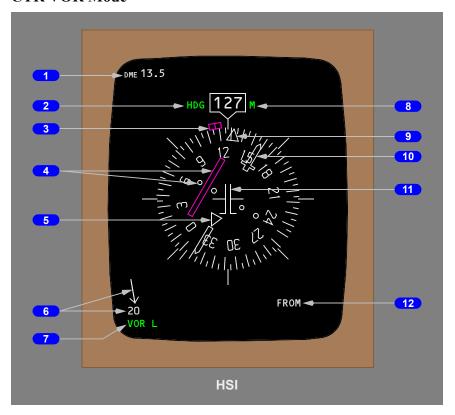
Option: Heading up HSI orientation.


- 1 Distance to the Active Waypoint
- 2 Current Heading
- **3** Weather Radar Returns
- 4 Track Line
- **5** Wind Direction and Speed
- 6 Magnetic/True Reference
- **7** Estimated Time of Arrival at the Active Waypoint
- 8 Weather Radar Annunciations
- Selected Heading Bug
- 10 Active LNAV Route
- 11 Position Trend Vector
- 12 Airplane Symbol
- 13 Vertical Pointer and Deviation Scale

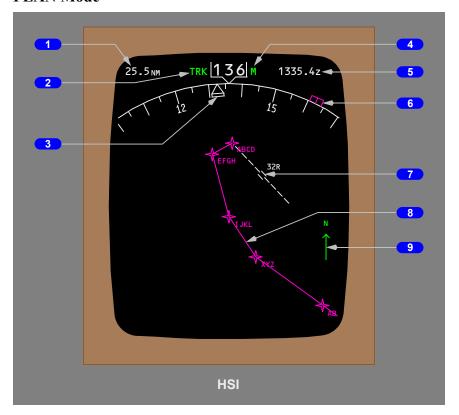
APP Mode


- Current Heading
- 2 Reference ILS DME
- 3 Selected Heading Bug
- 4 Weather Radar Returns
- 5 Track Line
- 6 Course Deviation Indicator and Deviation Scale
- 7 Wind Direction and Speed
- 8 Reference ILS Receiver
- 9 Magnetic/True Reference
- 10 Weather Radar Annunciations
- 11 Selected Course Pointer
- **12** Glideslope Pointer and Deviation Scale
- 13 Reference ILS Frequency
- 14 Airplane Symbol

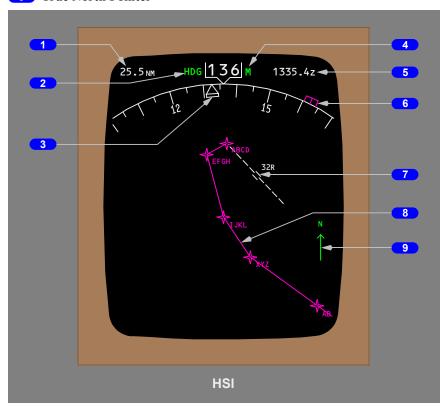
CTR APP Mode


- 1 Reference ILS DME
- Current Heading
- 3 Selected Heading Bug
- 4 Course Deviation Indicator and Deviation Scale
- 5 Wind Direction and Speed
- 6 Reference ILS Receiver
- 7 Magnetic/True Reference
- 8 Drift Angle Pointer
- 9 Selected Course Pointer
- 10 Glideslope Pointer and Deviation Scale
- 11 Airplane Symbol
- 12 Reference ILS Frequency

VOR Mode


- Current Heading
- 2 Reference VOR DME
- 3 Selected Heading Bug
- 4 Weather Radar Returns
- 5 Course Deviation Indicator and Deviation Scale
- 6 Wind Direction and Speed
- 7 Reference VOR Receiver
- 8 Magnetic/True Reference
- 9 Weather Radar Annunciations
- 10 Selected Course Pointer
- 11 TO/FROM Indication
- 12 Airplane Symbol

CTR VOR Mode



- 1 Reference VOR DME
- Current Heading
- 3 Selected Heading Bug
- 4 Course Deviation Indicator and Deviation Scale
- 5 To/From Pointer
- 6 Wind Direction and Speed
- 7 Reference VOR Receiver
- 8 Magnetic/True Reference
- 9 Drift Angle Pointer
- 10 Selected Course Pointer
- 11 Airplane Symbol
- 12 TO/FROM Indication

PLAN Mode

- 1 Distance to the Active Waypoint
- 2 Current Track
- 3 Heading Pointer
- 4 Magnetic/True Reference
- 5 Estimated Time of Arrival at the Active Waypoint
- 6 Selected Heading Bug
- 7 Airport and Runway
- 8 Active LNAV Route
- 9 True North Pointer

Flight Instruments, Displays DO NOT USE FOR FLIGHT EFIS Controls and Indicator DO NOT USE FOR FLIGHT

- 1 Distance to the Active Waypoint
- 2 Current Heading
- 3 Drift Angle Pointer
- 4 Magnetic/True Reference
- **5** Estimated Time of Arrival at the Active Waypoint
- 6 Selected Heading Bug
- 7 Airport and Runway
- 8 Active LNAV Route
- 9 True North Pointer

HSI Symbology

The following symbols can be displayed, depending on EFIS control panel switch selections. Colors indicate the following:

- W (white) present status, range scales
- G (green) active or selected mode and/or dynamic conditions
- M (magenta) command information, pointers, symbols, fly–to condition, weather radar turbulence
- C (cyan) nonactive or background information
- A (amber) cautions, faults, flags
- R (red) warnings
- B (black) blank area, off condition.

Heading, Track, and Wind

Symbol	Name	Applicable Mode(s)	Remarks
HDG 062 M	HDG – Heading orientation (G), current heading and pointer (W), heading reference (G)	All	HDG – Displays heading as the display orientation, current heading, M or TRU as the heading reference, and points to the heading on the compass rose.
TRK 0 6 2 M	Track orientation (G), current track (W), and track reference (G)	MAP PLAN CTR MAP	Displays track as the display orientation, the current track, and M or TRU as the reference, and points to the heading on the compass rose.
но (0 6 2 м	HDG – Heading orientation (G), current heading and pointer (W), heading reference (G)	VOR CTR VOR APP CTR APP	HDG – Displays heading as the display orientation, current heading, M or TRU as the heading reference, and points to the heading on the compass rose.

Flight Instruments, Displays DO NOT USE FOR FLIGHT EFIS Controls and Indicator

Symbol	Name	Applicable Mode(s)	Remarks
M OR TRU	Heading reference (G), box (W) in TRU, box (A) if TRU displayed in descents of 2,000 feet at more than 800 feet per minute.	All	Indicates heading/track is referenced to magnetic north or true north. On transition from TRU to M, a highlight box is displayed around M for 10 seconds. When TRU is the reference, the highlight box is displayed full time (W).
	Selected heading bug (M) and reference line (M)	MAP, CTR MAP VOR, APP Bug only CTR VOR CTR APP PLAN	Displays the heading set in the MCP. A dashed line (M) extends from the bug to the airplane symbol in the MAP and expanded modes.
\triangle	Current heading pointer (W)	MAP PLAN	Points to current heading on the compass rose.
80 D A BOD APP CTR VOR MAP	Track line and range scale (W)	MAP CTR MAP APP VOR	Displays present ground track based on airplane heading and wind. The displayed range numeric values are one-half and one—fourth (CTR MAP) the actual selected range. With heading-up orientation (VOR/APP mode), the track line will be rotated left or right at an angle equal to the drift angle.
12 75	Expanded compass rose (W)	MAP PLAN VOR APP	Displays 70 degrees of compass rose.

Symbol	Name	Applicable Mode(s)	Remarks
Marie Se	Full compass rose (W) Fixed reference marks (W)	CTR VOR CTR APP	The compass rose rotates through 360 degrees as a function of airplane heading. Fixed reference marks are evenly spaced at 45 degree intervals.
B B B B B B B B B B B B B B B B B B B	Center Map full compass rose (W)	CTR MAP	The compass rose rotates through 360 degrees as a function of airplane heading.
15	Wind speed and direction. (W)	All except PLAN	Indicates wind speed and direction, with respect to display orientation and heading reference.

Radio Navigation

Symbol	Name	Applicable Mode(s)	Remarks
\triangle	Airplane symbol (W)	VOR APP	Current airplane position is at the apex of the triangle.
1	Airplane symbol (W)	CTR VOR CTR APP	Current airplane position is at the center of the symbol.
VOR L,R	Reference VOR receiver (G)	VOR CTR VOR	Indicates the source of the displayed navigation data.
ILS	Reference ILS receiver (G)	APP CTR APP	In the VOR or APP mode the displayed data source is a function of the tuned frequency (VOR or LOC).
110.10	Reference ILS frequency (G)	APP CTR APP	Displays frequency of manually tuned navaid.
DME 12.4	Reference VOR or ILS DME (W)	VOR CTR VOR APP CTR APP	Indicates DME distance to the reference navaid.

Copyright © The Boeing Company. See title page for details.

10.10.33

Flight Instruments, Displays DO NOT USE FOR FLIGHT EFIS Controls and Indicator

Symbol	Name	Applicable Mode(s)	Remarks
0000	Course deviation indicator (M) and deviation scale (W)	VOR CTR VOR APP CTR APP	Displays ILS or VOR course deviation.
0	Selected course pointer (W) and line (M)	VOR APP	Displays selected course as set by the related VOR or ILS course selector.
<i>Q</i>	Selected course pointer (W)	CTR VOR CTR APP	Displays selected course as set by the related VOR or ILS course selector.
o o o o o o o o o o o o o o o o o o o	Glideslope pointer (M) and deviation scale (W)	APP CTR APP	Displays glideslope position and deviation. Pointer not displayed when track and front course differ by more than 90°.
TO FROM	To/from indication (W)	VOR CTR VOR	Displays VOR TO/FROM indication.
\triangle	To/from pointer (W)	CTR VOR	Displays VOR to/from direction.

Symbol	Name	Applicable Mode(s)	Remarks
© \$7 & \$8 \\ \frac{250}{250} \cdot \frac{570}{250} \cdot 570	VOR (C, G), DME/TACAN (C, G), VORTAC (C, G) Manually tuned VOR radials (G)	MAP CTR MAP	When the EFIS control panel NAV AID switch is OFF, tuned navaids, excluding NDBs, are displayed (G). When the EFIS control panel NAV AID switch is selected ON, appropriate navaids are displayed. All navaids contained in the FMC data base and within the MAP area are displayed when the selected range is 10, 20 or 40 NM. Only high altitude navaids are displayed when the selected range is 80, 160, 320 NM. Navaids not being used are displayed in cyan. Tuned VHF navaids are displayed in green, regardless of switch selection. When a navaid is
			manually tuned, the selected course and reciprocal are displayed.
<u> </u>	Left ADF pointer head and tail (G) Right ADF pointer head and tail (G)	All	Indicates bearing to (head) or from (tail) the tuned station.

Copyright © The Boeing Company. See title page for details.

Map

Symbol	Name	Applicable Mode(s)	Remarks
	Position trend vector (W) (dashed line) and airplane symbol (W).	MAP CTR MAP	Predicts position at the end of 30, 60, and 90 second intervals, based on bank angle and ground speed. Each segment represents 30 seconds. Selected range determines the number of segments displayed:
			 Range > 20 NM, 3 segments Range = 20 NM, 2 segments Range = 10 NM, 1 segment
N ↑	North Pointer (G)	PLAN	Indicates orientation of map background to true north.
]	Vertical pointer (M), and deviation scale (W)	MAP CTR MAP	Displays vertical deviation from selected VNAV PATH during descent only. Scale indicates +/- 400 feet deviation.
△ _{MLF}	Off route waypoint (C)	MAP PLAN CTR MAP	When the EFIS control panel WPT switch is selected on, waypoints not on the selected route are displayed, for ranges of 10, 20, or 40 NM.
			When a range greater than 40NM is selected, only those waypoints associated with NDBs that are within 80NM of the airplane are displayed.

Symbol	Name	Applicable Mode(s)	Remarks
O	Conditional Waypoint: active (M), inactive (W)	MAP PLAN	Active – represents the waypoint the airplane is currently navigating to.
			Inactive – represents the waypoints on the active route.
			Data with parentheses for conditional waypoints indicates type of conditional waypoint (ALTITUDE etc.)
- +	Procedure turn: active (M), modified (W), inactive (C)	MAP PLAN CTR MAP	A fixed size procedure turn appears when it is part of the displayed FMC route. When the procedure turn waypoint is active and the HSI range is 40 nm or less, the procedure turn changes to the correct scale size.
	Holding pattern: active route (M), modified route (W), inactive route (C)	MAP PLAN CTR MAP	A fixed size holding pattern appears when it is part of the displayed FMC route. When the holding waypoint is active and the HSI range is 80 nm or less, the holding pattern changes to the correct scale size.
	Altitude range arc (G)	MAP CTR MAP	Based on present vertical speed and ground speed, indicates the approximate map position where the MCP altitude is reached.
	Energy management circles: clean (C), speedbrake (W)	MAP CTR MAP	Indicates clean and speedbrake energy management circles as defined on OFFPATH DES page.

Copyright © The Boeing Company. See title page for details.

Flight Instruments, Displays DO NOT USE FOR FLIGHT EFIS Controls and Indicator

767 Flight Crew Operations Manual

Symbol	Name	Applicable Mode(s)	Remarks
O	Altitude profile point and identifier (G)	MAP PLAN CTR MAP	Indicates the approximate map position of the FMC–calculated T/C (top–of–climb), T/D (top–of–descent), S/C (step climb), and E/D (end of descent) points. Deceleration points have no identifier.
o ^s ∕	Selected reference point and bearing information (G)	MAP PLAN CTR MAP	Displays the reference point selected on the CDU FIX page. Bearing from the fix is displayed with dashes (G).
() pBC	Selected reference point and distance information (G)	MAP PLAN CTR MAP	Displays the reference point selected on the CDU FIX page. Distance from the fix is displayed with dashes (G).

Symbol	Name	Applicable Mode(s)	Remarks
О ктев	Airport (C)	MAP PLAN CTR MAP	Displayed if the EFIS control panel ARPT switch is selected ON.
		CIRMI	Origin and destination airports are always displayed, regardless of switch selection.
G KABC 22L	Airport and runway (W)		Displayed when selected as the origin or destination and selected range is 80, 160, or 320 NM.
22L	Airport and runway (W)		Displayed when selected as the origin or destination and selected range is 10, 20, or 40 NM. Dashed runway centerlines extend 14.2 NM.
CDU L,R	MAP source annunciation (G)	MAP	Displays HSI source if CDU is selected on respective NAV Source Select Switch.

Radar

Symbol	Name	Applicable Mode(s)	Remarks
	Weather radar (WXR) returns (R, A, G, M)	MAP CTR MAP VOR APP	The most intense areas are displayed in red, lesser intensity in amber, and lowest intensity green. Turbulence is displayed in magenta.
WX+T	WXR and turbulence mode (G)	MAP CTR MAP VOR APP	Weather radar system is selected on the EFIS control panel. Weather radar mode, gain and tilt is controlled on the weather radar panel(s) (refer to Chapter 11, Flight Management, Navigation).

Flight Instruments, Displays DO NOT USE FOR FLIGHT EFIS Controls and Indicator

767 Flight Crew Operations Manual

Symbol	Name	Applicable Mode(s)	Remarks
VAR	WXR receiver gain (G)	MAP CTR MAP VOR APP	Weather radar system is selected on the EFIS control panel. Weather radar mode, gain and tilt is controlled on the weather radar panel(s) (refer to Chapter 11, Flight Management, Navigation).
MAP	Mode used with down-tilt when ground mapping (G)	MAP CTR MAP VOR APP	Weather radar system is selected on the EFIS control panel. Weather radar mode, gain and tilt is controlled on the weather radar panel(s) (refer to Chapter 11, Flight Management, Navigation).
+15 to -15	WXR antenna tilt (G)	MAP CTR MAP VOR APP	Weather radar system is selected on the EFIS control panel. Weather radar mode, gain and tilt is controlled on the weather radar panel(s) (refer to Chapter 11, Flight Management, Navigation).
TEST	WXR test mode (C) (G)	MAP CTR MAP VOR APP	Weather radar mode, gain and tilt is controlled on the weather radar panel(s) (refer to Chapter 11, Flight Management, Navigation).

Symbol	Name	Applicable Mode(s)	Remarks
WXR WEAK	WXR calibration fault (A) WXR attitude	MAP CTR MAP VOR APP	When a degraded condition is present the EFIS will continue to display weather radar information.
WXR ATT	input fault (A)		If any two or all degraded conditions occur simultaneously, the system
WXR STAB	stabilization off (A)		will display only the highest priority condition as follows:
			 WEAK ATT STAB
WXR DSPY	WXR display fault (A)	MAP CTR MAP VOR	HSI overheat or loss of digital unit cooling air when WXR is selected.
		APP	Overheat annunciation has display priority over all other degraded conditions.
			Weather radar information removed after 30 seconds.
WXR FAIL	WXR system failure (A)	MAP CTR MAP VOR APP	Weather radar system failure is annunciated under any of the following conditions:
			receiver transmitter failure
			antenna failurecontrol panel failure
WXR RANGE DISAGREE	WXR range status annunciations (A)	MAP CTR MAP VOR APP	Weather output range disagrees with the range selected by the EFIS control panel.
MAP/WXR RANGE DISAGREE	WXR range status annunciations (A)	MAP CTR MAP	Weather output range and map display output range disagree with selected EFIS control panel range.

TCAS

Symbol	Name	Applicable Mode(s)	Remarks
<u></u> ↑	TCAS resolution advisory (RA), relative altitude (R)	CTR MAP APP VOR displayed only when EFIS control panel tr (TFC) switch is select on. Refer to Chapter Warning Systems. The arrow indicates to climbing or descending	displayed only when the EFIS control panel traffic (TFC) switch is selected
+02 • ↓	TCAS traffic advisory (TA), relative altitude (A)		
♦ ↓ -05	TCAS proximate traffic, relative altitude (W) TCAS other traffic, relative		500 fpm. At rates less than 500 fpm, the arrow is not displayed. The number and associated
+09 ♦ ↑		TCAS other traffic, relative	
	altitude (W)		The number is below the traffic symbol when the traffic is below, and above the traffic symbol when the traffic is above the airplane. Absence of the number implies altitude unknown.
RA 5.3 +03 ↑ TA 8.9 -12 ↑	TCAS no bearing message (RA-R, TA-A)	MAP CTR MAP APP VOR	Message provides traffic type, range in NM, altitude and vertical direction.
TRAFFIC	TCAS traffic alert message (RA-R, TA-A)	All	Displayed whenever a TCAS RA or TA is active. EFIS control panel TFC switch does not have to be selected on.
OFFSCALE	TCAS off scale message (RA-R, TA-A)	MAP CTR MAP APP VOR	Displayed whenever RA or TA traffic is outside the traffic area covered by the HSI range. Displayed only if the EFIS control panel TFC switch is selected on.

Symbol	Name	Applicable Mode(s)	Remarks
TFC	TCAS mode (G)	MAP CTR MAP APP VOR	Indicates the HSI TCAS display is active; the EFIS control panel TFC switch is selected on.
TA ONLY	TCAS mode (G)	All	Indicates TCAS computer is not computing RAs. Displayed whether the EFIS control panel TFC switch is selected on or off.
TCAS TEST	TCAS mode (W)	All	Indicates TCAS is operating in the test mode. Displayed whether EFIS control panel TFC switch is selected on or off.
TCAS OFF	TCAS off message (W)	MAP CTR MAP APP VOR	Displayed when the TCAS/ATC mode switch is not in TA ONLY or TA/RA. Not displayed if TCAS is failed.
TCAS FAIL	TCAS fail message (A)	MAP CTR MAP APP VOR	Indicates TCAS failure.

February 15, 2010 D632T001-300 10.10.43

Look-Ahead Terrain

Symbol	Name	Applicable Mode(s)	Remarks
	Terrain display (R, A, G, M)	MAP CTR MAP VOR	Displays terrain data from the GPWS terrain data base.
		APP	When the airplane is higher than 2,000 feet above the terrain, peaks contours are displayed in three densities (G). Highest peaks are displayed as solid, intermediate height terrain peaks are displayed as high density, and lowest terrain peaks are displayed as low density.
			When the airplane is lower than 2,000 feet above the terrain, the terrain displays as follows: 2,000 feet below to 500 feet (250 feet with gear down) below the airplane's current altitude (G), 500 feet (250 feet with gear down) below to 2000 feet above the airplane's current altitude (A), more than 2,000 feet above the airplane's current altitude (R), no terrain data available (M).
_	Obstacle display (R, A, G)		Displays obstacle data from the GPWS obstacle data base.
			Color displays using the same rules as terrain display.

Symbol	Name	Applicable Mode(s)	Remarks
080 030	Highest and lowest terrain or obstacle altitudes	MAP CTR MAP VOR	Terrain display enabled (manual or automatic display).
	(R, A, G)	APP	Numbers displayed are altitudes, in hundreds of feet, of highest and lowest contours displayed on the HSI.
			Color corresponds to colors of highest and lowest terrain or obstacle displayed.
			Altitudes not displayed when terrain data unavailable.
OBSTACLE	Obstacle alert annunciation (R, A)	All	Look-ahead obstacle caution alert active (A), Look-ahead obstacle warning alert active (R).
TERRAIN	Terrain alert annunciation (R, A)	All	Look-ahead terrain caution alert active (A), look-ahead terrain warning alert active (R).
TERR	Terrain mode annunciation (C)	MAP CTR MAP VOR APP	Terrain display enabled (manual or automatic display).

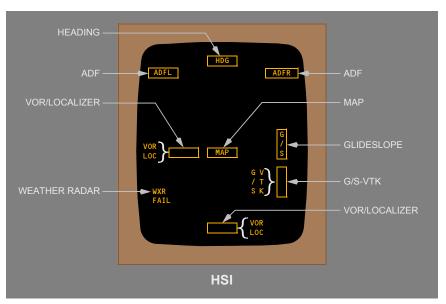
Copyright © The Boeing Company. See title page for details.

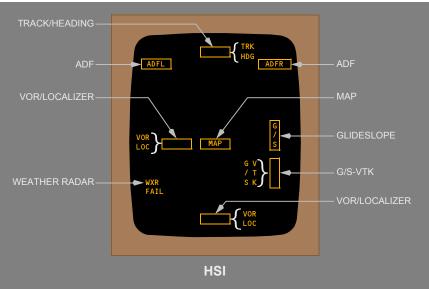
10.10.45

Flight Instruments, Displays **DO NOT USE FOR** EFIS Controls and Indicator

767 Flight Crew Operations Manual

Symbol	Name	Applicable Mode(s)	Remarks
TERR FAIL	Terrain status annunciations (A)	MAP CTR MAP VOR	Look-ahead terrain alerting and display have failed.
TERR POS		APP	Look-ahead terrain alerting and display unavailable due to position uncertainty.
TERR OVRD			GPWS terrain override switch in OVRD position.
TEDD	Terrain test mode annunciation (C)		GPWS operating in self–test mode.
			This status annunciation is also available in plan mode.
TERR DSPY	TERR display fault (A)	MAP CTR MAP VOR APP	HSI overheat or loss of digital unit cooling air when TERR is selected.
			Overheat annunciation has display priority over all other degraded conditions.
			Look-ahead terrain information removed after 30 seconds.
TERR RANGE DISAGREE	Terrain range status annunciations (A)	MAP CTR MAP VOR APP	Terrain output range disagrees with selected EFIS control panel range.
MAP/TERR RANGE DISAGREE	Terrain range status annunciations (A)	MAP CTR MAP	Terrain output range and map display output range disagree with selected EFIS control panel range.

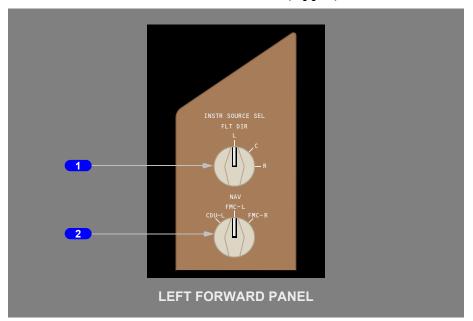

Predictive Windshear


Symbol	Name	Applicable Mode(s)	Remarks
	Predictive windshear symbol (R, B, A)	MAP CTR MAP APP VOR	Displays windshear location and approximate geometric size (width and depth). Amber radials extend from predictive windshear symbol to help identify location of windshear event.
WINDSHEAR	Windshear annunciation (R, A)	All	Predictive windshear caution active (A). Predictive windshear warning active (R).

February 18, 2008 D632T001-300 10.10.47

HSI Failure Flags and Annunciations

Note: HSI failure flags replace the appropriate display to indicate source system failure, or lack of computed information.



Instrument Switching

Various source selections are available for instrument displays. For other related instrument transfer switching, refer to Chapter 11, Flight Management, Navigation

Left Instrument Source Selector Panel (Upper)

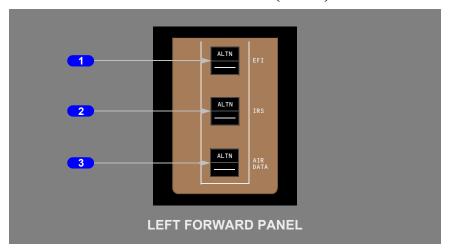
1 Flight Director (FLT DIR) Source Selector

Selects the flight control computer (left, center, or right) used as the source of commands for the captain's flight director display.

2 Navigation (NAV) Source Selector

Selects the source of FMC information used by the left and center EFIS symbol generators and the left and center flight control computers (FCCs).

- FMC L normal position. Provides information to the left and center symbol generators, and to the left and center FCCs
- FMC R alternate position. Provides information to the left and center symbol generators, and to the left and center FCCs
- CDU L provides information to the left and center symbol generators.
 Used for operation of the Alternate Navigation System (refer to Chapter 11, Flight Management, Navigation)


Copyright © The Boeing Company. See title page for details.

August 21, 2008

D632T001-300

10.10.49

Left Instrument Source Selector Panel (Lower)

1 Electronic Flight Instruments (EFI) Switch

Selects the EFIS symbol generator, ILS receiver, and radio altimeter used as the sources of information for the captains's ADI and HSI displays.

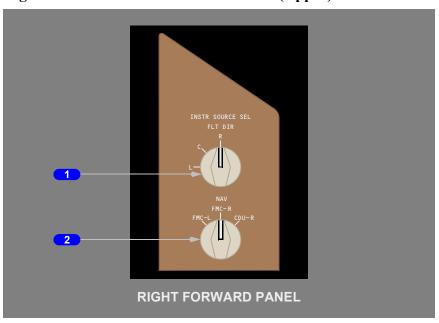
- Blank normal position. The captains's displays use the left symbol generator, left ILS receiver, and left radio altimeter
- ALTN alternate position. The captains's displays use the center symbol generator, center ILS receiver, and center radio altimeter

If both pilots select ALTN (both using center sources):

- both pilots' ADI and HSI displays are controlled by the left EFIS control panel
- the EICAS message INSTR SWITCH displays

2 Inertial Reference System (IRS) Switch

Selects the IRS used as the source of information for the left and center symbol generators, the captain's VSI, and the first officers RDMI. Information provided by the IRS includes attitude, heading, and vertical speed


- Blank normal position. The left IRS is the source for the left and center symbol generators, the captain's VSI, and the first officer's RDMI
- ALTN alternate position. The center IRS is the source for the left and center symbol generators, the captain's VSI, and the first officer's RDMI

3 AIR DATA Switch

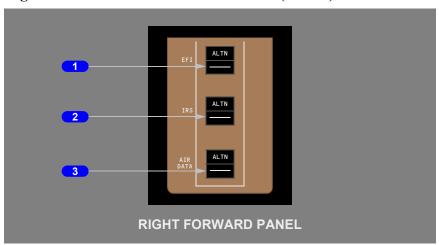
Selects the air data computer used as the source of information for the captain's Mach/airspeed indicator, primary altimeter, and vertical speed indicator (via the selected IRS).

- Blank normal position. The left air data computer is the source for the captain's air data instruments
- ALTN alternate position. The right air data computer is the source for the captain's air data instruments

Right Instrument Source Selector Panel (Upper)

1 Flight Director (FLT DIR) Source Selector

Selects the flight control computer (left, center, or right) used as the source of commands for the first officer's flight director display.


August 21, 2008 D632T001-300 10.10.51

2 Navigation (NAV) Source Selector

Selects the source of FMC information used by the right EFIS symbol generator and the right flight control computer (FCC).

- FMC R normal position. Provides information to the right symbol generator, and to the right FCC
- FMC L alternate position. Provides information to the right symbol generator, and to the right FCC
- CDU R provides information to the right symbol generator. Used for operation of the Alternate Navigation System (refer to Chapter 11, Flight Management, Navigation).

Right Instrument Source Selector Panel (Lower)

1 Electronic Flight Instruments (EFI) Switch

Selects the EFIS symbol generator, ILS receiver, and radio altimeter used as the sources of information for the first officer's ADI and HSI displays.

- Blank normal position. The first officer's displays use the right symbol generator, right ILS receiver, and right radio altimeter
- ALTN alternate position. The first officer's displays use the center symbol generator, center ILS receiver, and center radio altimeter

If both pilots select ALTN (both using center sources):

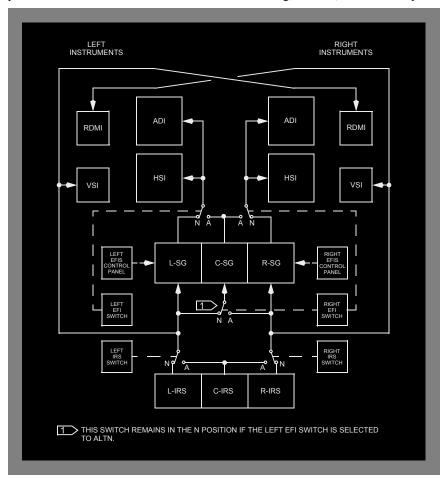
- both pilots' ADI and HSI displays are controlled by the left EFIS control panel
- the EICAS message INSTR SWITCH displays

2 Inertial Reference System (IRS) Switch

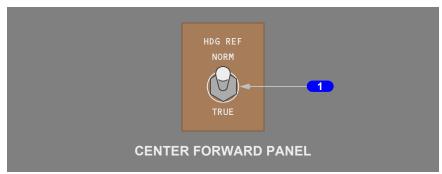
Selects the IRS used as the source of information for the right symbol generator, the first officer's VSI, and the captain's RDMI. Information provided by the IRS includes attitude, heading, and vertical speed.

- Blank normal position. The right IRS is the source for the right symbol generator, the first officer's VSI, and the captain's RDMI
- ALTN alternate position. The center IRS is the source for the right symbol generator, the first officer's VSI, and the captain's RDMI.

3 AIR DATA Switch


Selects the air data computer used as the source of information for the first officer's Mach/airspeed indicator, primary altimeter, and vertical speed indicator (via the selected IRS).

- Blank normal position. The right air data computer is the source for the first officer's air data instruments
- ALTN alternate position. The left air data computer is the source for the first officer's air data instruments


Copyright © The Boeing Company. See title page for details.

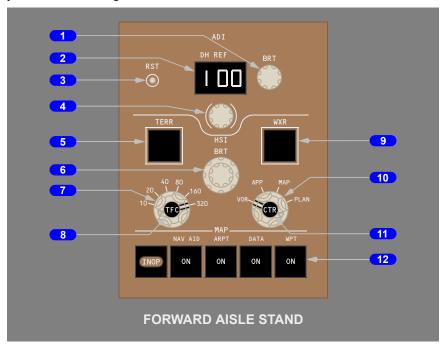
EFI/IRS Interface Diagram

The following diagram shows the normal EFI/IRS interface. EFI switching determines the center symbol generator (C–SG) input and output. Normally, left system instrument sources supply the center symbol generator. When both pilots select ALTN with their EFI switches, the left system instrument sources supply data to the center symbol generator. However, the center symbol generator always uses the center ILS and center radio altimeter. Each EFIS control panel is connected to the symbol generator with the EFI switch. Each IRS switch permits pilot selection of the alternate data source for heading, attitude, and vertical speed.

Heading Reference Switch

1 Heading Reference (HDG REF) Switch

NORM -


- references each compass card to magnetic north when operating outside polar regions
- references each HSI to true north and causes each RDMI heading flag to appear when operating within polar regions.

TRUE – references each compass card to true north regardless of latitude.

Copyright © The Boeing Company. See title page for details.

EFIS Control Panel

The left EFIS control panel controls the left ADI and HSI. The right EFIS control panel controls the right ADI and HSI.

1 ADI Brightness (BRT) Control

Rotate – adjusts brightness of ADI display.

2 Decision Height Reference (DH REF) Window

- · displays selected decision height
- displays on ADI (ADI blanks when a negative decision height is selected)

3 Decision Height Reset (RST) Switch

Push -

- · resets DH alert on related ADI
- · changes RA display from amber to white
- · blanks height alert on related ADI

4 Decision Height Selector

Rotate – selects decision height for DH alerting.

5 Terrain (TERR) Switch

Push -

- displays terrain data on the HSI in MAP, CTR MAP, VOR, and APP
- deselects the weather radar display regardless of the mode selector position

For a description of the ground proximity warning system, refer to Chapter 15, Warning Systems.

6 HSI Brightness (BRT) Control

Rotate -

- outer control adjusts overall brightness of HSI display
- inner control adjusts brightness of weather radar or terrain display

7 HSI Range Selector

Rotate -

- selects nautical mile range for MAP, CTR MAP, and PLAN displays
- when the WXR switch or TCAS TFC switch is ON, also selects the desired range for the VOR and APP mode displays

8 Traffic (TFC) Switch

Note: TCAS must be activated on the Transponder Panel (refer to Chapter 11, Flight Management, Navigation).

Push -

· displays or removes TCAS traffic information on HSI

9 Weather Radar (WXR) Switch

Push – displays weather radar information (refer to Chapter 11, Flight Management, Navigation).

10 HSI Mode Selector

VOR, CTR VOR -

- displays VOR navigation information
- selects manual VOR and DME tuning on the VOR/DME panel (automatic tuning inhibited)

APP. CTR APP -

- displays ILS navigation information
- selects manual VOR and DME tuning on the VOR/DME panel (automatic tuning inhibited)

Copyright © The Boeing Company. See title page for details.

Flight Instruments, Displays DO NOT USE FOR FLIGHT EFIS Controls and Indicator

767 Flight Crew Operations Manual

MAP, CTR MAP -

- displays a dynamic map
- allows selection of manual or automatic VOR and DME tuning on the VOR/DME panel
- allows remote manual VOR and DME tuning on the PROGRESS page

PLAN -

- displays static FMC map in true–north–up orientation
- displays heading information in heading-up form
- allows selection of manual or automatic VOR and DME tuning on the VOR/DME panel
- allows remote manual VOR and DME tuning on the PROGRESS page
- activates the MAP CTR STEP prompt on the LEGS page for stepping through the displayed route

11 Center (CTR) Switch

Push -

- when the HSI Mode Selector is in the MAP, VOR, or APP positions, toggles between full and expanded rose displays
- · does not affect display in PLAN mode

12 Map Switches

NAV AID -

- displays only high altitude VHF navigation aids when HSI range is 80nm or greater
- displays all VHF navigation aids when HSI range is 40nm or less

Airport (ARPT) –

Displays all airports in the display range.

DATA -

Displays estimated time of arrival and any altitude constraint for each waypoint in the displayed flight path.

Waypoint (WPT) -

- · displays all waypoints when HSI range is 40nm or less
- those waypoints associated with NDBs are displayed at any selected range as long as the NDBs are within 80nm of the airplane.

DO NOT USE FOR FLIGHT

767 Flight Crew Operations Manual

Flight Instruments, Displays **EFIS System Description**

Chapter 10 Section 20

Introduction

The electronic flight instrument system (EFIS) consists of three (L, C, R) symbol generators (SGs), two control panels (CPs), two attitude director indicators (ADIs), two horizontal situation indicators (HSIs), and ambient light sensing units. The EFIS uses information provided by a variety of aircraft systems to generate the appropriate visual presentations on the HSI and ADI.

Data relating primarily to navigation is provided by aircraft systems such as the navigation radios, flight management computer (FMC), and the inertial reference systems. Data relating primarily to automatic flight is provided by the flight control computers (FCCs), the autothrottle (A/T), and the FMC. Data which is used to display current aircraft state information is provided by the two air data computers (ADCs) and the three inertial reference systems (IRSs).

Automatic adjustment of the display intensity for each display unit is provided by the ambient light sensing units. Flight crew control of the EFIS displays is accomplished by positioning the various controls on the respective EFIS control panels to the desired settings. For information on EFIS/IRS interface, and instrument switching see Section 10, of this chapter.

EFIS Symbol Generators

Three symbol generators form the heart of the EFIS. The SGs receive inputs from various aircraft systems, then generate the proper visual displays for the related ADI and HSI. Each pilot's ADI and HSI displays are provided from the SG selected with their respective EFI switch. The left SG normally provides the captain's displays, and the right SG normally provides the first officer's displays. The center SG is available as an alternate source for either or both pilots.

EFIS Control Panels

The EFIS control panels control display options, modes, ranges and brightness for the respective ADIs and HSIs.

Attitude Director Indicator

The ADI presents conventional displays for attitude (pitch and roll), flight director commands, localizer deviation and glide slope deviation. In addition, the ADI displays information relating to autoflight system mode annunciations, airplane speed, pitch limit, radio altitude, and decision height. The captain's attitude information is provided by the left IRS and the first officer's information is provided by the right IRS. The center IRS provides that data as an alternate source.

Flight Instruments, Displays DO NOT USE FOR FLIGHT

767 Flight Crew Operations Manual

Attitude Display

Airplane attitude data is provided by the IRSs. The IRSs' pitch and roll attitude information is valid throughout 360 degrees of rotation in each axis.

Mode Annunciations

Mode annunciations for the A/T and the AFDS are displayed at the top of the ADI displays. For a detailed description of the various autoflight mode annunciations and their meanings, refer to Chapter 4, Automatic Flight.

Flight Director Commands

Flight director guidance commands from the selected FCC are displayed via the flight director symbol on the ADI.

A flight director failure in either axis causes the respective command bar to disappear. If both axes become unreliable, both command bars disappear and the FD flag appears.

Glide Slope and Localizer Deviation Displays

Conventional ILS information is provided from the ILS receiver selected with each pilot's EFI switch. All three ILS receivers are commonly tuned on the ILS panel.

Attitude Comparator

The EICAS caution message ATT DISAGREE displays when a difference of more than 3 degrees between the captain's and first officer's pitch or roll displays is detected. An amber PITCH or ROLL alerting annunciation is displayed on both ADIs for the parameter that is out of tolerance. Attitude comparison monitoring is inhibited when both pilots are using the center symbol generator by selecting ALTN on the EFI switches.

Height Alert

The radio height alert ALT is triggered when the airplane descends below 2,500 feet AGL. The alert is turned off when the airplane continues to descend below 500 feet AGL or climbs above 2,500 feet AGL, or after pressing the decision height reset switch on the EFIS control panel.

Radio Altitude and Decision Height

When radio altitude is less than 2,500 feet AGL, a digital display is depicted on the ADI. At all other times, the digital radio altitude display is blanked.

When a positive decision height has been selected on the related EFIS control panel, the letters DH and the decision height are displayed just above the digital radio altitude display of the associated ADI.

When descending through the selected decision height, a decision height alert occurs. The display changes from white to amber, increases in size and DH flashes momentarily

The decision height alert is reset if any one of the following occurs:

- the DH reset switch on the EFIS control panel is pressed
- the radio altitude increases to decision height +75 feet
- the radio altitude is equal to zero feet (i.e. during touchdown).

Pitch Limit Indicator

The position of the pitch limit indicator is a function of the stall warning computer. It is programmed so that stick shaker activation will coincide with a pitch attitude equal to the pitch limit indication.

Ground Speed Display

A digital presentation of the current ground speed is displayed. The ground speed data is received from the FMC or the IRS, with the FMC being the primary source.

Airspeed Display

The fast/slow airspeed indicator is positioned by the thrust management computer. For additional details see Chapter 4, Automatic Flight.

Airspeed is displayed on a tape on the ADI. The current Mach number is digitally displayed below the airspeed tape when the current Mach number is greater than 0.40.

The selected airspeed, takeoff and landing reference speeds, and flap maneuvering speeds are shown on the airspeed tape. Maximum and minimum airspeeds are also displayed on the airspeed tape.

CAUTION: Reduced maneuver capability exists when operating within the amber regions below the minimum maneuvering speed or above the maximum maneuvering speed. During non-normal conditions the target speed may be below the minimum maneuvering speed.

Horizontal Situation Indicator (HSI)

The HSI presents an electronically generated color display of navigational data. Each HSI is capable of displaying the airplane's progress on a dynamic map display.

Display Orientation

During normal operation, heading reference data is supplied to each HSI from the respective IRS.

Copyright © The Boeing Company. See title page for details. 10.20.3 August 19, 2009 D632T001-300

Flight Instruments, Displays DO NOT USE FOR FLIGHT

767 Flight Crew Operations Manual

The compass rose can be referenced to magnetic north or true north. The heading reference switch is used to manually select magnetic or true reference. The compass display is automatically referenced to true north when the airplane is operating within polar regions.

Track

Airplane track data is supplied by the FMC during normal operation and by the CDU when in alternate navigation.

MAP Mode

The MAP mode is recommended for most phases of flight.

Presented track up, this mode shows airplane position relative to the route of flight against a moving map background.

Presented heading up, this mode shows airplane position relative to the route of flight against a moving map background.

Displayed information can include:

- track
- heading
- wind
- routes
- position trend vector
- · altitude range arc
- estimated time of arrival
- selected navigation data points programmed in the FMC

VOR Mode

The VOR mode is presented heading up. The VOR mode displays track, heading, and wind speed and direction with VOR navigation information.

APP Mode

The APP mode is presented heading up. The APP mode displays track, heading, and wind speed and direction with ILS approach information.

PLAN Mode

The PLAN mode is presented true north up. The active route may be viewed using The STEP prompt on the LEGS pages.

Weather Radar Display

Display of weather radar returns on the HSI is enabled or disabled by the WXR switch on the respective EFIS control panel. The weather radar system is described in Chapter 11, Flight Management, Navigation.

Terrain Display

The HSI can display look ahead terrain alerting. For detailed information, refer to Chapter 15, Warning Systems.

Traffic

Traffic information from the TCAS can be displayed on the HSI. TCAS is described in Chapter 15, Warning Systems.

Predictive Windshear

The HSI can display predictive windshear warnings. For detailed information, refer to Chapter 15, Warning Systems.

EFIS Failure Flags and Annunciations

In addition to the normal EFIS displays, various failure annunciations, flags, or indications may be displayed on the ADI or HSI.

The location of the different failure flags and annunciations is depicted in the ADI and HSI Failure Flags and Annunciations figures included in the EFIS Controls and Indicators, section 10 of this chapter.

Not all EFIS displays will be replaced by a failure flag or annunciation if the signal from the sending unit has failed. In these instances, failure is indicated by removal of the data or the affected portions of the display.

During preflight, heading/track data is unavailable until the associated IRS has completed alignment and entered the navigation mode. Heading flags do not appear in this case.

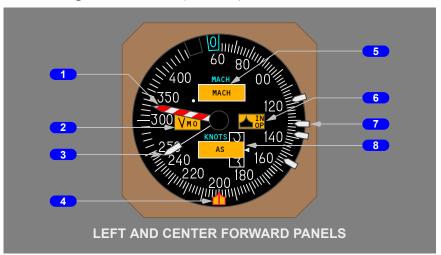
If an FMC FAIL message is observed on a CDU, a MAP flag will appear on the associated HSI when viewing the MAP mode. Selecting the opposite FMC with the NAV selector will restore the map display. If both FMCs fail, selecting CDU on the NAV selector will allow the CDU to provide limited map data to the HSI. For more detailed information on the alternate navigation system, refer to Chapter 11, Flight Management, Navigation.

Various fault messages can also be displayed. For example, a WXR/MAP RANGE DISAGREE message is displayed when the ranges for the FMC and weather radar disagree with the range selected on the HSI control panel.

An EXCESS DATA message is displayed if the quantity of information to the display exceeds the HSI's capability to provide a normal display. If in the MAP mode, deselecting the Map switches may correct the condition and remove the message.

Light Sensing and Brightness Control

Ambient light sensors automatically adjust the brightness of the EFIS displays. Once the desired brightness is set, using the EFIS brightness controls, little or no adjustment is needed throughout a wide range of ambient light conditions both outside and inside the flight deck.


DO NOT USE FOR FLIGHT

767 Flight Crew Operations Manual

Flight Instruments, Displays Chapter 10 Conventional Instruments Controls and Indicators Section 30

Conventional Flight Instruments

Mach/Airspeed Indicator (Electric)

1 Vmo Pointer

Indicates the maximum operating airspeed in knots.

2 Vmo Flag

Flag in view – indicates the Vmo pointer is inoperative.

3 Airspeed Pointer

Indicates airspeed in knots.

4 Command Airspeed Bug

Indicates airspeed as manually selected with the IAS/MACH selector.

- positioned by FMC when IAS/MACH window is blank
- removed from view when inoperative.

5 Mach Indicator and Flag

Displays Mach number.

Controls and Indicators 767 Flight Crew Operations Manual

Display range:

- · .400 to .999 Mach
- · masked below.400 Mach
- flag in view air data system is inoperative.

6 Command Airspeed Inoperative Flag

Flag in view – command airspeed bug is inoperative.

7 Reference Airspeed Bugs

Set at reference airspeeds.

8 Airspeed Indicator and Flag

- displays airspeed when above 30 knots
- flag in view air data system is inoperative.

Primary Altimeter (Electric)

1 Altitude Indicator

Indicates altitude in increments of twenty feet.

OFF flag in view- the altimeter is inoperative

NEG flag in view – displays in the two left–hand windows when altitude below zero feet is displayed.

Altitude Pointer

Makes one revolution each one thousand feet.

3 Barometric Setting Control

Rotate – adjusts barometric settings.

Copyright © The Boeing Company. See title page for details.

Flight Instruments, Displays -**Conventional Instruments** Controls and Indicators

767 Flight Crew Operations Manual

4 Altimeter Altitude (ALT) Light

Illuminated (white) –

between 300 and 900 feet of the altitude selected with the altitude selector

5 Barometric Setting Window

Displays barometric correction (in millibars and inches of mercury) as set by the barometric setting control.

6 Reference Altitude Marker

Manually positioned to the desired reference altitude using the reference altitude marker control

7 Reference Altitude Marker Control

Used to manually set the reference altitude marker.

Radio Distance Magnetic Indicator

1 Heading (HDG) Flag

Flag in view –

- selected IRS heading source has failed, or no computed data is available
- instrument failure.

2 Wide Bearing Pointer

- indicates right ADF/VOR magnetic bearing to selected station
- maintains last known bearing on loss of right ADF/VOR signal.

Copyright © The Boeing Company. See title page for details. 10.30.3 August 21, 2008 D632T001-300

Flight Instruments, Displays DO NOT USE FOR FLIGHT

Controls and Indicators

767 Flight Crew Operations Manual

3 Narrow Bearing Pointer

- indicates left ADF/VOR magnetic bearing to selected station
- maintains last known bearing on loss of left ADF/VOR signal.

4 VOR/ADF Selector (Left/Right)

Rotate – selects related VOR or ADF for the bearing pointer.

5 Left/Right DME (DME –L/R) Indicators

Displays distance to the VOR-tuned station (VORTAC or VOR/DME) in nautical miles, except when APP is selected on the associated (L or R) EFIS control panel.

- displays distance to the ILS-tuned station when APP is selected on the associated (L or R) EFIS control panel (L is displayed when valid ILS/DME is available)
- displays dashes when no computed data is available
- displays blank when DME distance is unreliable, or when there are no DME navaids within range for autotuning

6 Compass Card

Indicates airplane heading under lubber line.

- Captain's heading information as selected by the first officer's IRS switch
- First officer's heading information as selected by the captain's IRS switch

7 Bearing Pointer Failure Flag (Left/Right)

Selected VOR/ADF receiver has failed, or no computed data is available.

- may be in view with heading flag
- · instrument failure.

Vertical Speed Indicator

1 Vertical Speed Pointer

Indicates rate of climb or descent from 0 to 6,000 feet per minute.

2 OFF Flag

Flag in view – VSI is inoperative.

Clock

Flight Instruments, Displays DO NOT USE FOR FLIGHT

Controls and Indicators 767 Flight Crew Operations Manual

1 Chronograph (CHR) Switch

Push – initiates start, stop and reset functions of the CHR display and second hand Subsequent pushes –

- overrides any existing ET display
- · controls chronograph second hand.

1A DATE Switch

Push – displays day and month, alternating with year.

Subsequent push – returns display to time.

7 Time/Date Window

Displays time (hours, minutes – 24 hour format) when time is selected with the date switch.

Alternately displays day-month and year when date is selected with the date switch.

3 Chronograph Second Hand

Indicates seconds.

4 Elapsed Time (ET) Selector

Controls the elapsed time function.

RUN – starts the elapsed time display.

HLD – stops the elapsed time display.

RESET – (spring-loaded to HLD) returns ET display to zero.

5 Elapsed Time/Chronograph (ET/CHR) Window

Displays elapsed time in hours and minutes, or chronograph minutes.

- when selected, the chronograph display replaces the elapsed time display
- elapsed time continues to run in the background and displays after the chronograph is reset.

6 SET Selector

Sets the time and date when the date switch is set to manual

RUN – starts the time indicator.

HLDY (hold, year) -

- stops the time indicator and sets the seconds to zero when time is selected with the date switch
- advances years when date is selected with the date switch.

Copyright © The Boeing Company. See title page for details.

Flight Instruments, Displays Conventional Instruments
Controls and Indicators

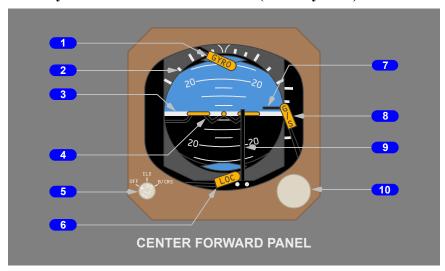
767 Flight Crew Operations Manual

MSM (minute slew, month) –

- advances minutes when time is selected with the date switch
- advances months when date is selected with the date switch.

HSD (hour slew, day) -

- advances hours when time is selected with the date switch
- advances days when date is selected with the date switch



1 CLOCK Switch

Operates the same as the chronograph switch.

Standby Flight Instruments

Standby Attitude Director Indicator (Standby ADI)

1 GYRO Flag

Flag in view – attitude is unreliable.

Copyright © The Boeing Company. See title page for details.

August 17, 2007

D632T001-300

10.30.7

Flight Instruments, Displays DO NOT USE FOR FLIGHT

Controls and Indicators

767 Flight Crew Operations Manual

2 Bank Indicator and Scale

Indicates bank in reference to the bank scale.

3 Horizon Line and Pitch Angle Scale

Indicates horizon relative to the airplane symbol.

Pitch scale is in 5 degree increments.

4 Airplane Symbol

Indicates airplane attitude with reference to the horizon.

5 ILS Selector

OFF – deviation pointers and failure flags retracted from view.

ILS – pointers indicate deviation from localizer and glideslope.

B/CRS – reverses sensing for localizer deviation pointer.

6 Localizer (LOC) Flag

Flag in view – center localizer receiver has failed.

7 Glideslope Pointer and Deviation Scale

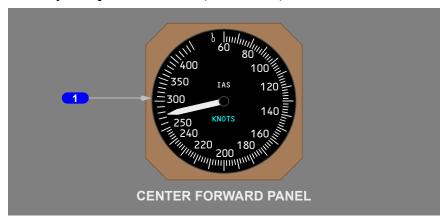
The glideslope pointer indicates glideslope position relative to the airplane.

- scale indicates deviation
- pointer is not displayed when ILS selector is OFF or no computed data exists.

8 Glideslope (G/S) Flag

Flag in view – center glideslope receiver has failed.

9 Localizer Pointer and Deviation Scale


The localizer pointer indicates position relative to the airplane.

- scale indicates localizer deviation
- expanded localizer scale not available
- pointer not displayed when ILS selector is OFF or no computed data exists.

10 Caging Control

Pull – aligns horizon with the airplane symbol.

Standby Airspeed Indicator (Pneumatic)

1 Standby Airspeed Indicator

Provides alternate airspeed information.

Standby Altimeter (Pneumatic)

1 Altitude Pointer

Makes one revolution each one thousand feet.

2 Barometric Setting Control

Rotate – adjusts barometric settings.

3 Altitude Indicator

Indicates altitude in increments of twenty feet.

Copyright © The Boeing Company. See title page for details.

Controls and Indicators 767 Flight Crew Operations Manual

4 Barometric Setting Window

Displays barometric correction (in millibars and inches of mercury) as set by the barometric setting control.

Standby Magnetic Compass

1 Standby Magnetic Compass

Displays magnetic heading.

Flight Recorder

1 Flight Recorder (FLT REC) Switch

ON – applies power to the flight recorder.

NORM -

- in flight the recorder operates anytime electrical power is available
- on the ground either engine must also be operating.

TEST – (Spring – loaded to NORM) initiates a flight recorder test.

2 Flight Recorder OFF Light

Illuminated (white) – indicates the recorder is not operating or the test is invalid.

DO NOT USE FOR FLIGHT

767 Flight Crew Operations Manual

Flight Instruments, Displays

Conventional Instruments System Description

Chapter 10 Section 40

Introduction

The conventional instruments provide information in addition to the EFIS displays to aid pilots in controlling the airplane throughout its flight regime. This section includes a discussion of the primary instruments, standby instruments, and the pitot static system.

Primary Flight Instruments

Mach/Airspeed Indicator

Two electric mach/airspeed indicators display airspeed, mach, and Vmo from the selected air data source. The Vmo pointer indicates the maximum operating airspeed in knots or the equivalent to the maximum operating mach number. The command airspeed bug on each indicator can be automatically positioned from the FMC, or manually from the MCP IAS/MACH Selector.

Primary Altimeter

Two electric altimeters indicate current altitude in feet. An altimeter altitude light is provided. Altitude alerting is described in Chapter 15, Warning Systems.

Radio Distance Magnetic Indicator (RDMI)

Two radio distance magnetic indicators are installed. Each displays magnetic heading or true heading, VOR or ADF bearing, and (VOR/ILS/DME, VORTAC) distance. The RDMI receives primary heading signals from the opposite side IRS and alternate heading signals from the C–IRS. The RDMI is inoperative until the associated IRS has completed alignment and entered the navigation mode.

With the heading reference switch in NORM, magnetic heading is displayed if the airplane is outside polar regions. In polar regions, a heading flag shows. When the switch is in TRUE, true heading is displayed regardless of latitude. For more information on polar regions refer to Chapter 11, Flight Management, Navigation.

When the RDMI is referenced to true north, positioning an ADF/VOR selector to VOR causes the associated pointer failure flag to appear.

Description 767 Flight Crew Operations Manual

Vertical Speed Indicator

Two electrically—driven vertical speed indicators (VSI) are installed. The captain's VSI is connected to the left IRS and ADC, and the first officer's VSI is connected to the right IRS and ADC. The center IRS provides backup vertical speed data for either crew member when ALTN is selected with the respective IRS switch. The opposite ADC provides backup vertical speed data for either crewmember when ALTN is selected with the respective AIR DATA switch.

The VSI is inoperative until the associated IRS has completed alignment and entered the navigation mode.

Standby Flight Instruments

Standby Attitude Director Indicator (Standby ADI)

A self-contained standby attitude director indicator incorporating an ILS display is installed. In the event that all generator power is lost, the standby ADI will be supplied with electrical power from the standby DC bus. ILS information is provided from the C–ILS receiver.

Standby Airspeed Indicator (Pneumatic)

The standby airspeed indicator provides current airspeed in knots. It is connected directly to the L AUX PITOT and the alternate static ports. (See pitot–static system schematic.)

Standby Altimeter (Pneumatic)

A single indicator is installed for standby reference. Input for the indicator is from the alternate static ports. (See pitot–static system schematic.)

Standby Magnetic Compass

A standard magnetic standby compass is provided. A card located near the compass provides heading correction factors.

Clock

Two electronic clocks are installed, with two digital displays on each clock. Either coordinated universal time (UTC) or local time may be set on the upper time display. The lower ET/CHR display is used for either elapsed time or the chronograph. Separate controls are provided for each display.

In addition to UTC and local time, the date may be set on the upper time display.

Flight Recorder

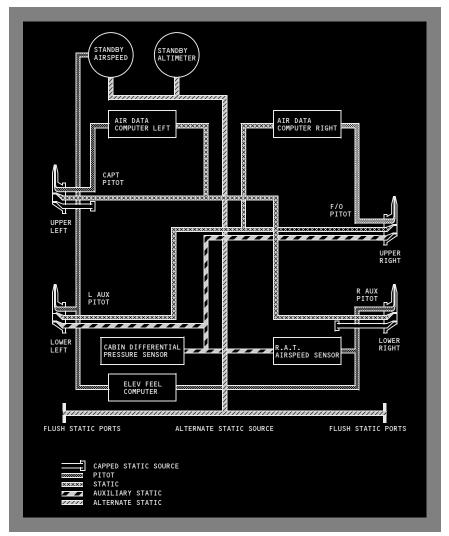
The flight recorder provides a permanent record of selected operational systems in a sealed, fire–resistant container. The recorder automatically turns on when either engine is operating or the airplane is in flight.

Air Data System

The air data system consists of the pitot–static system, one temperature probe (TAT), two angle of attack probes, two air data computers (ADCs), and electric flight instruments.

The system provides pitot and/or static pressure information to various flight instruments and airplane systems. Standby airspeed and altimeter indicators are also provided. The ADCs use air data information to provide input signals to certain flight instruments (electric mach/airspeed indicator, electric altimeter) and other using systems (AFDS, FMC, etc.). The left instruments use the left ADC and the right instruments use the right ADC. The opposite ADC is available as an alternate air data source.

Warning flags indicate instrument failure or unreliable data. When a malfunction occurs in instruments with failure monitors, warning flags appear.


The EICAS caution messages ALT DISAGREE or IAS DISAGREE display when there is a significant difference between the left and right air data information. These messages are inhibited at low altitude or when both pilots have the same air data source selected.

Copyright © The Boeing Company. See title page for details.

February 14, 2007 D632T001-300 10.40.3

Description 767 Flight Crew Operations Manual

Pitot-Static System Schematic

Total Air Temperature (TAT)

TAT appears on EICAS above the EPR display and is supplied by a thrust management or air data computer. The TAT indication is comprised of outside air temperature (OAT) plus ram rise. TAT Indication on the ground will approximate OAT

True Airspeed/Static Air Temperature (TAS/SAT)

True airspeed (TAS) and static air temperature (SAT) are displayed on the PROGRESS page.

Copyright © The Boeing Company. See title page for details.

February 14, 2007 10.40.5 D632T001-300

Intentionally Blank

DO NOT USE FOR FLIGHT

767 Flight Crew Operations Manual

Flight Instruments, Displays EICAS Messages

Chapter 10 Section 50

Flight Instruments, Displays EICAS Messages

Note: The OVERSPEED warning and the ALTITUDE ALERT caution messages are covered in Chapter 15, Warning Systems.

The following EICAS messages can be displayed.

Message	Level	Light	Aural	Condition
ALT DISAGREE	Caution		Beeper	Captain's and first officer's altitude indications disagree.
ATT DISAGREE	Caution		Beeper	Captain's and first officer's attitude indications disagree.
IAS DISAGREE	Caution		Beeper	Captain's and first officer's airspeed indications disagree.
INSTR SWITCH	Caution		Beeper	Both EFI switches are in the ALTN position.

Flight Instruments, Displays DO NOT USE FOR FLIGHT EICAS Messages

767 Flight Crew Operations Manual

Intentionally Blank

DO NOT USE FOR FLIGHT

	nent, Navigation	Chapter 11
Table of Contents	Section 0	
	ors	
Flight Management System		
Function and Execute Keys		
	Alpha/Numeric and Miscellaneous Keys	
	CDU Page Components	
	r Light	
· ·	e System	
	stems	
	ion Finding (ADF) Control	
	el	
-	1	
VOR Control Panel		11.10.12
Marker Beacon L	ights	11.10.14
Weather Radar		11.10.14
Weather Radar Control Panel		11.10.14
Weather Radar Sv	witch	11.10.16
Navigation Systems I	Description	
Introduction		11.20.1
Navigation Systems	Flight Instrument Displays	11.20.1
Inertial Reference Sy	vstem	11.20.1
	System Operation	
IRS Alignment	· · · · · · · · · · · · · · · · · · ·	11.20.1
IRS Attitude		11.20.3
IRS Power		11.20.3
Radio Navigation Sy	stems	11.20.3
Automatic Direct	ion Finding (ADF)	11.20.3
Distance Measuring Equipment (DME)		11.20.3
VOR		11.20.4
	yright © The Boeing Company. See title page for details	
August 21, 2008	D632T001-300	11.TOC.0.1

Flight Management, Navigation NOT USE FOR FLIGHT Table of Contents

707 Fight Ciew Operations Manual
Multi–Mode Receiver
Instrument Landing System (ILS)
Global Positioning System (GPS)
GPS Displays
GPS Data
GPS System Schematic
Transponder
Weather Radar
Flight Management System Description11.30
Introduction
Flight Management Computer (FMC)
Control Display Units (CDUs)
Flight Management System Operation
Introduction
Preflight11.31.1
Takeoff
Climb
Cruise
Descent
Approach
Flight Complete
Operational Notes
Terminology
Navigation Position
FMC Position Determination
FMC Polar Operations
Navigation Performance
Lateral Navigation (LNAV)
Waypoints
EO SID
Map Displays

DO NOT USE FOR FLIGHTight Management, Navigation - Table of Contents

767 Flight Crew Operations Manual

Vertical Navigation (VNAV)	. 11.31.15
Speed/Altitude Constraints	. 11.31.15
Takeoff and Climb	. 11.31.17
Cruise	. 11.31.19
Mode Control Panel Speed Intervention	. 11.31.20
Descent	. 11.31.20
Early Descent	
Approach	
Missed Approach	
Cruise and Descent Profile (Nonprecision Approach)	
VNAV Engine Out Operation	
Data Entry Rules	. 11.31.30
Altitude Entry	. 11.31.30
Airspeed Entry	. 11.31.31
Data Pairs	. 11.31.31
Flight Management Computer	11.32
FMC Databases	11.32.1
Thrust Management	11.32.1
Fuel Monitoring	11.32.2
Loss of FMC Electrical Power	11.32.3
FMC Failure	11.32.3
Single FMC Failure	11.32.3
Dual FMC Failure	11.32.3
FMC Resets	11.32.4
FMC Preflight	11.40
Introduction	11.40.1
Preflight Page Sequence	11.40.1
Minimum Preflight Sequence	
Supplementary Pages	
Supplementary rages	11.40.2
7.	
Preflight Pages	11.40.3

Copyright © The Boeing Company. See title page for details.

Flight Management, Navigation NOT USE FOR FLIGHT Table of Contents

Position Initialization Page	.7
Position Reference Pages	0
Route Page	6
Preflight Pages – Part 2	22
Departure/Arrival Index Page	22
Departures Page	23
Navigation Radio Page	26
Performance Initialization Page	27
Takeoff Reference Page	9
Menu Page	2
FMC Takeoff and Climb11.41	
Introduction	.1
Takeoff Phase	.1
Climb Phase	
Climb Page	
Engine Out Climb	
Route Legs Page	
Engine Out Departure	
Air Turnback	0
Arrivals Page	0
FMC Cruise	
Introduction	.1
LNAV Modifications	
RTE LEGS Page Modifications	
Add Waypoints	
Delete Waypoints	.3
Change Waypoint Sequence	.4
Remove Discontinuities	.5
Direct To And Intercept Course To	.7
Intercept Course From	
SELECT DESIRED Waypoint (WPT) Page	
Airway Intercept	3

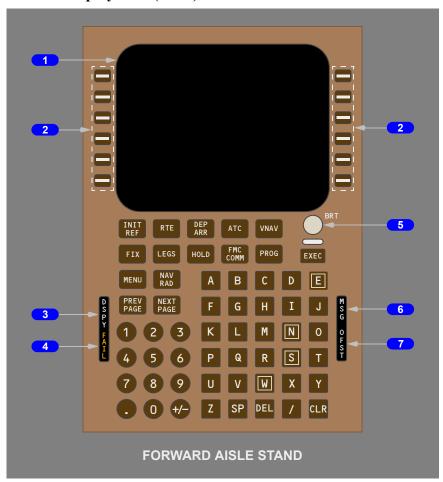
DO NOT USE FOR FLIGHT Management, Navigation - Table of Contents

707 Fight Ciew Operations Manual
Route Offset
Cruise Page
All Engine Cruise
Engine Out Cruise
VNAV Modifications
Cruise Climb
Planned Step Climb
Calculated Step Climb
Cruise Descent
Early Descent
Navigation Data
Reference Navigation Data Page
Fix Information Page
In–Flight Position Update
Route and Waypoint Data
Route Data Page
Wind Data
Wind Page
Progress Pages
Progress Page 1
Progress Page 2
Position Report Page
FMC Descent and Approach
Introduction
Early Descent
Descent
Descent Page
Descent Forecast Page
Offpath Descent Page
Engine Out Descent
Approach
Arrivals Page – IFR Approaches
Vertical Angle Display on the Route Legs Page 11.43.10
Copyright © The Boeing Company. See title page for details.

Flight Management, Navigation NOT USE FOR FLIGHT Table of Contents

Arrivals Page – VFR Approaches
Approach Reference Page
Alternate Airport Diversions
Alternate Page
XXXX Alternate Page
Holding11.43.21
Hold Page (First Hold)
Hold Page (Existing Hold)
FMS Alternate Navigation System Description
Introduction
Alternate Navigation Waypoints
Alternate Lateral Navigation
Route Changes
Course Reference
Alternate Navigation CDU Pages
IRS Legs Page
IRS Progress Page
EICAS Messages
EICAS and CDU Messages
FMC Messages
FMC Alerting Messages
FMC Advisory Messages
CDU Annunciator Lights

DO NOT USE FOR FLIGHT


767 Flight Crew Operations Manual

Flight Management, Navigation Controls and Indicators

Chapter 11 Section 10

Flight Management System

Control Display Unit (CDU)

Control Display Unit (CDU) Display

Displays CDU data pages.

2 Line Select Keys

Push -

- moves data from scratchpad to selected line
- moves data from selected line to scratchpad
- selects page, procedure, or performance mode as applicable
- deletes data from selected line when DELETE is shown in scratchpad.

3 Display (DSPY) Light

Illuminated (white) -

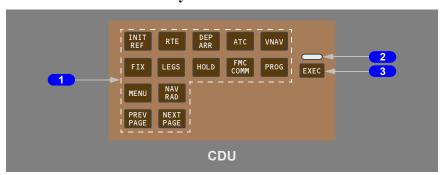
- when RTE page 3 or greater, RTE LEGS page 2 or greater, RTE DATA page 2 or greater is shown
- when airplane is not in holding pattern shown on HOLD page
- when modification is in progress, and any RTE, RTE LEGS, RTE DATA, HOLD, CLB, CRZ, or DES page is shown.

4 FAIL Light

Illuminated (amber) – fault detected in related FMC.

5 Brightness Control

Rotate – controls display brightness.


6 Message (MSG) Light

Illuminated (white) – scratchpad message is shown.

7 Offset (OFST) Light

Illuminated (white) – LNAV gives guidance for lateral route offset.

Function and Execute Keys

DO NOT USE FOR FLIGHT Sight Management, Navigation Controls and Indicators

767 Flight Crew Operations Manual

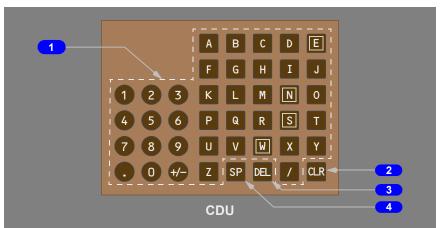
CDU Function Keys

Push -

- INIT REF displays page for data initialization or for reference data
- RTE displays page to input or change origin, destination, or route
- DEP ARR displays page to input or change departure and arrival procedures
- ATC displays ATC datalink pages (function inoperative)
- VNAV displays page to view or change vertical navigation path data
- FIX displays page to create reference points on the map display
- LEGS -
 - displays page to evaluate or modify lateral and vertical route data
 - displays page to control the center point on the PLAN mode display
- HOLD displays page to create holding patterns and show holding pattern data
- FMC COMM displays FMC data link status page (function inoperative)
- PROG displays page to view dynamic flight and navigation data, including waypoint and destination ETAs, fuel remaining, and arrival estimates
- MENU displays page to choose subsystems controlled by CDU
- NAV RAD displays page to monitor or control VOR tuning
- PREV PAGE displays previous page of related pages (for example, LEGS pages)
- NEXT PAGE displays next page of related pages.

2 Execute Light

Illuminated (white) – active data is modified but not executed.


3 Execute (EXEC) Key

Push -

- makes data modification(s) active
- extinguishes execute light.

Copyright © The Boeing Company. See title page for details.

Alpha/Numeric and Miscellaneous Keys

1 Alpha/Numeric Keys

Push -

- puts selected character in scratchpad
- Slash (/) key puts "/" in scratchpad
- Plus Minus (+/–) key first push puts "–" in scratchpad. Subsequent pushes alternate between "+" and "–".

2 Clear (CLR) Key

Push -

- if scratchpad message is present clears scratchpad message.
- if scratchpad entry in progress clears last scratchpad character

Push and hold – clears all scratchpad data.

3 Delete (DEL) Key

Push – enters "DELETE" in scratchpad.

4 Space (SP) Key

Push – puts space in scratchpad.

Note: The SP key is normally used when keying in messages for datalink communications. If the SP key is inadvertently pressed while keying in data for FMC use, it will result in an INVALID ENTRY scratchpad message when attempting to select the data to the appropriate line. Should this occur, clear the scratchpad and begin again.

CDU Page Components

1 Page Title

Subject or name of data shown on page.

ACT (active) or MOD (modified) displays whether page contains active or modified data

2 Line Title

Title of data on line below

3 Line

Displays -

- prompts
- · selectors
- data.

4 Prompts

Show pages, select modes, and control displays. Caret, "<" or ">", is displayed before or after the prompt adjacent to the related line select key.

5 Page Number

Left number is page number. Right number is total number of related pages. Page number is blank when only one page exists.

Copyright © The Boeing Company. See title page for details.

6 Boxes

Data input is mandatory.

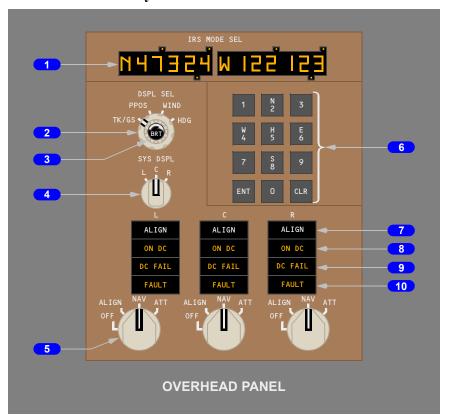
7 Dashes

Data input is optional. The data is not mandatory.

8 Scratchpad

Displays messages, alphanumeric entries or line selected data.

FMC Annunciator Light


1 FMC Annunciator Light

Illuminated (amber) –

- CDU is displaying an operationally significant message in the scratchpad
- pushing CDU CLR key extinguishes the light and clears the scratchpad message

Inertial System

Inertial Reference System

1 IRS DISPLAY

Displays track, groundspeed, present position, wind or heading as controlled by display selectors or keyboard.

2 IRS Display Selector

Selects data for display when keyboard not in control.

- TK/GS displays present true track and groundspeed
- PPOS displays present position
- WIND displays present true wind when inflight
- HDG displays present true heading.

Copyright © The Boeing Company. See title page for details.

Flight Management, Navigation NOT USE FOR FLIGHT

767 Flight Crew Operations Manual

3 Brightness Control

Rotate – controls intensity of display.

4 IRS System Display Selector

Selects system to display data when keyboard not in control.

5 IRS Mode Selectors

Rotate – controls mode of related IRS.

Must be pulled out to move from NAV position.

OFF -

- · alignment is lost
- ALIGN light illuminates for 30 seconds as system goes through a shutdown sequence
- realignment requires about 10 minutes while the airplane is parked and entry of present position (latitude and longitude).

ALIGN -

- · initiates alignment when parked
- initiates a quick alignment if selected when the system is in the navigation mode.

NAV -

- normal operational mode
- permits system to enter NAV mode after completing alignment
- initiates a 10 minute alignment if selected from OFF.

ATT -

- provides only attitude and heading information
- position and ground speed information lost until system realigned on ground
- when selected airborne, ALIGN light illuminates for 30 seconds while system senses local level (requires level flight)
- magnetic heading input required to initialize heading output
- the selector must be cycled through OFF to re-enter ALIGN or NAV mode

6 IRS Keyboard

Push an alpha key to begin entry.

- pushing the N, S, E or W keys changes the IRS display to keyboard control and arms the keyboard for latitude or longitude entry
- pushing H changes the display to keyboard control and arms the keyboard for heading entry.

DO NOT USE FOR FLIGHTight Management, Navigation -Controls and Indicators

767 Flight Crew Operations Manual

Enter (ENT) Key – push

- enters data from display into all three IRS systems
- restores display to the display selector setting

Clear (CLR) Key – push

- clears data keyed into display
- restores display to the display selector setting.

7 ALIGN Lights

Illuminated (white) -

- steady the related IRS is operating in the ALIGN mode, the initial ATT mode, or the shutdown cycle
- flashing alignment cannot be completed due to IRS detection of:
 - significant difference between previous and entered positions or an unreasonable present position entry
 - no present position entry.

Extinguished -

- · IRS not in ALIGN mode
- with mode selector in NAV, alignment is complete, and all IRS information is available
- with mode selector in ATT, attitude information is available. Heading information is available following entry of initial magnetic heading.

8 ON DC Lights

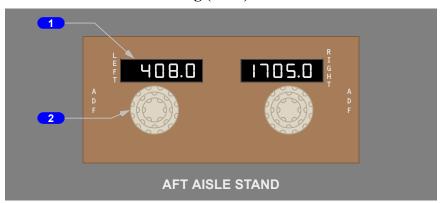
Illuminated (amber) –

- normal AC power for the related IRS has failed and the IRS is operating on DC backup power from the hot battery bus (AC power not normal)
- if on the ground, the ground–call horn in the nose wheel well sounds, providing an alert that a battery drain condition exists
- EICAS advisory message L, C or R IRS ON DC is displayed
- momentary illumination is normal during alignment self-test.

9 DC FAIL Lights

Illuminated (amber) –

- DC backup power for the related IRS has failed
- if the other lights are extinguished, the IRS is operating normally on AC power.
- EICAS advisory message L, C or R IRS DC FAIL is displayed


Copyright © The Boeing Company. See title page for details.

10 FAULT Lights

Illuminated (amber) – a system fault affecting the related IRS ATT and/or NAV modes has been detected. The EICAS advisory message L, C or R IRS FAULT is also displayed.

Radio Navigation Systems

Automatic Direction Finding (ADF) Control

Frequency Indicators

Display the frequency selected with the related frequency selector.

2 Frequency Selectors

Rotate -

- outer knob sets the hundreds number
- · middle knob sets the tens number
- inner knob sets the tenths and ones number.

Transponder Panel

1 Transponder Mode Selector

TEST – activates test.

STBY – deactivates transponder.

ALT RPTG OFF – activates transponder without altitude reporting if airplane is in–flight.

XPDR – activates transponder with altitude reporting if airplane is in–flight.

TA ONLY – activates TCAS Traffic Advisory (TA) mode and altitude reporting. (refer to Chapter 15, Warning Systems)

TA/RA – activates TCAS TA and Resolution Advisory (RA) modes. (refer to Chapter 15, Warning Systems)

Transponder Code Selector

Sets transponder code in transponder code window and both Transponders.

3 Transponder Code Window

Displays transponder code.

4 ATC FAIL Light

Illuminated (amber) – selected transponder has failed.

5 Transponder (XPDR) Selector

L or R – selects transponder for operation.

6 Identification (IDENT) Switch

Push – transmits an identification signal.

ILS Control Panel

Copyright © The Boeing Company. See title page for details.

1 ILS Frequency (FREQ) Indicator

Displays frequency tuned in all three ILS receivers or dashes (----) if the selector is in the standby position. The display is generated by the center ILS receiver.

2 ILS Frequency Selector

Rotate – tunes all ILS receivers.

- tuned frequency displayed in frequency indicator
- · received data is displayed on the ADI
- if an ILS mode is selected on the HSI, ILS data is displayed on the related HSI and the associated DME is tuned to the ILS frequency
- VOR frequencies cannot be tuned
- frequency change is inhibited when all three autopilots are armed and either Localizer or Glideslope is captured
- dashes are displayed when turned to the standby position. ILS display symbology is removed from the ADI when dashes are displayed

3 ILS Front Course (F. CRS) Indicator

Displays the selected front course.

4 ILS Front Course Selector

Rotate – selects the ILS front course.

5 ILS Test Switch

Push – sends a test signal to all ILS receivers except during multiple autopilot approaches after either the localizer or glideslope is captured.

VOR Control Panel

DO NOT USE FOR FLIGHT Management, Navigation - Controls and Indicators

767 Flight Crew Operations Manual

1 VOR Frequency (FREQ) Indicator

Indicates the frequency selected by the frequency selector.

2 VOR Frequency Selector

Rotate -

- when MAN light illuminated, tunes related VOR and also tunes DME if HSI mode selector is not in an ILS position
- ILS frequencies cannot be tuned.

3 VOR Course (CRS) Indicator

Displays course set by VOR course selector.

4 VOR Course Selector

ROTATE – sets course in VOR course indicator and EFIS

5 VOR/DME Switch

Push -

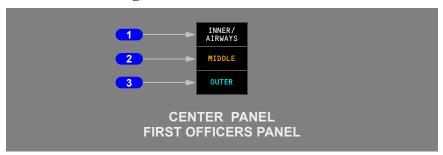
- alternates VOR and DME tuning between the FMC (AUTO) automatic and VOR frequency selector (MAN) manual when the HSI mode selector is in a MAP or PLAN mode.
- only MAN available when the HSI is not in a MAP or PLAN mode.

AUTO Light illuminated (white) -

- FMC is tuning related VOR and DME
- HSI selector must be in a MAP or PLAN mode.

MAN Light illuminated (white) -

- VOR frequency selector is tuning VOR
- if the HSI mode selector is not in an ILS mode, the VOR frequency selector tunes the DME
- if the HSI mode selector is in an ILS mode, the ILS frequency selector tunes the DME.


Copyright © The Boeing Company. See title page for details.

August 17, 2007

D632T001-300

11.10.13

Marker Beacon Lights

1 INNER/AIRWAYS

Illuminates (white) – over an inner or airways marker beacon.

2 MIDDLE

Illuminates (amber) – over a middle marker beacon.

3 OUTER

Illuminates (blue) – over an outer marker beacon.

Weather Radar

Weather Radar Control Panel

1 System (SYS) Switch

L – selects left weather radar system.

R – selects right weather radar system.

INOP – the right system is not installed.

GAIN Control

AUTO – normal operation, detent position provides automatic gain control calibrated for optimum return.

Rotate – provides manual control of radar gain. Gain increases as control is rotated clockwise toward MAX.

3 Mode Selector

TEST – activates system test.

WX – displays weather radar returns at selected gain level.

WX/TURB – displays weather radar returns plus turbulence. Turbulence is only displayed within 40 NM of the airplane.

MAP – displays ground returns.

4 TILT Control

Rotate clockwise – radar antenna tilts up to selected degrees from horizon.

Rotate counterclockwise – radar antenna tilts down to selected degrees from horizon.

GAIN Control

CAL – normal operation, detent position provides automatic gain control calibrated for optimum return.

Rotate – provides manual control of radar gain. Gain increases as control is rotated clockwise toward MAX.

MODE Switches

TEST – activates system test.

WX – displays weather radar returns at selected gain level.

Copyright © The Boeing Company. See title page for details.

August 17, 2007

D632T001-300

11.10.15

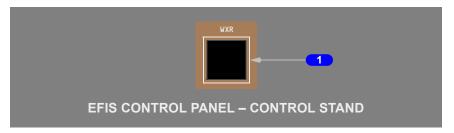
Flight Management, Navigation NOT USE FOR FLIGHT Controls and Indicators

767 Flight Crew Operations Manual

WX+T – displays weather radar returns plus turbulence. Turbulence is only shown on display ranges of 40 miles or less.

MAP – displays ground returns.

IDNT – suppresses ground returns. Normal operation is with this switch off because weather returns can also be suppressed.


STAB – activates antenna stabilization.

3 TILT Control

Rotate clockwise – radar antenna tilts up to selected degrees from horizon.

Rotate counterclockwise – radar antenna tilts down to selected degrees from horizon.

Weather Radar Switch

1 Weather Radar (WXR) Switch

Push – alternately selects the HSI radar display on and off. The radar transmitter is activated when the radar is displayed on either HSI.

DO NOT USE FOR FLIGHT

767 Flight Crew Operations Manual

Flight Management, Navigation Navigation Systems Description

Chapter 11 Section 20

11.20.1

Introduction

Navigation systems include the global positioning system (GPS), inertial reference system (IRS), VOR, DME, ILS, ADF, ATC transponder, weather radar, and the flight management system (FMS). The FMS is described in the Flight Management System Description section of this chapter.

The FMC will provide navigation guidance and map display between 87° North and 87° South latitudes.

Navigation Systems Flight Instrument Displays

Refer to Chapter 10, Flight Instruments, Displays for flight instrument display system operations and typical instrument displays.

Inertial Reference System

The inertial reference system (IRS) calculates airplane position, acceleration, track, vertical speed, ground speed, true and magnetic heading, wind speed and direction. It also supplies attitude data for the displays, flight management system, flight controls, engine controls, and other systems.

The IRS consists of three Inertial Reference Units (IRUs) and the IRS mode selector panel.

Inertial Reference System Operation

The Inertial Reference System is controlled by the IRS Mode Control Panel on the overhead panel. When operating in the navigation mode, the IRS provides attitude, acceleration, ground speed, track, true and magnetic heading, present latitude and longitude, and wind speed and direction to other systems.

Magnetic heading and track are not available in polar regions. Magnetic reference is provided between N73° and S60° latitude. Above these latitudes only true headings are available.

IRS Alignment

An IRS must be aligned before it can enter the NAV mode. Rotating the IRS mode selector from OFF to NAV begins the IRS alignment. The IRS performs a short power test, during which the ON DC light illuminates. When the ON DC light extinguishes the ALIGN light illuminates. Alignment requires approximately ten minutes.

Flight Management, Navigation NOT USE FOR FLIGHT Navigation Systems Description

767 Flight Crew Operations Manual

Present position (latitude and longitude) must be entered on the CDU position initialization page to complete the alignment. If the present position cannot be entered through the CDU, it may be entered through the IRS mode selector keyboard.

If the latitude/longitude position is not near the origin airport, the CDU scratchpad message VERIFY POSITION is displayed. If the entered latitude/longitude position does not pass the IRS internal comparison tests, the scratchpad message ENTER IRS POSITION is displayed.

Alignment can be accomplished only when the airplane is parked. Alignment stops if an IRU detects motion during alignment. When the motion stops, some units automatically restart the alignment. Other units flash the ALIGN Light until the alignment is restarted. Manual restarts are accomplished by moving the IRS Mode Selector to OFF, then back to NAV after the ALIGN Light stops flashing.

The IRS is aligned when all IRUs enter the navigation mode. The latitude and longitude display on the SET IRS POS line of the CDU POS INIT page then blanks. Alignment is lost if the selector is moved out of the NAV position.

High Latitude Alignment

High latitude (between $70^{\circ} \sim 12.0'$ and $78^{\circ} \sim 15.0'$) alignments requires an extended alignment time. This extended alignment is accomplished by rotating the Mode Selector from OFF to the ALIGN position and allowing the IRS to align for a minimum of 17 minutes. Present position is entered while in the align mode. After the extended alignment, navigation mode is entered by rotating the mode selector to the NAV position.

Fast Alignment

Following operation in the navigation mode and with the airplane parked, performing a fast alignment removes accumulated track, ground speed, and attitude errors, levels the system, and updates present position. This is accomplished by positioning selectors to ALIGN, entering present position, and repositioning selectors to NAV. Fast alignment completes in approximately 30 seconds.

Fast alignment can be accomplished without entering present position. However, greater navigational accuracy is attained by entering present position.

A full alignment, accomplished by rotating the IRS mode selector to OFF and back to NAV, must be accomplished when the time from the last full alignment exceeds 18 hours.

DO NOT USE FOR FLIGHFlight Management, Navigation - Navigation Systems Description

767 Flight Crew Operations Manual

IRS Attitude

If alignment is lost in flight, the navigation mode is inoperative for the remainder of the flight. Attitude information can be obtained by moving the selector to the attitude (ATT) position. The IRU enters the Align mode for 30 seconds during which the airplane should stay in straight and level flight. This re—levels the system and provides an attitude reference. Some attitude errors may occur during acceleration. After acceleration, errors are slowly removed.

Heading information can be provided in the ATT Mode if a heading entry is made on the CDU POS INIT page or IRS mode selector panel. Magnetic heading must be updated periodically.

IRS Power

Normally the IRSs operate on AC power from the left and right electrical systems. The main airplane battery is used as an alternate power source. The ON DC light illuminates and the EICAS message IRS ON DC is displayed when AC power is lost and DC power is being used. The DC FAIL light illuminates and the EICAS message IRS DC FAIL is displayed when DC power is lost and AC power is being used. Both lights extinguish if both AC and DC power are on or off.

If all AC power sources are lost the IRSs are powered by the Standby power system.

Standby power to the right IRS is limited to 5 minutes to save battery power.

Radio Navigation Systems

Automatic Direction Finding (ADF)

A dual ADF system is installed with the control panel located on the aft electronics panel.

The ADF bearing signals are displayed on pointers and flags on the HSIs and can also be displayed on the RDMIs.

Distance Measuring Equipment (DME).

Two DME systems are installed and each can be automatically tuned by the FMC or manually tuned by the VOR or ILS control panel.

DME Tuning

When the HSI Mode Selector is in the VOR or ILS position, the related panel tunes the DME. When the HSI selector is in the MAP or PLAN position automatic FMC tuning or manual VOR panel tuning can be selected with the MAN/AUTO switch on the VOR panel.

The DME can also be remotely tuned by entering a VOR frequency on the NAV RADIO page on the CDU.

Flight Management, Navigation NOT USE FOR FLIGHT Navigation Systems Description

767 Flight Crew Operations Manual

The FMC uses two DMEs for position updates. If only one DME is available the FMC can use that DME and the associated VOR for a VOR/DME update.

The FMC cannot tune specific DMEs if the navaids are inhibited on the REF NAV DATA page.

When either or both VORs are being auto tuned by the FMCs the DME receivers are scanned through several frequencies. This provides the FMC with continuous DME–DME updating even when one VOR is being manually tuned or when both VORs are remotely tuned. If both VORs are manually tuned the scanning DME function is disabled.

DME Displays

DME distance is displayed on the RDMI. When the DME is tuned by the ILS receiver the distance display is preceded by an L. DME distance is also displayed on the HSI when a VOR or ILS display is selected.

The POS REF page 2/4 and the NAV RADIO page display the identifiers of the DME stations used for FMC position updates.

VOR

There are two VOR receivers and two control panels installed.

VOR Tuning

In normal operation the FMC tunes both VORs and the associated DMEs for radio position updates. The HSI must be in the MAP or PLAN mode to allow FMC tuning of the VOR.

Specific VOR navaids can be inhibited on the REF NAV DATA page to prevent the FMC from using those navaids for position updating.

The crew can tune the VORs manually using the control panels, or remotely using the CDU. If the HSI is not in a MAP or PLAN mode, the associated VOR must be manually tuned using the control panel.

If the HSI is in the MAP or PLAN mode, the AUTO/MAN switch on the control panel must be selected to MAN to manually tune the VOR.

If the switch is in AUTO, the VOR can be remotely tuned on the CDU NAV RADIO page.

VOR Displays

Left and right VOR bearings can be displayed on the RDMIs. When VOR is selected on the HSI, the selected course and course deviation are displayed.

The tuned frequencies and selected courses are displayed on the VOR control panels on the glareshield.

DO NOT USE FOR FLIGHFlight Management, Navigation - Navigation Systems Description

767 Flight Crew Operations Manual

If the HSI is in a MAP mode, symbols indicate the position of tuned VORs on the map display. If a VOR is manually tuned, the selected course is displayed on the HSI map as a dashed green line.

The identifier and frequency of the navaid tuned on the left and right VOR are displayed on the NAV RADIO page. The current radial of the tuned navaids are also displayed digitally on the NAV RADIO page.

POS REF page 2 displays the identifier of the navaids being used for position updates.

Marker Beacon

Each pilot has a set of marker beacon lights that show outer, middle and inner/airways beacon passage. Both sets are operated by the marker beacon receiver that is part of the left VOR receiver.

Multi-Mode Receiver

Three Multi–Mode Receivers (MMRs) are installed. Each MMR includes an ILS and GPS receiver. The GPS receiver in the center MMR is not used.

Instrument Landing System (ILS)

Three ILS receivers are installed. They are controlled by a single control panel on the aft electronics panel. Frequency changes are inhibited after localizer or glideslope capture if three autopilots are armed for approach. The selected runway front course is locked to prevent changes when the localizer is captured.

ILS Displays

Localizer and glideslope deviation are shown on the ADIs and Standby Attitude Indicator. When the ILS display is selected on the HSI, localizer and glideslope deviation plus the selected course and frequency are displayed. Front or back course deviation is determined from airplane heading.

Global Positioning System (GPS)

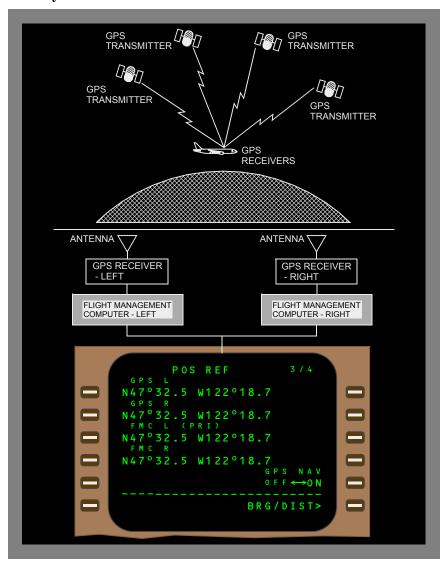
Left and right GPS receivers are independent and supply very accurate position data to the FMC. The GPS receivers are contained in the left and right Multi–Mode Receivers (MMRs). All GPS tuning is automatic.

GPS Displays

Position Reference, page 3 of 4 (POS REF 3/4) displays the left and right GPS position.

Flight Management, Navigation NOT USE FOR FLIGHT Navigation Systems Description

767 Flight Crew Operations Manual


GPS Data

The FMC uses GPS data for position information as long as the GPS is enabled and the GPS data is valid. If GPS data is not available or is unreliable the FMC will use Radio or IRS position data.

The GPS NAV prompt on POS REF page 3/4 can be used to inhibit GPS navigation data. The EICAS message GPS alerts the crew when data from both GPS systems are unavailable or when both systems have failed.

GPS position updates are allowed for all United States National Airspace approach operations. Outside of this region, GPS position updates are allowed during approaches only if the FMC database and approach charts are referenced to the WGS–84 reference datum. GPS updates should be inhibited for all other approach operations unless other appropriate procedures are used.

GPS System Schematic

Transponder

There are two ATC transponders installed. They are controlled by a single control panel and provide normal transponder functions and altitude reporting. The control panel is used to set the ATC code, operating mode, and to select which transponder is active.

Flight Management, Navigation NOT USE FOR FLIGHT Navigation Systems Description

767 Flight Crew Operations Manual

The transponder is also capable of providing traffic alert and collision avoidance system (TCAS) indications. Select TA ONLY or TA/RA to enable traffic displays. Refer to Chapter 15, Warning systems, for a description of TCAS.

Failure of a transponder is indicated by the illumination of the amber ATC FAIL light on the control panel and the ATC FAULT advisory message on EICAS.

Weather Radar

[Basic: Weather radar single.]

The weather radar system consists of a receiver–transmitter, an antenna, and a control panel.

[Option: Weather radar dual.]

The weather radar system consists of two receiver—transmitters, an antenna, and a control panel. The control panel provides manual selection of which receiver-transmitter is used.

Radar returns are displayed on the HSI.

The weather radar switch (WXR) on the EFIS control panel selects the weather radar display. The radar display range is set by the range selected on the EFIS control panel.

The radar system transmits when either WXR switch is selected on.

Turbulence can be sensed by the weather radar only when there is sufficient precipitation. Turbulence is displayed in magenta. Clear air turbulence can not be sensed by radar.

The predictive windshear alerting system uses the weather radar to sense windshear. To provide windshear alerting the weather radar transmitter is activated on the ground when takeoff power is set and in flight when the airplane is below 2300 feet radio altitude. Weather radar returns are not displayed unless the WXR switch is ON, or a predictive windshear alert occurs. Weather radar returns can only be displayed in VOR, APP, MAP and CTR MAP modes.

DO NOT USE FOR FLIGHT

767 Flight Crew Operations Manual

Flight Management, Navigation Flight Management System Description

Chapter 11 Section 30

Introduction

The flight management system (FMS) aids the flight crew with navigation, in–flight performance optimization, automatic fuel monitoring, and flight deck displays. Automatic flight functions manage the airplane lateral flight path (LNAV) and vertical flight path (VNAV). The displays include a map for airplane orientation and command markers on the airspeed, and thrust indicators to help in flying efficient profiles.

The flight crew enters the applicable route and flight data into the CDUs. The FMS then uses the navigation database, airplane position, and supporting system data to calculate commands for manual and automatic flight path control.

The FMS tunes the navigation radios for position updating. The FMS navigation database supplies the necessary data to fly routes, SIDs, STARs, holding patterns, and procedure turns. Cruise altitudes and crossing altitude restrictions are used to calculate VNAV commands. Lateral offsets from the programmed route can be calculated and commanded.

Flight Management Computer (FMC)

The heart of the flight management system is the flight management computer. Under normal conditions, one FMC accomplishes the flight management tasks while the other FMC monitors. The second FMC is ready to replace the first FMC if system faults occur.

The FMC uses flight crew—entered flight plan data, airplane systems data, and data from the navigation database to calculate airplane present position and generate the pitch, roll, and thrust commands necessary to fly an optimum flight profile. The FMC sends these commands to the autothrottle, autopilot, and flight director.

Map and route data are sent to the HSIs. The EFIS control panels are used to select the data to be displayed on the HSIs.

The mode control panel selects the autothrottle, autopilot, and flight director operating modes. Refer to the following chapters for operation of these other systems:

- Chapter 4, Automatic Flight
- Chapter 10, Flight Instruments, Displays.

The FMC is certified for area navigation when used with navigation radio and/or GPS updating. The FMC and CDU are used for enroute and terminal area navigation, RNAV approaches, and as a supplement to primary navigation means when conducting other types of nonprecision approaches.

Description 767 Flight Crew Operations Manual

Control Display Units (CDUs)

Two CDUs are used to control the FMC.

The CDUs also provide alternate navigation capability if there is a dual FMC failure (refer to the Alternate Navigation section of this chapter). The CDUs can also provide control of other systems which are accessed through the menu page.

DO NOT USE FOR FLIGHT

767 Flight Crew Operations Manual

Flight Management, Navigation Flight Management System Operation

Chapter 11 Section 31

Introduction

Many FMS functions change depending on the current phase of flight. When first powered, the FMS is in the preflight phase. As a phase is completed, the FMS changes to the next phase in this order:

- preflight
- · takeoff
- climb
- cruise

- · descent
- · approach
- · flight complete.

Preflight

During preflight, flight plan and load sheet data are manually entered into the CDU. The flight plan defines the route of flight from the origin to the destination and initializes LNAV. Flight plan and load sheet data are provided to the FMC to enable performance calculations and initialize VNAV.

Required preflight data consists of:

- · initial position
- · route of flight

- performance data
- takeoff data

Optional preflight data includes:

- · navigation database selection
- route 2
- alternate airport

- SID
- STAR
- wind

Each required or optional data item is entered on specific preflight pages.

Preflight starts with the IDENT page. If the IDENT page is not displayed, it can be selected with the IDENT prompt on the INIT/REF INDEX page. Visual prompts help the flight crew select necessary CDU preflight pages. Preflight pages can be manually selected in any order.

After the necessary data on each preflight page is entered and checked, the lower right line select key selects the next preflight page. When ACTIVATE is selected on the ROUTE page, the execute (EXEC) light illuminates. Push the EXEC key to make the route active.

Use the departure/arrival (DEP/ARR) page to select a standard instrument departure (SID). Selection of the SID may cause a route discontinuity in the flight plan. The modification can be connected to the existing route and executed. This is accomplished on the ROUTE or LEGS page.

When all required preflight entries are complete, PRE–FLT COMPLETE is displayed on the TAKEOFF REF page.

Operation 767 Flight Crew Operations Manual

Takeoff

The takeoff phase starts with engagement of takeoff thrust and extends to the thrust reduction altitude where climb thrust is normally selected.

Climb

The climb phase starts at the thrust reduction altitude and extends to the top of climb (T/C) point. The T/C is the position where the airplane reaches the cruise altitude entered on the PERF INIT page.

Cruise

The cruise phase starts at the T/C point and extends to the top of descent (T/D) point. Cruise can include step climbs and en route descents.

Descent

The descent phase starts at the T/D point or when the VNAV descent page becomes active. The descent phase extends to the start of the approach phase.

Approach

The approach phase starts when intercepting the first leg of a published approach selected from the ARRIVALS page.

Flight Complete

Thirty seconds after engine shutdown, the flight complete phase clears the active flight plan and load data. Some preflight data fields initialize to default values in preparation for the next flight.

Operational Notes

When operating in the LNAV and VNAV modes, system operation must be monitored for unwanted pitch, roll, or thrust commands. If unwanted operation is noticed, roll and pitch modes other than LNAV and VNAV must be selected.

The system must be carefully monitored for errors following:

- activation of a new data base
- · power interruption
- · IRS failure.

When operating far off the route, the FMC may not sequence to the next waypoint when the airplane passes abeam the active waypoint.

LNAV can only capture the active leg. It cannot capture an inactive leg in the active route. The DIRECT TO or INTERCEPT COURSE TO procedures can be used to create an active leg for capture.

767 Flight Crew Operations Manual

When a waypoint is in the route more than once, certain route modifications (such as DIRECT TO and HOLD) use the first occurrence of the waypoint even if the second occurrence is selected.

Some SIDs or STARS contain a heading vectors leg. VECTORS waypoints display on the map display as a magenta line without an end point leading away from the airplane symbol. If LNAV is engaged, the DIRECT TO or INTERCEPT COURSE TO procedure can be used to start waypoint sequencing beyond the vectors leg.

When entering airways in a route page, the start and end waypoints must be in the data base. Otherwise, the route segment must be entered as a DIRECT leg.

If the engines remain operating between flights, entering a new cruise altitude before the next flight recalculates the proper vertical profile.

If a climb to cruise altitude is necessary after completing a descent, a new cruise altitude entry must be made. Cruise altitude can be entered on the CLB page.

Direct—to courses are segments of a great circle route. When entering a direct—to waypoint on the LEGS page, the course above the waypoint before execution is the arrival course at the waypoint. However, after execution, the course is the current course to fly to the waypoint. These courses may not be the same.

Terminology

The following paragraphs describe FMC and CDU terminology.

Active – flight plan data being used to calculate LNAV or VNAV guidance commands.

Activate – the procedure to change an inactive route to the active route for navigation. It is a two step procedure.

- select the ACTIVATE prompt
- push the execute (EXEC) key.

Altitude constraint – a crossing restriction at a waypoint.

Delete – using the delete (DEL) key to remove FMC data and revert to default values, dash or box prompts, or a blank entry.

Econ – a speed schedule calculated to minimize operating cost. The economy speed is based on the cost index. A low cost index causes a lower cruise speed. Maximum range cruise or the minimum fuel speed schedule may be obtained by entering a cost index of zero. This speed schedule ignores the cost of time.

A low cost index may be used when fuel costs are high compared to operating costs.

A minimum time speed schedule may be obtained by entering a cost index of 9999. This speed schedule calls for maximum flight envelope speeds.

Copyright © The Boeing Company. See title page for details.

February 14, 2007

D632T001-300

11.31.3

Flight Management, Navigation NOT USE FOR FLIGHT Flight Management System

767 Flight Crew Operations Manual

Enter – insert data in the CDU scratchpad and line select the data to the applicable location. New characters can be typed or existing data can be line selected to the scratchpad for entry.

Erase – remove entered data, which has resulted in a modification, by selecting the ERASE prompt.

Execute – push the EXEC key when the light is illuminated to make modified data active

Inactive – data not being used to calculate LNAV or VNAV commands.

Initialize – entering data required to make the system operational.

Message – FMC information displayed in the scratchpad.

Modify – to change active data. When a modification is made to the active route or performance mode, MOD displays in the page title, ERASE displays next to line select key 6 left, and the EXEC key illuminates.

Prompt – CDU symbol that aids the flight crew in accomplishing a task. Prompts can be boxes, dashes, or symbols (< or >) to remind the flight crew to enter or select data

Reset – a self protection function which causes an FMC to shutdown and restart when an error is detected. Current flight and performance data is automatically re–loaded from the other FMC during the reset.

Select – pushing a key to obtain the necessary data or action, or to copy selected data to the scratchpad.

Speed restriction – an airspeed limit associated with a specified altitude entered by the flight crew.

Speed transition – an airspeed limit associated with a specified altitude entered from the database.

Waypoint – a point on the route or in the navigation database. It can be a fixed point such as a latitude and longitude, VOR or ADF station, or an airway intersection. A conditional waypoint is not associated with a land reference; it is based on a time or altitude requirement. An example of a conditional waypoint is "when reaching 1000 feet".

Navigation Position

The FMC determines present position from these navigation systems:

IRS

Operation

- · navigation radios.
- GPS

767 Flight Crew Operations Manual

The FMC uses its calculated present position to generate lateral steering commands along the active leg to the active waypoint. The FMC requires position data from the IRS. All other position sources are validated against the IRS position and are used to refine the FMC position.

FMC Position Determination

The FMC position is based on the IRS position adjusted with updates from available navigation signals.

FMC Position Update

FMC position may be manually updated to any of the navigation system positions. This update is accomplished on POS REF page 2.

On the ground, the FMC calculates present position based on IRS and the GPS data

If GPS NAV is OFF, the FMC updates position to the takeoff runway threshold when the autothrottle is engaged for takeoff. The runway data is on the TAKEOFF REF page. When an intersection takeoff is made, the intersection displacement distance from the runway threshold must be entered on the TAKEOFF REF page. If GPS NAV is ON, this update is inhibited. GPS navigation can be selected on or off on POS REF page 3/4.

In flight, the FMC position is continually updated from the GPS, navigation radios, and IRS. Updating priority is based on the availability of valid data from the supporting systems.

The FMC automatically tunes the VOR, DME, and ILS radios for position updates.

FMC position updates from navigation sensor positions follow this priority:

- one LOC and GPS (tuned for approach)
- one LOC and collocated DME (tuned for approach)
- one LOC and VOR with a collocated DME (tuned for approach)
- LOC (tuned for approach)
- GPS
- two DME stations
- one VOR with a collocated DME
- IRS

The selected station identifiers of the radio navigation aids are displayed on the POS REF page 2.

767 Flight Crew Operations Manual

Primary FMC Position Update Source	POS REF page 2/4
GPS	GPS
LOC, GPS valid*	LOC-GPS
LOC, DME DME valid; GPS invalid*	LOC-RADIO
LOC, VOR DME valid; GPS invalid*	LOC-RADIO
LOC valid; GPS, DME, VOR invalid*	LOC
DME DME valid; GPS invalid	RADIO
VOR DME valid; GPS invalid	RADIO
GPS, VOR, DME invalid	IRS
IRS invalid (no navigation capability)	blank

- * The FMC changes to LOC updating when:
 - the tuned localizer is associated with the destination runway
 - · valid localizer signal is being received
 - the airplane is within the criteria to ensure accurate LOC updating.

FMC Polar Operations

Operation

The FMC automatically starts polar operations when the calculated airplane position enters a polar region. The FMC switches all flight display inputs to reference true north while in these regions.

Automatic switching to a true north reference is annunciated by a flashing white box around the word TRU on the HSI. A TRUE heading reference can be selected with the heading reference switch when outside the polar region. The HSI displays a green box around the word MAG to annunciate the change back to magnetic reference. If the heading reference is TRU in the descent phase, the HSI displays an amber box around the word TRU

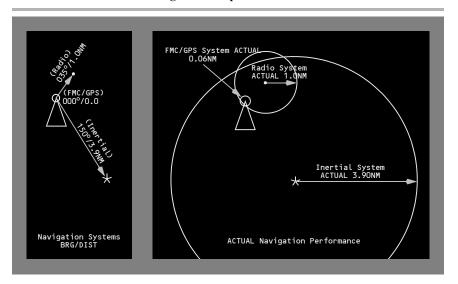
The navigation and display system does not support operations at latitudes greater than 87° North or South.

FMC Polar Regions

Polar regions are all areas above 73° North or below 60° South. Magnetic headings are not available in these areas.

Navigation Performance

The FMC uses data from the navigation systems to accurately calculate the position of the airplane. The current FMC position is displayed on line 1 of POS REF page 2. The primary source of update is shown in parentheses above the FMC position. The positions of each of the navigation systems are shown in lines 2 through 4. The flight crew can change the display format from latitude/longitude to bearing/distance format. The bearing/distance is from the FMC position to the individual navigation system position.


Actual Navigation Performance

Actual navigation performance (ANP) is the FMC current computed position accuracy. It is shown on POS REF page 2 (line 5L) titled ACTUAL. ACTUAL navigation performance is expressed in nautical miles. It represents the radius of a circle centered at the FMC position which defines the limit of the potential error in that position. The smaller the ANP the more accurate the FMC position.

ACTUAL navigation performance is also computed for each of the navigation systems and those values are displayed on POS REF page 2 adjacent to the system name. The systems' ACTUAL navigation performance is equivalent to the one calculated for the FMC.

After a manual position update, the ACTUAL navigation performance of the FMC changes to the ACTUAL navigation performance of the selected navigation system. In the example above, a manual position update to the INERTIAL system would change the FMC ACTUAL navigation performance to 3.9 NM. The FMC then updates from the best available navigation system and eventually, the manual update has no effect on position calculation. Some automatic updates can be inhibited: GPS on POS REF page 3 and VOR/DME updates on the REF NAV DATA page. Inertial and DME/DME updates can not be inhibited.

Operation 767 Flight Crew Operations Manual

Required Navigation Performance

Required navigation performance (RNP) values have been created and published for certain areas of operation and procedures. The RNP, expressed in nautical miles, defines the accuracy of the navigation equipment required to fly the route or procedure for which it is published. ACTUAL navigation performance should not exceed RNP. The FMC triggers the EICAS advisory or caution level message UNABLE RNP to alert the flight crew if ANP exceeds RNP. The FMC supplies a default RNP value for takeoff, enroute, oceanic/remote, terminal, and approach phases of flight. RNP is displayed on POS REF page 2. The flight crew may enter an RNP value, if required.

Lateral Navigation (LNAV)

LNAV provides steering commands to the next waypoint or the selected route intercept point. When armed on takeoff, LNAV engages at or above 50 feet when laterally within 2.5 nautical miles of the active route leg. FMC LNAV guidance normally provides great circle courses between waypoints. However, when an arrival or approach from the FMC data base is entered into the active route, the FMC commands a heading, track, or a DME arc to comply with the procedure.

Waypoints

Waypoint (navigation fix) identifiers are displayed on the CDU and on the map display.

767 Flight Crew Operations Manual

The CDU message NOT IN DATABASE is displayed if a manually entered waypoint identifier is not in the data base. The waypoint can still be entered as a latitude/longitude, place—bearing/distance or a place—bearing/place—bearing waypoint.

FMC-generated waypoints contain a maximum of five characters assigned according to the following rules.

Navaid Waypoints

VHF – waypoints located at VHF navaids (VOR/DME/LOC) are identified by one, two, three or four character facility identifier. Examples:

- Los Angeles VORTAC LAX
- Tyndall TACAN PAM
- Riga Engure, Latvia AN.

NDB (non-directional beacon) – waypoints located at NDBs are identified by use of the station identifier. Example: FORT NELSON, CAN – YE.

Fix Waypoints

Waypoints located at fixes with names containing five or fewer characters are identified by the name. Examples:

- DOT
- ACRA
- ALPHA

Long Waypoint Names

Waypoints with more than five characters are abbreviated using the following rules sequentially until five characters remain. For double letters, one letter is deleted. Example:

KIMMEL becomes KIMEL.

Keep the first letter, first vowel and last letter. Delete other vowels starting from right to left. Example:

BAILEY becomes BAILY.

The next rule abbreviates names even further. Apply the previous rule, then delete consonants from right to left. Example:

• BRIDGEPORT becomes BRIDGPRT then BRIDT.

Fixes with multiword names use the first letter of the first word and abbreviate the last word, using the above rules sequentially until a total of five characters remain. Examples:

- CLEAR LAKE becomes CLAKE
- ROUGH ROAD becomes RROAD.

Operation 767 Flight Crew Operations Manual

Unnamed Waypoints

If an unnamed turn point, intersection, or fix is collocated with a named waypoint or navaid on a different route structure (such as low altitude routes or an approach), the name or identifier of the collocated waypoint is used. Example:

• Unnamed turn point on J2 between the Lake Charles (LCH) and New Orleans (MSY) VORTACs is coincidental with the Lafayette (LFT) low altitude VORTAC. LFT is used as the identifier for the turn point.

Identifier codes for unnamed turn points not coincidental with named waypoints are constructed from the identifier of a navaid serving the point and the distance from the navaid to the point. If the distance is 99 nautical miles or less, the navaid identifier is placed first, followed by the distance. If the distance is 100 nautical miles or more, the last two digits are used and placed ahead of the navaid identifier. Examples (NAVAID – DISTANCE – IDENT):

- INW 18 INW 18
- CSN 106 06CSN

Waypoint located at unnamed flight information region (FIR), upper flight information region (UIR), and controlled airspace reporting points are identified by the three–letter airspace type identification followed by a two–digit sequence number. Example:

• FRA01

Unnamed oceanic control area reporting points in the northern hemisphere use the letters N and E, while points in the southern hemisphere use the letters S and W. Latitude always precedes longitude. For longitude, only the last two digits of the three digit value are used.

Placement of the designator in the five character set indicates whether the first longitude digit is 0 or 1. The letter is the last character if the longitude is less than 100° and is the third character if the longitude is 100° or greater.

N is used for north latitude, west longitude. E is used for north latitude, east longitude. S is used for south latitude, east longitude. W is used for south latitude, west longitude. Examples:

- N50° W040° becomes 5040N
- N75° W170° becomes 75N70
- N50° E020° becomes 5020E
- N06° E110° becomes 06E10
- S52° W075° becomes 5275W
- S07° W120° becomes 07W20
- S50° E020° becomes 5020S
- S06° E110° becomes 06S10.

Procedure Arc Fix Waypoint Names

Unnamed terminal area fixes along a DME arc procedure are identified with the first character D. Characters 2 through 4 indicate the radial on which the fix lies. The last character indicates the arc radius. The radius is expressed by a letter of the alphabet where A = 1 mile, B = 2 miles, C = 3 miles and so forth. Example:

• EPH252 $^{\circ}/24 = D252X$.

An unnamed waypoint along a DME arc with a radius greater than 26 miles is identified by the station identifier and the DME radius. Example:

• CPR $338^{\circ}/29 = CPR 29$

When there are multiple unnamed waypoints along a DME arc with a radius greater than 26 miles, the station identifier is reduced to two characters, followed by the radius, and then a sequence character. Examples:

- $CPR134^{\circ}/29 = CP29A$
- $CPR190^{\circ}/29 = CP29B$.

DME step down fixes are identified by the distance and a "D".

Examples: 138D, 106D, 56D, 3D.

Procedure Fix Waypoints

Marker beacons are identified by the marker type identifier followed by the runway number. Examples:

- Outer Marker 13R = OM13R
- Middle Marker 21 = MM21.

Waypoints located at unnamed runway-related fixes are identified by adding a two-letter prefix to the runway number. The following list is used to determine the applicable prefix:

- RX runway extension fix
- FA VFR final approach fix
- CF final approach course fix
- FF final approach fix
- IF initial approach fix
- OM outer marker
- MM middle marker
- IM inner marker

- BM back course marker
- MD minimum descent altitude
- A (+ an alpha) step down fix
- RW runway threshold
- MA missed approach point other than RW
- TD touchdown point inboard

Examples: OM25L, MM09, IM23, RW04, RW18L.

For airports with more than one approach to the same runway, the two letter prefix may change to allow different identifiers for the same waypoint. The first letter identifies the type of fix and the second letter identifies the type approach as follows:

Flight Management, Navigation NOT USE FOR FLIGHT Flight Management System

767 Flight Crew Operations Manual

- C() final approach course fix
- F() final approach fix
- P() missed approach point
- I() initial approach fix
- D() minimum descent altitude
- T() touch down point
- R() runway centerline intercept.
- ()I ILS

Operation

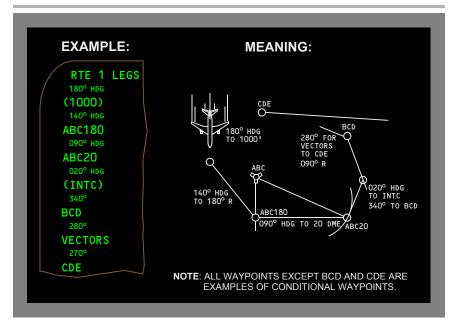
- ()L localizer only
- ()B –backcourse ILS
- ()D VOR/DME
- ()V VOR only
- ()S VOR with DME points
- ()N NDB
- ()Q NDB with DME points
- ()M MLS
- ()T Tacan
- ()R RNAV.

Examples: CI32R, PV15, FN24L.

Unnamed turn points that are part of a procedure are identified as a latitude and longitude waypoint. These include waypoints (except conditional waypoints) defined by flying a course or track from a waypoint (except conditional waypoints) to a radial or DME distance. These waypoints are automatically entered in a route by selection of a procedure using these waypoints, from the departures or arrivals page.

Airport reference points are identified by the ICAO identifier.

Duplicate Waypoints


Application of the abbreviation rules may create identical identifiers for different waypoints. When a duplicate waypoint identifier is entered, the page changes to the SELECT DESIRED WPT page. The page lists the latitude, longitude, and the type of facility or waypoint of all the waypoints with the same identifier. Select the latitude/longitude of the correct waypoint to enter the correct waypoint on the original page.

Conditional Waypoints

Conditional waypoints are automatically entered into a route as a result of selecting a procedure on a DEPARTURES or ARRIVALS page. They are not geographically fixed. They are defined by satisfying a condition such as passing an altitude or flying a heading to a radial. Some conditional waypoints are displayed on the map display. The conditions that may define conditional waypoints are:

- climb/descent through an altitude
- flying a heading to a radial or DME distance
- intercepting a course
- heading vectors to a course or fix.

Altitude and course intercept conditional waypoints display on the CDU inside (parenthesis) marks. The diagram below shows conditional waypoints.

Manually Entered Latitude/Longitude Waypoints

Pilot defined waypoints entered as a latitude and longitude are shown in a seven—character format. Latitude and longitude waypoints are entered with no space or slash between the latitude and longitude entries. Leading zeroes must be entered. All digits and decimal points (to 1/10 minute) must be entered unless the latitude or longitude are full degrees. Examples:

- N47° W008° is entered as N47W008 and is displayed as N47W008
- N47° 15.4' W008° 3.4' is entered as N4715.4W00803.4 and is displayed as N47W008.

Manually Entered Place–Bearing/Distance or Place–Bearing/Place–Bearing Waypoints

Waypoints entered as a place-bearing/distance or place-bearing/place-bearing are identified by the first three characters of the entry followed by a two-digit sequence number. Examples:

- SEA330/10 becomes SEA01
- SEA330/OLM020 becomes SEA02.

The two digit sequence numbers reserved for RTE1 are 01 through 49. The two digit sequence numbers reserved for RTE2 are 51 through 99.

Operation 767 Flight Crew Operations Manual

Manually Entered Airway Crossing Waypoints

Airway crossing fixes are entered as a five character waypoint name or by entering consecutive airways on the ROUTE page. In the latter case, the display is an X followed by the second airway name. Example: entering J70 on the VIA line of the ROUTE page causes box prompts to display opposite on the same line. Leaving the TO box prompts empty and entering J52 on the next VIA line, directly below J70, causes the FMC to calculate the intersection of the two airways and replace the boxes with the waypoint identifier, XJ52.

Manually Entered Latitude or Longitude Reporting Point Waypoints

Latitude or longitude reporting waypoints are entered as the full latitude or longitude followed by a dash, then the increment chosen for the following multiple waypoints. Example:

- W060–10 adds waypoints starting at W060 in ten degree increments from that point to the destination
- the entry must be made on a LEGS page on any line before the first reporting point
- usually, this entry is made on the active waypoint line and proper sequencing is performed by the FMC.

Manually Entered Along-Track Waypoints

Along–track waypoints are created on the active route and do not cause route discontinuities when they are created.

Along—track waypoints are entered using the waypoint name (the place), followed by a slash and minus sign, for points before the waypoint, or no sign for points after the waypoint, followed by the mileage offset for the newly defined waypoint. The created waypoint is then inserted over the original waypoint. The distance offset must be less than the distance between the originating waypoint and next (positive value) or preceding (negative value) waypoint. Latitude and longitude waypoints cannot be used to create along—track waypoints. Examples:

- VAMPS/25 is 25 miles after VAMPS on the present route and displays as VAM01
- ELN/–30 is 30 miles before ELN on the present route and displays as ELN01.

EO SID

An engine out SID is a procedure developed by an airline for a particular runway to provide unique routing if an engine fails on takeoff. If the database contains an EO SID for the takeoff runway and an engine fails while the flaps are extended, the active route is automatically modified to the engine out route. The modification may be either executed or erased.

Map Displays

The route is displayed on the HSI when a MAP or PLAN mode is selected.

The display color and format represent the following status:

- an inactive route is displayed as a cyan dashed line
- an activated, but not yet executed route, is displayed as a white dashed line
- the active route is displayed in magenta
- modifications to an active route are shown as dashed white lines
- modified waypoints are displayed in white
- executed route offsets are displayed as a dashed magenta line.
- prior to execution, entered route offsets are displayed as a dashed white line

The MAP displays the FMC position at the apex of the airplane symbol. All MAP data is displayed relative to this apex.

When adequate position updating is not available, the map may display a shift error. This error results in the displayed position of the airplane, route, waypoints and navigation aids being shifted from their actual position. An undetected, across track map shift may result in the airplane flying a ground track that is offset from the desired track. An undetected, along track map shift may result in the flight crew initiating altitude changes earlier or later than desired. In either case, an undetected map shift may compromise terrain or traffic separation.

Map shift errors can be detected by comparing the position of the airplane on the map with data from the ILS, VOR, DME, and ADF systems.

Vertical Navigation (VNAV)

VNAV provides vertical profile guidance through the climb, cruise, and descent phases of flight.

Speed/Altitude Constraints

VNAV controls the path and speed to comply with waypoint crossing constraints. Waypoint crossing constraints are entered on the LEGS page waypoint line by pushing the applicable key on the right side of the CDU. Barometric altitude constraints must be below the cruise altitude to be valid. Values entered as part of a procedure and manually entered constraints are shown in large font. FMC predicted values do not act as constraints, and are displayed in small font.

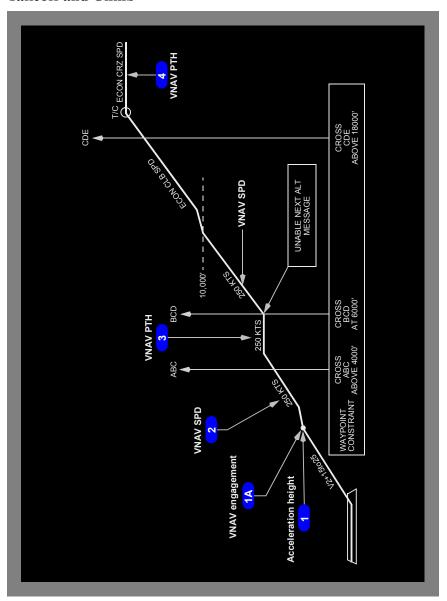
Waypoints can have altitude or airspeed/altitude constraints. Speed constraint entries require an altitude constraint at the same waypoint. All speed constraints are considered by the FMC as at or below constraints.

Copyright © The Boeing Company. See title page for details.

February 14, 2007

D632T001-300

11.31.15


Flight Management, Navigation NOT USE FOR FLIGHT Flight Management System Operation

767 Flight Crew Operations Manual

At or above altitude constraints are entered with a suffix letter A (example: 220A). At or below altitude constraints are entered with a suffix letter B (example: 240B). Mandatory altitude constraints are entered without any suffix letter (example: 270).

Altitude constraints with two altitudes may be entered in either order. The lower altitude constraint, followed by a suffix letter A, and the upper altitude constraint, followed by a suffix letter B (example: 220A240B or 240B220A).

Takeoff and Climb

1 Acceleration Height

Height at which acceleration is initiated for flap retraction, normally 1000 feet. Takeoff (TO) pitch mode is used for takeoff and initial climb up to this point.

February 14, 2007 11.31.17 D632T001-300

Operation 767 Flight Crew Operations Manual

1A VNAV Engagement

VNAV is normally engaged at acceleration height. Pitch guidance then commands:

- an airspeed increase to 250 knots, or
- the speed transition associated with the origin airport, or
- the takeoff target airspeed (between V2 + 15 and V2 + 25 knots) if the acceleration altitude entered on TAKEOFF REF page 2/2 has not been reached

Initial reduction of flaps after VNAV is engaged also initiates pitch guidance to accelerate to 250 knots.

When VNAV is engaged (above 400 feet) the thrust reference changes to climb.

2 VNAV Climb

The VNAV climb profile uses VNAV SPD or VNAV PTH at the default climb speed, or pilot selected climb speed to remain within all airspeed and altitude constraints that are part of the SID entered into the active route. Autothrottle uses selected climb thrust limit.

3 Climb Constraints

VNAV enters the VNAV PTH mode to remain within departure or waypoint constraints. Speed maintained during this time can be:

- procedure based speed restriction
- waypoint speed restriction
- default VNAV climb speed
- manually entered climb speed.

When executing a SID with a speed and altitude constrained waypoint, VNAV will maintain the speed constraint during the climb until the respective waypoint is sequenced, regardless of the associated altitude constraint.

If the FMC predicts the airplane will not reach an altitude constraint, the message UNABLE NEXT ALTITUDE is displayed on the CDU. Speed intervention can be used by pushing the IAS/MACH selector and manually setting a lower airspeed to provide a steeper climb or climb derates can be deleted.

4 Top Of Climb (T/C)

The point where the climb phase meets the cruise altitude is called the top of climb. Approaching this point, the FMC changes from the climb phase to the cruise phase. The T/C is displayed any time the FMC calculates a change from a climb phase to a cruise phase, such as a step climb.

The T/C point is displayed on the map as a green open circle with the label T/C.

767 Flight Crew Operations Manual

Cruise

At cruise altitude, the FMC commands economy cruise speed or the pilot entered speed until reaching the top-of-descent (T/D) point. Alternate cruise speed options are:

- long range (LRC)
- engine out (ENG OUT), or
- flight crew entered speed.

If the cost index is set to zero the FMC commands maximum range cruise speed. Cost index modifications are allowed until within ten miles of the top of descent.

Cruise Climb

When VNAV is engaged, resetting the MCP to an altitude higher than the current cruise altitude causes that altitude to be displayed in the scratchpad of the CDU. The altitude can then be entered on the CRZ ALT line on the cruise page. When the modification is executed the airplane will climb to the new cruise altitude. The CRZ page displays ACT ECON CRZ CLB.

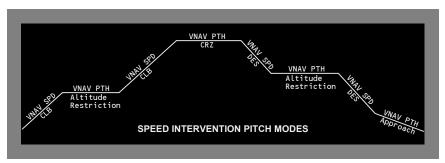
Step Climb

Fuel and ETA predictions assume the airplane climbs at each predicted step climb point as airplane weight decreases.

FMC predicted step climb increments are based on the step size shown on the CRZ page. Entering a step size of zero causes the FMC to assume a constant altitude cruise

Flight crew entry of a step altitude on the CRZ or RTE LEGS page overrides the FMC step climb predictions. Entry of a planned step altitude on the RTE LEGS page overrides a "Step To" entry made on the CRZ page.

Predicted step altitudes display on the RTE LEGS page. The distance and ETA to the next step point (predicted or flight crew entered) display on the CRZ and progress pages. They also display on the map display with a green circle and S/C label.


Cruise Descent

Resetting the MCP to an altitude below the current cruise altitude causes the new altitude to be copied to the scratchpad if the altitude change is 4000 feet or less. The new cruise altitude can be entered on the cruise page. When the modification is executed the CRZ page displays ACT ECON CRZ DES. If the altitude set in the altitude window is below the speed transition (SPD TRANS) or restriction (SPD RESTR) altitude displayed on the DES page, those altitudes and speeds are deleted and the airplane will maintain cruise speed during the descent. Transition or speed restrictions must be maintained by flight crew action.

Operation 767 Flight Crew Operations Manual

Mode Control Panel Speed Intervention

With VNAV engaged, pushing the IAS/MACH selector enables speed intervention. Speed intervention allows the flight crew to change airplane speed with the IAS/MACH selector.

The above illustration shows VNAV mode for each phase of flight during speed intervention.

Note: The FMC does not use the speed set on the MCP for fuel or ETA predictions so FMC predictions are not accurate if speed intervention is used for an extended period.

In VNAV PTH mode, thrust controls speed; in VNAV SPD mode, pitch controls speed.

If speed intervention is selected during a VNAV PTH descent, VNAV PTH pitch mode changes to VNAV SPD and the airplane may depart the FMC calculated descent path. In all other phases of flight, the AFDS captured pitch mode remains unchanged when speed intervention is selected.

In approach phase (see Approach topic this chapter/section), during speed intervention, pitch mode remains in VNAV PTH and the vertical path is maintained regardless of IAS MACH selector changes.

Descent

The FMC calculates a descent path based on airspeed and altitude constraints and the end of descent (E/D) point. Dashes display on the LEGS page for speed and altitude descent waypoints. When an arrival or approach procedure is selected on the ARRIVALS page and incorporated into the flight plan, the FMC creates an E/D. The E/D is located 50 feet above the runway threshold (RW waypoint) for all approaches except VOR approaches. The E/D for VOR approaches is the missed approach point; which may be the VOR, runway waypoint (RWXXX), or a named waypoint. During cruise, an E/D is also created when an altitude constraint is entered on the LEGS page on a downstream waypoint.

767 Flight Crew Operations Manual

The top of descent (T/D) is the point where the cruise phase changes to the descent phase. It displays on the HSI as a green circle with the label T/D. The descent path starts at the T/D and includes waypoint altitude constraints. The path to the first constraint is based on:

- idle thrust
- speedbrakes retracted
- · FMC cruise wind

 wind entries on the DESCENT FORECAST page

Operation

- predicted use of anti-ice
- applicable target speed

The descent may be planned at economy Mach/CAS (based on Cost Index) or a manually entered Mach/CAS. VNAV will not command an economy target speed greater than 344 knots (VMO/MMO minus 16 knots) or a pilot entered speed greater than 349 knots (VMO/MMO minus 11 knots).

The FMC creates the descent path with a deceleration at the speed transition altitude (typically 250 knots below 10,000 feet). Below the speed transition altitude, VNAV defines the descent path at a speed target 10 knots below the transition speed (typically 240 knots) to allow for unknown tailwinds.

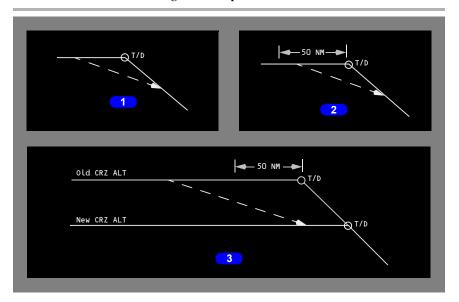
Descent path segments after the first altitude constraint waypoint are constructed as straight line point-to-point segments. The autothrottle provides thrust as required to maintain the path.

If the airplane passes the T/D point and the altitude window has not been set lower, or if the airplane levels at an MCP altitude not in the FMC descent profile, ALT HOLD annunciates. The MCP must be reset and VNAV re-engaged to initiate/continue the descent

Operation

767 Flight Crew Operations Manual

On a VNAV PTH descent, the descent path angle is calculated to maintain speed based on the six parameters listed above. Above the first speed transition altitude, pitch will maintain the path, and resultant speed, according to the following:


- If airspeed decreases to 15 knots below the VNAV target airspeed, as may be caused by an unforecast headwind, the autothrottle changes from IDLE/HOLD to SPD and adds an appropriate amount of thrust to accelerate back to the VNAV target speed. Upon reacquiring the target airspeed, the autothrottle changes back to IDLE/HOLD. If the autothrottle is disengaged, the scratchpad message THRUST REQUIRED displays and it is the flight crew's responsibility to adjust thrust to reacquire the VNAV target airspeed.
- If airspeed increases to 15 knots above the VNAV target airspeed, as may be caused by an unforecast tailwind, the scratchpad message DRAG REQUIRED displays. To slow the airspeed back to the target it is the flight crew's responsibility to add an appropriate amount of drag (usually with speedbrakes). Upon reacquiring the target airspeed, the scratchpad DRAG REQUIRED message automatically clears. The DRAG REQUIRED scratchpad message may also appear if the airspeed reaches VMO/MMO minus 16 knots before reaching the airspeed of VNAV target speed + 15 knots.
- If airspeed is allowed to decrease/increase below/above the 15 knot limits and approach an aerodynamic/airframe speed limit (VMO/MMO, minimum maneuvering, flap placard, etc.), VNAV reverts to speed reversion mode. In speed reversion mode, VNAV departs the calculated vertical descent path and pitch changes from VNAV PTH to VNAV SPD. VNAV then pitches to maintain a safe target speed (not the VNAV PTH descent speed) above/below the path as appropriate. If the calculated vertical descent path is reacquired, the target speed returns to the original VNAV PTH descent speed. The scratchpad messages THRUST REQUIRED and DRAG REQUIRED also reappear as appropriate during speed reversion.

Below the first speed transition altitude, pitch will maintain the path, and resultant speed, as described for when above the first speed transition altitude, except the airspeed is only allowed to transit a maximum of 10 knots above/below the VNAV target airspeed before the autothrottle reacts or the FMC scratchpad messages display.

Early Descent

When a descent is started before the T/D, VNAV commands a descent at a reduced descent rate until the idle descent path is intercepted.

Start an early descent by resetting the MCP altitude, then selecting the DES NOW prompt on the DES page. In an early descent, the autothrottle mode annunciation is initially THR, followed by HOLD, allowing the pilot to adjust the rate of descent. The pitch mode is VNAV SPD.

DES NOW

Use the DES NOW prompt on the VNAV DES page. VNAV starts an early descent and captures the idle descent path.

Note: When more than 50 NM from the top of descent point, perform a cruise descent rather than a descend now for descent to intermediate altitudes. During cruise descent the FMC computes a new top of descent for the new cruise altitude and accurate destination fuel predictions. Fuel predictions using DES NOW more than 50 NM from the top of descent point can cause a fuel computation error.

2 Within 50 NM of Top of Descent Point

Use the MCP altitude selector to start an early descent. Within 50 NM of the top of descent point, VNAV starts an early descent and captures the idle descent path.

3 More than 50 NM from Top of Descent Point

Use the MCP altitude selector to start a cruise descent. If the distance from the top of descent is more than 50 NM, VNAV begins a cruise descent to the new cruise altitude. VNAV may not capture the idle descent path since the target airspeed is economy cruise and the descent path is based on idle thrust and economy descent airspeed. In the example, VNAV levels at the new cruise altitude.

11.31.23

Operation 767 Flight Crew Operations Manual

Approach

For VFR and nonprecision approaches, VNAV will fly the computed descent path to the E/D point altitude if the MCP altitude is set at or below the E/D point altitude. However, it is the responsibility of the flight crew not to descend below the MDA of the approach being flown until adequate visual contact is achieved.

"On Approach" Mode

The FMC transitions to "on approach" mode for any of the following conditions:

- an approach procedure selected into the active route from the destination airport ARRIVALS page becomes the active procedure on page 2 of the active Route Page
- distance to the destination airport is less than 12 nm and the active leg is not part of a procedure
- the MAP (or last waypoint on the approach procedure) is the active waypoint and the distance to that waypoint is less than 25 nm
- VNAV engaged in DES mode and flaps extended

Transition to the "on approach" FMC mode may be delayed if the flight crew manually inserts, bypasses, or deletes an approach waypoint on the LEGS page.

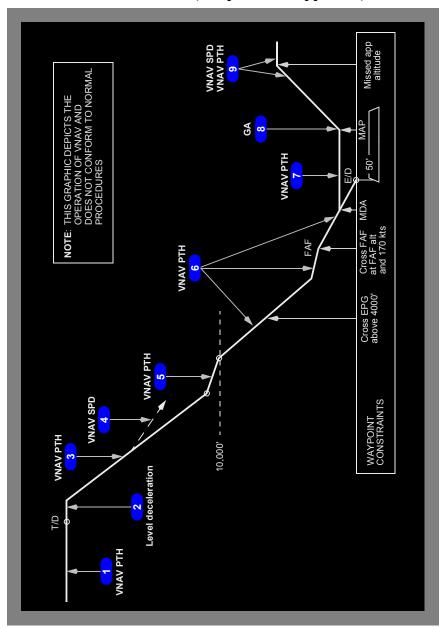
When the FMC is "on approach", the following features are available:

- the IAS/MACH window can be opened and the command speed can be set while VNAV remains in VNAV PTH descent; VNAV commands the set speed
- the MCP altitude can be set above the airplane altitude for the missed approach. When the MCP altitude setting is at least 300 feet above the current airplane altitude, VNAV continues to command a descent
- VNAV remains in VNAV PTH and follows the descent path unless the airplane accelerates to within 5 knots of the current flap placard and the airplane rises more than 150 feet above the path. In this case, VNAV PTH changes to VNAV SPD

The FMC transitions out of approach under the following conditions:

- the airplane lands
- selecting GA
- the airplane flies beyond the missed approach waypoint

A side step to another approach can be accomplished by selection of a new approach on the ARRIVALS page. An along-course intercept to the next logical approach waypoint in the new approach can be selected on the "INTC CRS TO" line on the LEGS page or by selecting the "XXXXX INTC>" prompt on the ARRIVALS page.


767 Flight Crew Operations Manual

Missed Approach

A missed approach is accomplished by selection of either GA switch. The following features are available:

- VNAV (and LNAV) can only be activated when the airplane climbs above 400 feet radio altitude
- all descent altitude constraints below the current airplane altitude are deleted; the waypoints are retained in the active flight plan
- the higher of the altitude in the MCP altitude window or the highest altitude in the missed approach procedure becomes the new cruise altitude
- the FMC transitions from active descent to active climb
- AFDS guidance to fly the published missed approach procedure to the new cruise altitude is active when VNAV (and LNAV) are selected
- when cruise phase is active, the speed target is the most restrictive of 250 knots (below speed transition altitude), best hold speed, or ECON cruise (above speed transition altitude)

Cruise and Descent Profile (Nonprecision Approach)

DO NOT USE FOR FLIGHT Hight Management, Navigation - Flight Management System

767 Flight Crew Operations Manual

1 Cruise

Before the top of descent, FMC is in cruise mode and uses VNAV PTH and ECON cruise speed.

2 Level descent phase

After top of descent, FMC is in descent mode, VNAV decreases airspeed to ECON descent speed, maintains altitude in VNAV PTH.

3 Descent

Upon reaching descent speed, VNAV descends in VNAV PTH at ECON descent speed.

4 Speed Limit Protection

If a tailwind which was not entered on the descent forecast page causes the airplane to accelerate, the DRAG REQUIRED scratchpad message will be displayed. If the speedbrakes are not deployed, the pitch mode will change to VNAV SPD and depart the path before the speed reaches the limit.

5 Speed Restriction Deceleration

Before the speed restriction altitude, VNAV decelerates to commanded speed using VNAV PTH.

6 Descent and Approach

When at restricted speed, VNAV descends and starts approach in VNAV PTH at commanded speed.

7 Minimum Descent Altitude

When the MDA is reached with VNAV engaged the airplane will maintain the MDA altitude in VNAV PTH.

If the missed approach point is crossed without selecting GA, VNAV will continue to the end of descent point altitude until GA is selected.

8 Go-Around (GA)

The missed approach go-around is commenced by pushing a Go-Around switch.

Pushing a Go-Around switch

- · starts a missed approach
- · sets go-around thrust
- and deletes altitude constraints between the airplane and the missed approach waypoint.

Flight Management, Navigation NOT USE FOR FLIGHT

Operation 767 Flight Crew Operations Manual

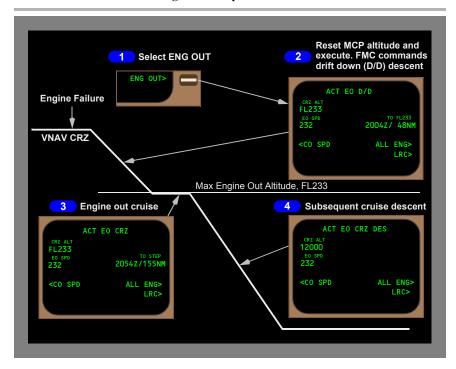
9 Missed Approach Level Off

If VNAV is selected during missed approach, VNAV engages in VNAV SPD. At the missed approach altitude the pitch mode changes to VNAV PTH.

VNAV Engine Out Operation

The FMC provides single engine performance guidance which is accessed with the ENG OUT prompt on the VNAV pages (CLB, CRZ or DES). After the engine out page is selected the execute key must be pushed to activate the single engine guidance.

The autothrottle system does not have a single engine capability and the autothrottle should be disconnected after an engine failure. VNAV thrust settings and thrust reference modes must be manually set when operating single engine.


Climb (Engine Out Above Engine Out Max Alt)

When the airplane is above the engine out maximum altitude, selection of the ENG OUT> prompt on the CLB page creates a modification and displays the applicable engine out driftdown (D/D) performance data to enable the airplane to descend to the engine out maximum altitude. Execution of the modification activates the engine out driftdown function.

Cruise (Engine Out Above Engine Out Max Alt)

Selection of ENG OUT> may also be selected on the CRZ page. If the current altitude is above the engine out maximum altitude, the FMC will command a cruise drift down.

Selection of ENG OUT> may also be accomplished on the XXXX ALTN page in conjunction with a diversion modification.

Engine Out Modification

Select the ENG OUT> prompt on the VNAV CRZ page. Disconnect the autothrottle and set maximum continuous thrust on the operating engine.

Result: The FMC creates a modification and displays the applicable engine out driftdown (D/D) performance data to enable the airplane to descend to the engine out maximum altitude.

2 Drift Down Execution

Set the MCP altitude at or below EO MAX altitude and execute the FMC modification. This assumes clearance is approved to descend slowly to a non-standard altitude; for example, FL233.

Result: VNAV commands a driftdown at EO SPD, and the EO MAX altitude becomes the cruise altitude at 1L. The descent rate is controlled to a minimum of 300 feet per minute (fpm). Time and distance for the D/D to EO MAX altitude are displayed at 2R.

The initial drift down speed defaults to E/O (minimum drag) speed. Prompts for LRC (long range cruise) and CO SPD (company speed) are displayed or a manual speed entry may be made.

Copyright © The Boeing Company. See title page for details.

February 14, 2007

D632T001-300

11.31.29

Operation 767 Flight Crew Operations Manual

3 Engine Out Cruise

When VNAV captures the engine out maximum altitude, the page changes to the engine out cruise page and the pitch annunciation is VNAV PTH. Predictions for engine out step climb are displayed at 2R.

The VNAV single engine speed can be adjusted to LRC speed, company speed, or a speed entered by the crew. Any change in the single engine speed will change the maximum altitude.

4 Subsequent Cruise Descent

With the FMC in engine out mode more than 50 nm from T/D, set a lower MCP altitude, select the entered altitude from the CDU scratchpad to the CRZ ALT line on the CRZ page and execute.

Result: VNAV cruise descent at approximately 1,250 fpm at the current speed. When the engine out cruise descent intersects the planned descent profile, descent mode becomes active.

Data Entry Rules

Altitude Entry

Altitudes can be entered into the FMC as three digit (XXX), four digit (XXXX), five digit (XXXXX), or flight level (FLXXX) numbers. The FMC displays altitude or flight level entries in the proper form based on the transition altitude. Some data lines further restrict the valid entry forms.

Three digit entries represent altitude or flight levels in increments of 100 feet. Leading zeros are required.

Examples of three digit (XXX, FLXXX) entries with transition altitude = 10,000 feet:

- 800 feet is entered as 008 or FL008; displays as 800
- 1,500 feet is entered as 015 or FL015; displays as 1500
- 11,500 feet is entered as 115 or FL115; displays as FL115
- 25,000 feet is entered as 250 or FL250; displays as FL250.

Four digit entries represent feet, rounded to the nearest ten feet. Leading zeros are required. This form is used when the altitude does not exceed 9,994 feet.

Examples of four digit (XXXX) entries with transition altitude = 18,000 feet:

- 50 feet is entered as 0050; displays as 50
- 835 feet is entered as 0835; displays as 830
- 1,500 feet is entered as 1500; displays as 1500
- 8,500 feet is entered as 8500; displays as 8500
- 9,994 feet is entered as 9994; displays as 9990.

Five digit entries represent feet, rounded to the nearest ten feet. This form is used when the altitude exceeds 9.994 feet

Examples of five (XXXXX) digit entries with transition altitude = 4,000 feet:

- 50 feet is entered as 00050; displays as 50
- 836 feet is entered as 00836; displays as 840
- 1,500 feet is entered as 01500; displays as 1500
- 8,500 feet is entered as 08500; displays as FL085
- 9,996 feet is entered as 09996; displays as FL100
- 11,500 feet is entered as 11500; displays as FL115
- 25,000 feet is entered as 25000; displays as FL250.

Negative altitude entries are allowed to -1000 feet.

Airspeed Entry

Airspeeds can be entered into the FMC as calibrated airspeed (CAS) or Mach number (M). CAS is entered as three digits (XXX) in knots. Mach numbers are entered as one, two, or three digits following a decimal point.

Data Pairs

Many CDU pages display data in pairs separated by a slash "/." Examples of these pairs include wind direction/speed and waypoint airspeed/altitude constraints. When entering both values in a pair, the slash is inserted between the values. When it is possible to enter only one value of the pair, the slash may not be required. When entering only the outboard value of a pair, the trailing or leading slash may be entered, but is not required before transferring to the data line. When entering the inboard value of a pair, the trailing or leading slash must be entered before transferring to the data line. Omission of the required slash normally results in an INVALID ENTRY message.

Copyright © The Boeing Company. See title page for details.

Operation 767 Flight Crew Operations Manual

Intentionally Blank

DO NOT USE FOR FLIGHT

767 Flight Crew Operations Manual

Flight Management, Navigation Flight Management Computer

Chapter 11 Section 32

FMC Databases

The FMC contains the following databases:

- performance database
- · navigation database
- airline modifiable information (AMI).

The performance database supplies all the necessary performance data to the flight crew. It supplies the FMC with the necessary data to calculate pitch and thrust commands. All necessary data can be shown on the CDU. The database includes:

- airplane drag and engine characteristics
- · maximum and optimum altitudes
- maximum and minimum speeds.

The navigation database includes data usually found on navigation charts. The database contains:

- the location of VHF navigation aids
- · airways
- airports
- runways
- other airline selected data, such as SIDs, STARs, approaches, and company routes
- · transition altitudes.

The FMC contains two sets of navigation data, each valid for 28 days. Each set corresponds to the usual navigation chart revision cycle. The flight crew selects which set of navigation data is active for navigation calculations. The contents of the navigation database are periodically updated and are transferred to the FMC before the expiration date of the active data.

The Airline Modifiable Information (AMI) file contains airline specified data. If the FMC senses a conflict in an AMI value after a new AMI data load, the scratchpad shows the message CHECK AIRLINE POLICY.

Thrust Management

The autothrottle is controlled by the thrust management computer. When VNAV is engaged, the FMC controls the autothrottle by setting the command speeds and thrust reference modes on the thrust management computer.

When VNAV is not engaged, the thrust management is controlled by the flight crew through selections made on the TMSP and AFDS.

Flight Management, Navigation NOT USE FOR FLIGHT Flight Management Computer NOT USE FOR FLIGHT

767 Flight Crew Operations Manual

Fuel Monitoring

The FMC receives fuel quantity data from the fuel quantity system or from manual entries. Fuel quantity values are shown on the PERF INIT page as calculated (CALC), MANUAL, or SENSED. They are shown on PROGRESS page 2 as TOTALIZER and CALCULATED. TOTALIZER and SENSED values are the same data with different names.

The FMC usually uses the calculated value for performance computations. Before engine start, the calculated value is the same as the fuel quantity indicating system totalizer value. When the FMC receives a positive fuel flow signal at engine start, the calculated value is independent of the fuel quantity system and decreases at the fuel flow rate

The FMC will accept manual entry of the fuel quantity. The line title changes to MANUAL and the manual value is then updated by fuel flow rate. When the fuel quantity calculations are based on a manual entry the FUEL QUANTITY DISAGREE message is inhibited. Deleting the manual entry resets the fuel quantity to the totalizer value and the title returns to CALCULATED.

The calculated value is invalid if fuel flow data is invalid. The FMC uses the fuel quantity indicating system quantity for performance computations. The line title on the PERF INIT page changes to SENSED and is shown as TOTALIZER on PROGRESS page 2. The fuel used by each engine is calculated with its related fuel flow signal.

FUEL USED is also shown on PROGRESS page 2. It is calculated by the FMC from the fuel flow rate beginning at engine start.

Fuel used is reset to zero on the ground after engine shutdown when electrical power is removed or when the FMC receives a positive fuel flow at the next engine start.

The scratchpad shows the message FUEL DISAGREE–PROG 2 (or FUEL DISAGREE–PROG 2/2) if the FMC calculates a large difference between the total fuel value determined by the fuel quantity indicating system and the total fuel value calculated by the FMC. When the fuel disagree message appears, PROGRESS page 2 is used to select one of those two values for use by the FMC for its fuel calculations for the remainder of the flight.

Note: The FUEL DISAGREE message is inhibited if the fuel quantity on the PERF INIT page is entered manually. Deleting a manual entry sets the fuel quantity back to the totalizer value, changes the line title back to CALC and enables the FUEL DISAGREE message.

DO NOT USE FOR FLIGHTight Management, Navigation - Flight Management Computer

767 Flight Crew Operations Manual

The FMC continually estimates the fuel at the destination airport if the active route is flown. The CDU message INSUFFICIENT FUEL is shown if the estimate is less than the fuel reserve value entered on the PERF INIT page.

Note: FMC calculated fuel predictions assume a clean configuration. Flight with gear or flaps extended cause fuel prediction errors. Fuel predictions are accurate after the gear and flaps are retracted if the active route in the FMC is flown.

Loss of FMC Electrical Power

The FMC must have continuous electrical power to operate. When the electrical power is interrupted and returns, the FMC automatically restarts.

After the restart, the performance data must be re—entered on the PERF INIT page. The route previously in use is available but must be reactivated.

The flight crew must modify the active waypoint to engage LNAV. Select the applicable active waypoint and proceed direct or intercept a course to the waypoint.

FMC Failure

Single FMC Failure

The scratchpad shows the message SINGLE FMC OPERATION after loss of a single FMC. The EICAS shows the advisory message L (or R) FMC FAIL and the MAP flag is displayed on the side with the failed FMC.

The crew member on the side with the failed FMC selects the opposite FMC with the NAV selector to regain CDU access to the operating FMC and map displays. LNAV and VNAV, if engaged, stay engaged and all flight plan and performance data is kept.

Note: If the MENU page and the scratchpad message TIMEOUT RESELECT is shown, the FMC is no longer connected to the CDU. Use the <FMC prompt on the MENU page to connect the CDU to the FMC.

Dual FMC Failure

In the unlikely event that both FMCs fail, the EICAS advisory messages L FMC FAIL and R FMC FAIL are displayed. LNAV and VNAV are not available.

Flight Management, Navigation NOT USE FOR FLIGHT Flight Management Computer V

767 Flight Crew Operations Manual

Selecting CDU-L or CDU-R with the NAV selector on the instrument select panel provides route data to the MAP display. Alternate navigation using the CDUs is discussed in Section 50 of this chapter.

Note: The MENU page is shown and the <FMC prompt is not shown in line 1. Push the LEGS function key to show the IRS LEGS page or the PROG key to show the IRS PROGRESS page.

FMC Resets

A software reset may occur in dual or single FMC operation. When a software reset occurs, the active route becomes inactive, the performance data is erased, and LNAV and VNAV modes (if engaged) fail. There is not an EICAS message or an FMC scratchpad message to alert the crew of a reset condition. To regain FMC operation, activate and execute the flight plan, reenter the necessary performance data, and reengage LNAV and VNAV.

DO NOT USE FOR FLIGHT

767 Flight Crew Operations Manual

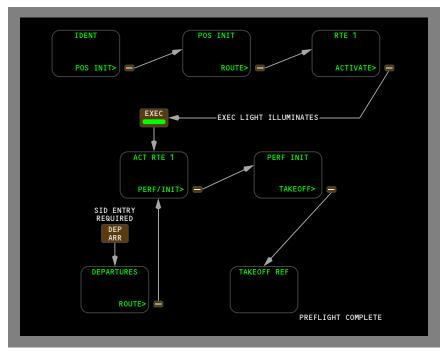
Flight Management, Navigation FMC Preflight

Chapter 11
Section 40

Introduction

FMC preflight is required before flight.

Completion of the FMC preflight requires data entry in all minimum required data locations. Additional entry of optional preflight data optimizes FMC accuracy.


Preflight Page Sequence

The usual FMC power–up page is the identification page. Preflight flow continues in this sequence:

- identification (IDENT) page
- position initialization (POS INIT) page
- ROUTE page
- DEPARTURES page (no automatic prompt)
- performance initialization (PERF INIT) page
- takeoff reference (TAKEOFF REF) page.

Some of these pages are also used in flight.

Minimum Preflight Sequence

During preflight, a prompt in the lower right directs the flight crew through the minimum requirements for preflight completion. Selecting the prompt key displays the next page in the flow. If a required entry is missed, a prompt on the TAKEOFF page leads the flight crew to the preflight page missing data.

Airplane inertial position is necessary for FMC preflight and flight instrument operation.

A route must be entered and activated. The minimum route data is origin and destination airports, and a route leg.

Performance data including the airplane weight and cruise altitude is required.

Takeoff data requires a flap setting.

Supplementary Pages

Supplementary pages are sometimes required, these pages have no prompts and interrupt the usual sequence. Discussions of each page includes methods to display the page.

When the route includes SIDs and STARs, they can be entered using the DEPARTURES or ARRIVALS pages.

Route discontinuities are removed and the route is modified on the ROUTE and RTE LEGS pages. Speed/altitude restrictions are entered and removed on the RTE LEGS page. The RTE LEGS page is described in the FMC Cruise section of this chapter.

Waypoint, navaid, airport, and runway data is referenced on the REF NAV DATA page. The REF NAV DATA page is described in the FMC Cruise section of this chapter.

Alternate airports are added on the ALTN page. The ALTN page is described in the FMC Descent/Approach section of this chapter.

VNAV performance is improved if forecast winds and temperatures are entered during the preflight.


Wind and temperature information for specific waypoints is entered on the WIND page. The WIND page is described in the FMC Cruise section of this chapter.

Preflight Pages

The preflight pages are presented in the sequence used during a typical preflight.

Initialization/Reference Index Page

The initialization/reference index page allows manual selection of FMC pages. It gives access to pages used during preflight and not usually used in flight.

February 14, 2007 D632T001-300 11.40.3

Flight Management, Navigation NOT USE FOR FLIGHT

767 Flight Crew Operations Manual

1 Identification (IDENT)

The IDENT page is the first page in the preflight sequence.

2 Position (POS)

The POS INIT page is used for input of reference position for inertial alignment.

3 Performance (PERF)

The PERF INIT page is used for initialization of data required for VNAV operations and performance predictions.

4 TAKEOFF

The TAKEOFF REF page is used to enter takeoff reference data and V speeds.

5 APPROACH

The APPROACH REF page is used to set the approach VREF speed bug on the ADI speed tape for the planned landing flap configuration.

6 Navigation (NAV) DATA

The REF NAV DATA page is used for data on waypoints, navaids, airports, and runways. NAV DATA pages are accessible only from this page.

7 Alternate (ALTN)

The ALTN page is used for alternate airport planning and diversions.

8 Maintenance (MAINT)

For maintenance use only; displays maintenance pages.

Identification Page

Most of the data on this page is for flight crew verification. The active navigation database can be selected.

The flight crew verifies FMC data, selects the current navigation database, and checks drag and fuel flow factors on the identification page.

August 19, 2009 D632T001-300 11.40.5

MODEL

Displays the airplane model from the FMC performance database.

2 Navigation (NAV) DATA

Displays the navigation database identifier.

3 Operating (OP) PROGRAM

Displays the operating program identifier.

4 Operational Program Configuration (OPC) PART NUMBER

Displays the Operational Program Configuration part number.

5 INDEX

Push – displays the INIT/REF INDEX page.

6 ENGINES

Displays the engine model from the FMC performance database.

DO NOT USE FOR FLIGHTight Management, Navigation - FMC Preflight

767 Flight Crew Operations Manual

7 ACTIVE

Displays range of effective dates for the active navigation database.

The active navigation database can be replaced with the inactive database while on the ground. Changing the navigation database removes all previously entered route data

8 Inactive Date Range

Displays range of effective dates for the inactive navigation database. May be line selected to the scratchpad and inserted to the ACTVE line while on the ground.

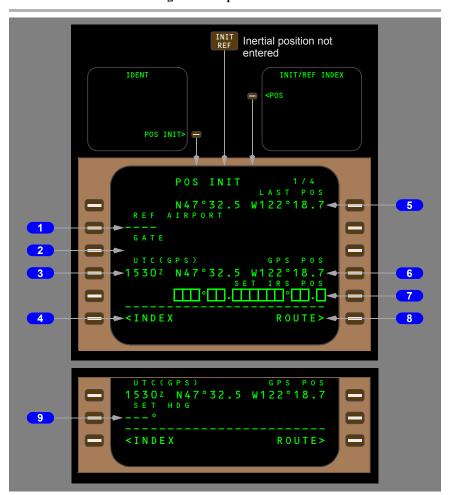
9 Company (CO) DATA

Displays the last eight characters of the Airline Modifiable Information (AMI) part number.

10 DRAG/Fuel Flow (FF) Factors

Displays the airplane drag and fuel flow correction factors.

For maintenance use only.


11 Position Initialization (POS INIT)

Push – displays the POS INIT page.

Position Initialization Page

The position initialization page allows entry of airplane present position for IRS alignment. This page is also used to enter the heading when an IRS is in the ATT mode

Copyright © The Boeing Company. See title page for details.

1 Reference Airport (REF AIRPORT)

Entry of the reference airport displays the airport latitude/longitude.

Optional entry.

Valid entries are ICAO four letter airport identifiers.

Removes previous GATE entry.

Entry blanks when airborne.

2 GATE

The gate entry allows further refinement of the latitude/longitude position.

DO NOT USE FOR FLIGHTight Management, Navigation - FMC Preflight

767 Flight Crew Operations Manual

Optional entry after reference airport entered.

Valid entry is a gate number at the reference airport.

Displays the latitude and longitude of the reference airport gate.

Changes to dashes when a new reference airport is entered.

Entry blanks when airborne.

3 Universal Time Coordinated (UTC)

UTC (GPS) – displays time from GPS.

UTC (MAN) -

- displays time from captain's clock when operative; otherwise, displays time from first officer's clock
- hours can be set by entering desired hour reference
- minutes set by resetting appropriate pilot's clock.

4 INDEX

Push – displays the INIT/REF INDEX page.

5 Last Position (LAST POS)

Displays the last FMC calculated position.

6 GPS Position (GPS POS)

Displays the GPS present position. During preflight, the GPS POS may not display due to satellite availability, performance, or unfavorable geometry.

7 Set IRS Position (SET IRS POS)

The set inertial position entry is required to initialize the IRS. Select the most accurate latitude/longitude from LAST POS, REF AIRPORT, GATE, GPS POS, or a manual entry to initialize the IRS.

If an entry is not made before the IRS completes the initial alignment, the scratchpad message ENTER IRS POSITION is displayed.

If the manually entered position fails the IRS internal check, the scratchpad message ENTER IRS POSITION is displayed.

The manually entered position is also compared with the FMC origin airport position. If the entered position is not within 6 NM of the FMC origin airport position, the scratchpad message IRS POS/ORIGIN DISAGREE is displayed.

Boxes display within one minute of IRS power-up.

Blanks when the IRS changes from the alignment to the navigation mode.

Copyright © The Boeing Company. See title page for details.

February 15, 2010

D632T001-300

11.40.9

Flight Management, Navigation NOT USE FOR FLIGHT

767 Flight Crew Operations Manual

8 ROUTE

Push – displays the ROUTE page.

9 Set Heading (SET HDG)

Dashes display when an IRS selector is placed in the ATT position.

Enter magnetic heading to initialize the IRS in the ATT mode to provide headings. Heading should be updated regularly if extended operation in ATT is necessary.

Valid entry is 0 to 360 (0 or 360 displays as 0°).

Position Reference Pages

The position reference pages are not part of a normal preflight. They are presented here in a logical sequence because they are accessed from the position initialization page.

Position Reference Page 2/4

Position reference page 2 displays positions calculated by the FMC, IRS, GPS, and radio navigation receivers. The FMC position can be updated to IRS, GPS, or radio position on this page.

Positions are displayed as the latitude/longitude calculated by the individual systems. When BRG/DIST is selected the IRS, GPS, and radio positions are shown as bearing and distance from the FMC position.

1 FMC

The source used by the active FMC for position data is displayed next to the FMC line title. In the example, the FMC uses GPS for position data.

Displays the FMC calculated latitude/longitude.

Identifies the source for calculating the FMC position:

- GPS position calculated from GPS and inertial position data
- IRS position calculated from inertial position data only
- RADIO position calculated from navigation radio and inertial position data
- LOC-GPS position is calculated from localizer, GPS and inertial data
- LOC-RADIO position is calculated from localizer, navigation radio and inertial data
- LOC position is calculated from localizer and inertial data.

Flight Management, Navigation NOT USE FOR FLIGHT

767 Flight Crew Operations Manual

² IRS

Displays latitude/longitude position or the bearing and distance from the FMC position determined by the IRS. If the displayed position is derived from all three IRSs, (3) is displayed. If the position is from a single IRS then (L), (C), or (R) is displayed to indicate which IRS position is displayed.

3 GPS

Displays latitude/longitude position or the bearing and distance from the FMC position determined by the GPS.

4 RADIO

After airborne, displays latitude/longitude position or the bearing and distance from the FMC position determined by navigation radios.

5 Required Navigation Performance and Actual Navigation Performance (RNP/ACTUAL)

Displays the RNP and actual navigational performance (ACTUAL) of the FMC. Default RNP is in small font.

Valid RNP entries are in the range 0.01 to 99.9. ACTUAL entry not allowed.

When ACTUAL exceeds RNP, EICAS displays UNABLE RNP message.

Note: The FMC stops GPS updating if GPS data accuracy degrades due to satellite availability or unfavorable geometry. Subsequently, the FMC receives updates from another system.

6 INDEX

Push – displays the INIT/REF INDEX page.

7 UPDATE ARM

Push –

- arms FMC position update function
- changes prompt to ARMED
- adds NOW prompts to right side of INERTIAL, GPS, and RADIO lines.

Push a NOW prompt key to momentarily update FMC position to the selected source. If another source with a smaller ANP exists, the FMC position will correct back to the most accurate position available.

DO NOT USE FOR FLIGHTight Management, Navigation FMC Preflight

767 Flight Crew Operations Manual

8 ACTUAL

Displays actual navigation performance (ANP) of the IRS, GPS and navigation radios.

9 Radio Update Station(s)/Mode

Displays radio station identifiers.

Position update mode is indicated in the line title:

- DME DME
- VOR DME

Line and title are blank when no radio position is computed.

10 Bearing/Distance (BRG/DIST) or Latitude/Longitude (LAT/LON)

Push – alternates position data format between bearing/distance or latitude/longitude.

The page illustration is shown in the latitude/longitude display format. Latitude/longitude format displays are actual position. Bearing/distance display is relative to the FMC position.

Position Reference Page 3/4

On position reference page 3, the flight crew can observe the calculated positions from the left and right GPS receivers and the left and right FMC calculations. This page also allows the flight crew to enable or disable GPS position updates.

This page can display the bearing/distance or latitude/longitude format. The bearing/distance format displays the positions relative to the active FMC position on the POS REF 2/4 page.

Copyright © The Boeing Company. See title page for details.

1 GPS L and GPS R

Displays the left and right GPS positions.

2 FMC L and FMC R

Displays the left and right FMC calculated position.

Primary (PRI) is displayed in line title of the FMC that is the navigation master.

3 INDEX

Push – displays the INIT/REF INDEX page.

4 GPS NAV

Push – alternately selects GPS NAV ON (enabled) and OFF (disabled).

OFF – GPS position data is not available to the FMC. OFF displays in large letters; ON displays in small letters.

ON – GPS position data is available to the FMC. ON displays in large letters; OFF displays in small letters.

Note: When the engines are shut down after flight GPS NAV is set to ON.

5 Latitude/Longitude (LAT/LON) or Bearing/Distance (BRG/DIST)

Push – alternately changes the display of position data on POS REF 2/4, 3/4, and 4/4 to latitude/longitude format or bearing/distance format.

The page illustration is shown in the bearing/distance display mode.

Position Reference Page 4/4

On position reference page 4, the calculated positions and ground speeds from the left, center and right IRS are displayed. Positions can be displayed in the bearing/distance or latitude/longitude format.

1 IRS L, C, and R

Displays the position of the Left, Center, and Right IRS. Positions can be displayed in latitude longitude or as bearing and distances from the FMC position.

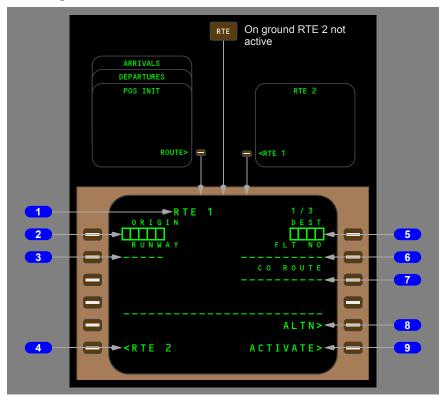
2 INDEX

Push – displays the INIT/REF INDEX page.

3 Ground Speed (GS)

Displays the ground speed calculated by each IRS. The displayed values are frozen when the engines are shut down after flight until power is removed.

Copyright © The Boeing Company. See title page for details.


4 Latitude/Longitude (LAT/LON) or Bearing/Distance (BRG/DIST)

Push – alternately changes the displayed position between latitude/longitude format and bearing/distance format. When the display is in the bearing/distance format the prompt shows LAT/LON>.

Route Page

Two routes (RTE 1 and RTE 2) can be stored and displayed in air traffic control format. The first route page displays origin and destination data. Subsequent route pages display route segments between waypoints or fixes. Having two routes allows management of alternate or future routes while leaving the active route unmodified. RTE 2 has an identical page structure as RTE 1.

Route Page 1/X

1 Page Title

Preceded by ACT when the route is active, and by MOD when the route is modified and the change is not executed.

DO NOT USE FOR FLIGHT Management, Navigation - FMC Preflight

767 Flight Crew Operations Manual

Multiple route pages are indicated by the page sequence number to the right of the title. The minimum number of route pages is 2.

ORIGIN

Entry:

- · must be a valid ICAO identifier in the navigation database
- made automatically when a company route is entered
- enables direct selection of departure and arrival procedures
- required for route activation
- inhibited in-flight for active route.

Entry on the ground deletes existing route.

3 RUNWAY

Enter the applicable runway for the origin airport. Runway must be in the navigation database.

Entry:

- is optional
- causes MOD to display in the title if route is active
- can be selected on the DEPARTURES page
- can be included in company route.

The runway is deleted after the first waypoint is crossed.

4 Route (RTE) 2

Push – displays the RTE 2 page 1/x.

Allows access to an inactive route for entry, modification or activation.

Inactive route modifications:

- do not alter the active route
- do not change the inactive RTE page title.

Prompt changes to RTE 1 when RTE 2 is displayed.

5 Destination (DEST)

Entry:

- must be a valid ICAO identifier in the navigation database
- · made automatically when a company route is entered
- enables direct selection of destination arrival procedures
- required for route activation
- displays MOD in page title if entered in an active route.

Copyright © The Boeing Company. See title page for details.

11,40,17

Flight Management, Navigation NOT USE FOR FLIGHT

767 Flight Crew Operations Manual

6 Flight Number (FLT NO)

Enter the company flight number.

Entry:

- optional for activation of the route
- limited to 10 characters
- may be entered by the flight crew or uplinked
- included in the PROGRESS page title
- propagated to RTE 2 page
- deleted at flight completion.

7 Company Route (CO ROUTE)

A company route can be called from the navigation database by entering the route identifier. The data supplied with a company route can include origin and destination airports, departure runway, SID and STAR, and the route of flight. All company route data is automatically entered when the route identifier is entered.

An entry is optional for activation of the route.

Valid entry is any flight crew entered or uplinked company route name. If the name is not contained in the navigation database, the entry is allowed and the scratchpad message NOT IN DATABASE is displayed.

Entry of a new company route replaces the previous route.

In–flight entry is inhibited for the active route.

8 Alternate (ALTN)

Push – displays the ALTN page.

9 ACTIVATE

Push the ACTIVATE key to arm the route and illuminate the execute light. When the EXEC key is pushed, the route becomes active, ACT is displayed in the title, and the ACTIVATE prompt is replaced with the next required preflight page prompt.

Activation of a route is required for completion of the preflight.

ACTIVATE is always displayed on the inactive route pages.

After route activation, the ACTIVATE prompt is replaced by:

- PERF INIT, when the required performance data is incomplete, or
- TAKEOFF when the required performance data is complete.

More Route Page Prompts for an Active Route

Additional prompts are displayed on the route page once it becomes active.

1 Route Copy (RTE COPY)

Push – copies the entire active route (RTE x) into the inactive route (RTE y). Displayed only on the active route page.

Displays COMPLETE after the route is copied.

Route Page 2/X

The subsequent route pages 2/X through X/X, display route segments in air traffic control format. Route segments are defined as direct routing, airways, or procedures with start and end points such as waypoints, fixes, navaids, airports, or runways. More waypoints for each route segment are shown on the RTE LEGS page.

February 14, 2007 D632T001-300 11.40.19

The VIA column displays the route segment to the waypoint or termination in the TO column. Enter the path which describes the route segment between the previous waypoint and the segment termination.

Enter an airway in the VIA column and boxes display in the TO column.

Valid entries can also include procedures or DIRECT. Procedures are usually entered through selections on DEPARTURES and ARRIVALS pages. DIRECT is usually entered as a result of entering a TO waypoint first.

Valid airways must:

- · contain the fix entered in the TO waypoint, and
- · contain the previous TO waypoint, or
- intersect the previous VIA route segment.

Dashes change to DIRECT if the TO waypoint is entered first.

Dashes display for the first VIA beyond the end of the route.

Invalid VIA entries result in the scratchpad message INVALID ENTRY.

DO NOT USE FOR FLIGHT Management, Navigation - FMC Preflight

767 Flight Crew Operations Manual

Invalid VIA entries are:

- airways and company routes which do not contain the TO waypoint of the previous line
- airways that do not intersect the previous airway
- airways or company routes that are not in the navigation database.

The start and end waypoints determine whether the entered airway is valid. The route segment must contain the waypoint entered in the TO position. The TO waypoint of the previous route segment must be the same as the start point of the next route segment or a route discontinuity is created between the segments.

Entry of a SID or transition enters the VIA and TO data for the route segments of the SID. A SID links to the next route segment when the final SID waypoint is part of the route segment.

When no SID is used, entering an airway on the first line of page 2 initiates an airway intercept from the runway heading and:

- replaces the airway with dashes in the first line VIA
- shows boxes in the first line TO waypoint
- moves the airway to line 2 after the TO waypoint is entered
- enters the first fix on the airway nearest to being abeam of the departure heading in the airway line TO waypoint.

A route can contain segments formed by the intersection of two airways. Entering two intersecting airways in successive VIA lines without a TO waypoint causes the FMC to create an airway intersection waypoint to change from one segment to the next. The FMC created waypoint intersection (INTC) displays in the first airway segment TO waypoint.

LACRE3.VAMPS is an example of a SID selection made on the DEPARTURES page.

V2 and V336 are examples of airway entries.

APP TRANS is an example of a STAR selection made on the APPROACH page.

ILS32R is an example of an approach selection made on the APPROACH page.

2 TO

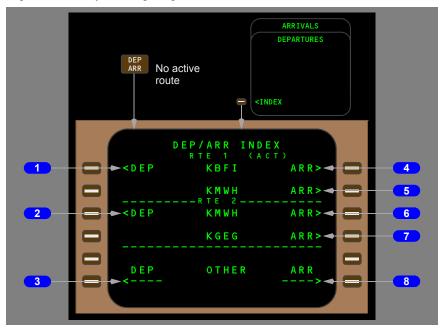
Enter the end point of the route segment specified by the VIA entry.

Entry of a waypoint in the TO column without first entering a VIA airway shows DIRECT in the VIA column.

Data input is mandatory when boxes are displayed.

Valid waypoint entries for a DIRECT route segment are any valid waypoint, fix, navaid, airport, or runway.

Valid waypoint entries for airways are waypoints or fixes on the airway.


Dashes display on the first TO waypoint after the end of the route.

Preflight Pages – Part 2

Departure/Arrival Index Page

The departure and arrival index page is used to select the departure or arrival page for the origin and destination airports for each route. The index also allows reference to departure or arrival data for any other airport in the navigation database

Departure and arrival prompts are available for the origin airport. Destination airports have only arrival prompts.

Departure (DEP) – Route 1

Push – displays the departure page for route 1 origin airport.

2 Departure (DEP) – Route 2

Push – displays the departure page for route 2 origin airport.

3 Departure (DEP) – Other

Displays the departure page for the airport entered into this line through the scratchpad.

DO NOT USE FOR FLIGHT Management, Navigation - FMC Preflight

767 Flight Crew Operations Manual

DEP prompt for OTHER allow display of departure data about airports that are not the origin or destination for route 1 or 2. The data can be viewed but cannot be selected because the airport is not on the route.

4 Arrival (ARR) – Route 1 Origin

Push – displays the arrival page for route 1 origin airport. Origin airport arrivals selection is used during a turn–back situation.

5 Arrival (ARR) – Route 1 Destination

Push – displays the arrival page for route 1 destination airport.

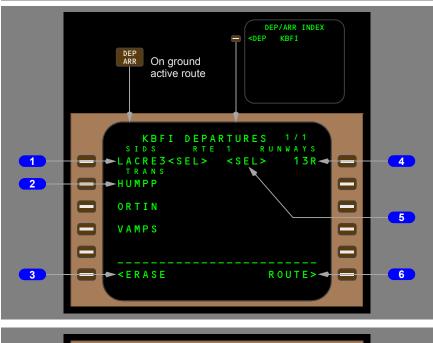
6 Arrival (ARR) – Route 2 Origin

Push – displays the arrival page for route 2 origin airport. Origin airport arrivals selection is used during a turn–back situation.

7 Arrival (ARR) – Route 2 Destination

Push – displays the arrival page for route 2 destination airport.

8 Arrival (ARR) – Other


Displays the arrival page for the airport entered in this line through the scratchpad.

ARR prompt for OTHER allows display of arrival data about airports that are not the origin or destination for route 1 or 2. The data can be viewed but cannot be selected because the airport is not on the route.

Departures Page

The departures page is used to select the departure runway, SID, and transition for the route origin airport.

The departures page for the inactive route displays when the DEP ARR function key is pushed with an inactive RTE or RTE LEGS page is displayed.

1 Standard Instrument Departures (SIDS)

Displays a list of SIDS for the airport.

Push -

- selects SID for use in the route
- other SIDs are no longer displayed and the transitions for the selected SID are displayed
- runways for selected SID remain and others are no longer displayed.

2 Transitions (TRANS)

Displays transitions compatible with the selected SID.

DO NOT USE FOR FLIGHTight Management, Navigation FMC Preflight

767 Flight Crew Operations Manual

Push -

- · selects transition for entry in the route
- other transitions no longer display.

3 ERASE or INDEX

Erase displays when a route modification is pending. INDEX displays when no route modification is pending.

ERASE push – removes route modifications not executed and displays the original route.

INDEX push – displays the DEP/ARR INDEX page.

4 RUNWAYS

Displays a list of runways for the selected airport.

The runway selected on the RTE 1/X page displays as <SEL> or <ACT>.

Push -

- selects runway for use in the route. All other runways no longer display
- SIDs associated with selected runway remain, all others no longer display
- subsequent change of a runway deletes departure procedures previously selected.

5 <SEL>, <ACT>

Selecting an option displays <SEL> inboard of the option and creates a route modification. After executing the modification, <SEL> becomes <ACT>. Executing a modification or leaving the page and returning displays all options and the <SEL> or <ACT> prompts.

6 ROUTE

Push – displays the related RTE page.

7 Engine Out Standard Instrument Departure (EO SID)

EO SIDs are airline designed procedures for specific runways. When a runway is selected the EO SID is listed after the other SIDs associated with that runway. If no EO SID exists for the selected runway, NONE is displayed.

PUSH – on the ground, selects the EO SID as a route modification for review. The modification should be erased after the review is complete.

If an engine failure occurs after takeoff before the flaps are retracted, the EO SID will be automatically loaded as a route modification to be executed or erased.

February 14, 2007 D632T001-300 11.40.25

Navigation Radio Page

VOR navigation radios are normally autotuned by the FMC. The NAV RADIO page displays the tuned VOR frequencies, identifiers, tuning status and current radial for both VOR receivers. The VORs can be remotely tuned from this page.

1 VOR Frequency and Tune Status

Displays the frequency and identifier of the tuned navaids and allows input of frequencies or identifiers to remote tune the VORs. Dashes are displayed if the VOR is not tuned.

The tuning status is displayed adjacent to left and right VOR frequencies. Entry of a frequency or identifier remotely tunes a VOR. The FMC autotunes VORs and their related DMEs for procedure flying and radio positions. The tuning status displays are:

- A (autotuning) FMC selects a navaid for best position orientation
- P (procedure autotuning) FMC selects navaids for approach or departure procedure guidance
- R (remote tuning) VOR frequency or identifier has been entered by the flight crew on the NAV RADIO page
- M (manual) VOR is manual–tuned using the VOR control panels on the glareshield. Manual–tuning takes priority over FMC autotuning.

Valid entries:

- VOR, non-ILS DME, or ILS DME identifier
- VOR frequency (XXX.X or XXX.XX).

2 RADIAL

Displays the current radial from the left and right VOR stations to the airplane.

Performance Initialization Page

The performance initialization page allows the entry of airplane and route data to initialize performance calculations. This data is required for VNAV operation.

Performance Initialization Page

1 Gross Weight (GR WT)

Airplane gross weight can be entered by the flight crew or calculated by the FMC after entry of zero fuel weight.

Valid entry is thousands of pounds with a decimal (hundreds) optional.

Entering the zero fuel weight first displays calculated gross weight.

Entry of a value after takeoff speeds are selected removes the speeds and displays the scratchpad message TAKEOFF SPEEDS DELETED.

Copyright © The Boeing Company. See title page for details.

Flight Management, Navigation NOT USE FOR FLIGHT

767 Flight Crew Operations Manual

2 FUEL

Fuel on board displays when the fuel totalizer calculations are valid. The source for the display is included in the line:

- SENSED fuel quantity is from the totalizer.
- CALC (calculated) fuel quantity is from FMC calculations. Manual entry is possible
- MANUAL fuel quantity has been manually entered. Manual entries blank totalizer on PROGRESS page 2/3.

Valid entry is thousands of pounds with a decimal (hundreds) optional.

Only manual entries can be deleted. The display returns to the sensed (totalizer) value when a manual entry is deleted.

3 Zero Fuel Weight (ZFW)

Normally, ZFW is entered from the airplane dispatch papers and the FMC calculates the airplane gross weight.

Valid entry is thousands of pounds with a decimal (hundreds) optional.

Calculated zero fuel weight displays when airplane gross weight is entered first and fuel on board is valid.

Entry of a value after takeoff speeds are selected removes the speeds and displays the scratchpad message TAKEOFF SPEEDS DELETED.

ZFW may be manually entered or uplinked. When a performance uplink is pending, uplinked values (small font) display beside the entered values (large font).

4 RESERVES

Valid entry is thousands of pounds with a decimal (hundreds) optional.

Can be manually entered or uplinked. When a performance uplink is pending, uplinked values (small font) display beside the entered values (large font).

5 INDEX

Push – displays the INIT/REF INDEX page.

6 Cruise Altitude (CRZ ALT)

Cruise altitude can be entered by the flight crew or from a company route or uplink.

Entered value is displayed on the CLB and CRZ pages.

DO NOT USE FOR FLIGHT Management, Navigation - FMC Preflight

767 Flight Crew Operations Manual

7 COST INDEX

Cost index is used to calculate ECON climb, cruise, and descent speeds. Larger values increase the ECON cruise speed. Entering zero results in maximum range airspeed and minimum trip fuel. Cost index can be entered by the flight crew or from a company route or uplink.

Valid entries are 0 to 9999.

8 Cruise Center of Gravity (CRZ CG)

Used by FMC to compute maximum altitude and maneuver margin to buffet.

Displays default center of gravity.

Can be manually entered or uplinked.

Default value displays in small font.

A flight crew entered or unlinked value displays in large font.

STEP SIZE

Displays the climb altitude increment used for planning the optimum climb profile.

Default value is ICAO which provides a 2000 foot step below FL290 and a 4000 foot step above FL290.

Valid manual entries are 0 to 9000 in 1000 foot increments

In-flight entries are inhibited. In-flight step size changes are made on the CRZ page.

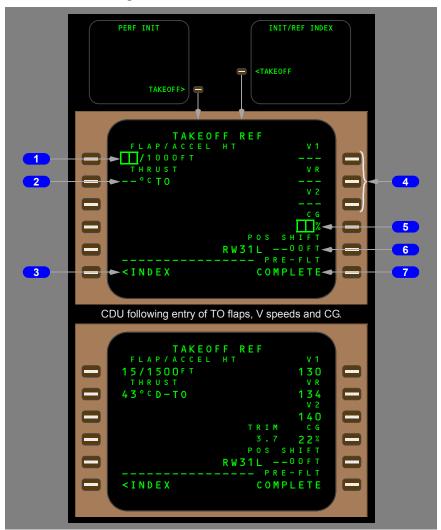
For a non–zero entry, performance predictions are based on step climbs at optimum points. For a zero entry, performance predictions are based on a constant CRZ ALT.

10 TAKEOFF

Push – displays the TAKEOFF REF page.

Takeoff Reference Page

The takeoff reference page allows the input of the final performance data required for takeoff. Entries on the takeoff reference page complete the normal FMC preflight. If any required preflight data has been omitted, a prompt is displayed to access the page where data is missing.


Copyright © The Boeing Company. See title page for details.

February 14, 2007

D632T001-300

11.40.29

Takeoff Reference Page

1 Flap/Acceleration Height (FLAP/ACCEL HT)

Enter a valid takeoff flap setting: 5, 15, or 20.

Entry of a value after takeoff speeds are entered removes the speeds and displays the scratchpad message TAKEOFF SPEEDS DELETED.

ACCEL HT displays the acceleration height in feet above the origin airport. VNAV commands acceleration at this altitude or at first flap retraction.

IOT USE FOR FLIGHTight Management, Navigation -

767 Flight Crew Operations Manual

Default value is from the AMI.

Valid flight crew entries are from 400 to 9999 feet above the origin airport elevation.

2 THRUST

Initially displays dashes and the thrust reference mode.

If an assumed temperature value is entered on the thrust management select panel, the entered temperature is displayed here.

Allows entry of an assumed temperature which is used by the TMC. Entries can be made in degrees Celsius or Fahrenheit. Fahrenheit entries must be suffixed with an F. The entered value is displayed on EICAS.

Entry of a value after takeoff speeds are entered removes the speeds and displays the scratchpad message TAKEOFF SPEEDS DELETED.

3 INDEX

Push – displays the INIT/REF INDEX page.

4 V Speeds

Dashes are displayed before speeds are entered and when speeds have been deleted

Flight crew entered speeds are displayed in large font. "V1" and "VR" are displayed on the ADI speed tape.

If performance data is changed after speeds are entered, the speeds are deleted, dashes are displayed, and the scratchpad message TAKEOFF SPEEDS DELETED is displayed.

5 TRIM, Center of Gravity (CG)

Valid entry is CG within the valid range.

After the CG is entered, the FMC calculates and displays the stabilizer takeoff trim setting to the left of the CG entry.

6 Position Shift (POS SHIFT)

Displays the departure runway from the active RTE page and allows entry of a distance between departure runway threshold and where the autothrottle will be engaged for takeoff.

11.40.31

Copyright © The Boeing Company. See title page for details. February 14, 2007 D632T001-300

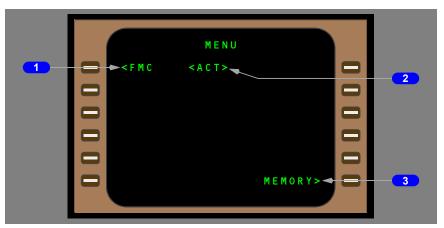
The FMC updates its position to the departure runway threshold when the autothrottle is engaged for takeoff. If a position shift distance is entered, upon autothrottle engagement the FMC updates its position to that entered distance from the departure runway threshold.

If an intersection takeoff is planned, the intersection identifier or a positive value should be entered. If a displaced threshold takeoff is planned a negative value should be entered

Valid position shift entries are from 99 to – 99 in hundreds of feet.

Entry of a value after takeoff speeds are selected removes the speeds and displays the scratchpad message TAKEOFF SPEEDS DELETED.

POS SHIFT update is inhibited when GPS is primary FMC navigation source (i.e GPS NAV is ON).


7 Pre-Flight (PRE-FLT) Status

Displays COMPLETE if all required pre-flight entries have been made.

Displays a prompt to access a pre–flight page where further entries are required if pre–flight is not complete.

Menu Page

The MENU page allows access to other airplane systems which are controlled with the CDU.

1 FMC

Push – connects FMC to CDU

DO NOT USE FOR FLIGHT Management, Navigation - FMC Preflight

767 Flight Crew Operations Manual

2 CDU Status

- <ACT> indicates system currently controlling CDU
- <REQ> indicates inactive CDU function requiring pilot action
- blank indicates function is not selected or requiring action

3 MEMORY (not displayed while airborne)

Push – displays maintenance memory page, providing access to computer memory for maintenance while the airplane is on the ground

February 14, 2007 D632T001-300 11.40.33

Flight Management, Navigation NOT USE FOR FLIGHT FMC Preflight

767 Flight Crew Operations Manual

Intentionally Blank

DO NOT USE FOR FLIGHT

767 Flight Crew Operations Manual

Flight Management, Navigation FMC Takeoff and Climb

Chapter 11 Section 41

Introduction

The takeoff phase of flight starts with the selection of takeoff thrust at the start of the takeoff roll.

If GPS navigation is not available the FMC position is updated to the takeoff runway position when the autothrottle is engaged for takeoff.

The takeoff mode of the autoflight system provides flight director guidance until LNAV and VNAV are engaged after takeoff. Preparation for this phase starts in the preflight phase and includes entry of the TAKEOFF REF page data.

The takeoff phase changes to the climb phase when climb thrust and VNAV are engaged. The climb phase continues to the top of climb point, where the cruise phase starts.

Takeoff Phase

When changes are made to the departure runway and SID, the DEPARTURES and TAKEOFF REF pages must be modified to agree. The modified data is entered the same as during preflight.

During takeoff, the autothrottle commands the selected thrust and the autoflight system provides pitch and roll commands through the flight director.

When armed before takeoff, LNAV engages at 50 feet radio altitude. When engaged, FMC roll commands fly the active route leg.

Climb Phase

When climb thrust and VNAV are engaged the FMC provides pitch commands to maintain the climb speed until the acceleration height is reached. At the acceleration height the FMC provides pitch commands to accelerate.

The VNAV commanded speed is limited by the airplane configuration. At acceleration height, VNAV commands a speed 5 knots below the flap placard speed.

Passing 10,000 feet, VNAV commands an acceleration to the economy climb speed, which is maintained until reaching the cruise altitude unless the climb profile contains other constraints.

During the climb, VNAV complies with the LEGS page waypoint altitude and speed constraints. A temporary level—off for a crossing altitude restriction is accomplished at the commanded speed.

If the climb speed profile results in a climb angle that will cause the airplane to miss a waypoint altitude constraint, the CDU scratchpad message UNABLE NEXT ALTITUDE is displayed. A different speed profile that gives a steeper climb angle must be selected.

A decrease in airspeed may be observed during VNAV level off to cruise altitude if the rate of climb is high at the level off capture point. VNAV will continue a smooth level off and eventually accelerate to the selected cruise speed. During level off under these conditions, VNAV will not allow the airspeed to decrease below the best hold speed for that altitude, which is above the minimum maneuvering speed.

Climb Page

The climb page is selected by pushing the CDU VNAV function key while on the ground, during takeoff, or in climb.

The climb page is used to evaluate, monitor, and modify the climb path. The data on the climb page comes from preflight entries made on the route and performance pages, and from the FMC data bases.

The FMC manages the climb to comply with the active route. The climb mode is indicated by the CLB page title. The mode can be economy, selected speed, or engine out. In each mode, the same type of data is shown on the page.

1 Page Title

ACT is displayed when the climb phase is active.

DO NOT USE FOR FLIGHT Management, Navigation - FMC Takeoff and Climb

767 Flight Crew Operations Manual

The page title displays the type of climb:

- ECON speed based on the cost index
- LIM SPD speed based on airplane configuration limiting speed
- MCP SPD MCP speed intervention selected
- EO engine out mode selected
- XXXKT fixed CAS climb speed profile
- M.XXX fixed Mach climb speed profile.

Fixed climb speeds are for:

- climb segment constraints
- waypoint speed constraints
- an altitude constraint associated with a speed constraint
- a speed transition
- a flight crew selected speed.

2 Cruise Altitude (CRZ ALT)

Displays cruise altitude entered on PERF INIT page.

Valid entries are: XXX, XXXX, XXXXX, or FLXXX. Altitude displays in feet or flight level depending on transition altitude.

3 Economy Speed (ECON SPD), Selected Speed (SEL SPD)

ECON SPD

- economy speed based on cost index
- displays CAS and Mach values.

SEL SPD

- displayed when intermediate level off required below an existing speed constraint
- · displayed when flight crew enters speed
- CAS or Mach value may be entered.

4 Speed Transition (SPD TRANS)

Displays the transition speed/altitude from one of these sources:

- the navigation database value for the origin airport
- a default speed of 250 knots and 10,000 feet.

Not displayed above the transition altitude.

Can be deleted

Flight Management, Navigation NOT USE FOR FLIGHT

767 Flight Crew Operations Manual

5 Speed Restriction (SPD RESTR)

Speed restrictions not associated with specific waypoints are manually entered on this line.

Displays dashes before entry by flight crew.

Valid entry is a CAS and altitude (example 240/8000).

6 Economy (ECON)

Push – changes climb speed to ECON. Must be executed.

Prompt is shown on line 5L when the climb mode is not ECON.

7 Waypoint Constraint (AT XXXXX)

Displays next airspeed and/or altitude constraint at waypoint XXXXX.

FMC commands the slower of constraint speed or performance speed.

Constraints are entered on RTE LEGS page or are inserted as part of a SID.

Delete here or on RTE LEGS page.

Blank if no constraint exists

8 ERROR at Waypoint

Displays altitude discrepancy and distance past waypoint where altitude will be reached.

Blank if no error exists.

9 Transition Altitude (TRANS ALT)

Transition altitude for origin airport contained in navigation database. FMC uses 18.000 feet if transition altitude is not available.

Manually change transition altitude here or on DESCENT FORECAST page.

Valid entries are XXX, XXXX, XXXXX, or FLXXX.

Altitude information displayed on the CDU changes from altitudes to flight levels above the transition altitude.

10 Maximum Angle (MAX ANGLE)

Maximum angle of climb speed.

Entry not allowed.

11 Engine Out (ENG OUT)

Push – modifies page to show engine out (ENG OUT) performance data.

12 Climb Direct (CLB DIR)

Push – deletes all waypoint altitude constraints between the airplane altitude and the MCP altitude. FMC cruise altitude is not affected.

Blank if no constraints exist

Engine Out Climb

Engine out VNAV climb guidance is displayed on the EO CLB page. The EO CLB page must be selected and executed by the flight crew. Engine out data is available with all engines operating. Engine out climb (EO CLB) changes to engine out cruise (EO CRZ) at the top of climb.

Engine Out CLB Page

The modified page displays engine out performance limitations. Manual entries are allowed. After the modification is executed VNAV gives engine out guidance in the climb.

1 Cruise Altitude (CRZ ALT)

Displays cruise altitude if less than MAX ALT.

Displays MAX ALT if less than cruise altitude.

Manual entry is allowed.

Copyright © The Boeing Company. See title page for details.

11.41.5

Flight Management, Navigation NOT USE FOR FLIGHT

767 Flight Crew Operations Manual

2 Speed Line

Displays engine out best gradient climb speed (EO SPD) when page first selected. Any valid speed can be entered.

Valid entry is XXX for CAS.

Valid entry is 0.XXX for Mach. Trailing zeros can be omitted.

A manual entry changes the line heading to SEL SPD and may cause MAX ALT to change.

3 Engine Out Speed (EO SPD)

Push – resets command speed to best gradient speed. Blank when EO SPD is displayed on the speed line.

4 Maximum Altitude (MAX ALT)

Lower of maximum altitude at engine out climb speed or cruise speed.

Entry not allowed.

5 All Engine (ALL ENG)

Push – modifies page to display all engine (ALL ENG) performance data.

Route Legs Page

The legs page is used to evaluate and modify the planned route of flight during the climb and to add or delete waypoint constraints to comply with the ATC clearance. The data on the climb page comes from preflight entries made on the route and departure pages, and from the FMC data bases.

Page Title

Title format shows route status:

- RTE X LEGS inactive route
- ACT RTE X LEGS active route
- MOD RTE X LEGS modified active route.

2 Leg Direction

Leg segment data in line title:

- courses magnetic (xxx°) or true (xxx° T)
- arcs distance in miles, ARC, turn direction (example: 24 ARC L)
- heading leg segments xxx° HDG
- track leg segments xxx° TRK
- special procedural instructions from database HOLD AT, PROC TURN.

Calculated great circle route leg directions may be different than chart values.

Dashes are shown for an undefined course.

Flight Management, Navigation NOT USE FOR FLIGHT

767 Flight Crew Operations Manual

3 Waypoint Identifier

Displays waypoints by name or condition.

Active leg is always the first line of the first active RTE X LEGS page.

All route waypoints are shown in flight sequence.

Waypoints can be modified. Examples:

- · add waypoints
- · delete waypoints
- · change waypoint sequence
- · connect route discontinuities.

Boxes are shown for route discontinuities.

Dashes are in the line after the end of the route.

4 Route 2 Legs (RTE 2 LEGS)

Push -

- displays the RTE 2 LEGS
- when RTE 2 LEGS page is shown, prompt changes to RTE 1 LEGS.

5 Waypoint Speed/Altitude Constraints

Waypoint speed or altitude constraint in large font.

Manual entry allowed in climb or descent phase. Entered by FMC when constraints are part of a procedure.

Speed constraint is assumed to be at or below the displayed speed.

Valid entries are:

- speed in airspeed or Mach
- altitude in thousands of feet or flight level (19000, 190)
- XXX/XXXX airspeed/altitude entered simultaneously
- XXX/ airspeed only (requires an existing altitude constraint)
- XXXXX or /XXXXX altitude only.

Altitude constraint suffixes:

- blank cross at altitude
- A cross at or above altitude
- B cross at or below altitude
- both altitude block. Example: 220A240B
- S planned step climb (refer to Flight Management, Navigation, Cruise).

6 Distance to Waypoint

Distance from airplane to active waypoint or from waypoint to waypoint.

DO NOT USE FOR FLIGHT Management, Navigation - FMC Takeoff and Climb

767 Flight Crew Operations Manual

The first line displays the distance from the airplane to the active waypoint.

7 Waypoint Speed/Altitude Predictions

Waypoint speed and altitude predictions are displayed in small font.

Dashes are displayed in the descent region prior to descent path calculation. Descent path calculation requires altitude constraint below cruise altitude.

8 ACTIVATE, Route Data (RTE DATA)

Push – three possible prompts

- ACTIVATE activates inactive flight plan; shows RTE DATA prompt
- RTE DATA (route data) shows route data page
- CTR see below

9 Center (<CTR>)

Displayed when PLAN mode selected.

Displayed adjacent to the waypoint around which plan mode is centered.

10 MAP Center (CTR) STEP

Replaces ACTIVATE or RTE DATA when PLAN mode selected.

Push – steps <CTR> to next waypoint. Plan mode recenters.

February 14, 2007 D632T001-300 11.41.9

Engine Out Departure

1 Engine Out Standard Instrument Departure (EO SID)

Engine out SIDs can be created by the airline for specific runways. If there is an EO SID in the database for the departure runway it will be listed on the departures page after the runway is selected.

The FMC puts the EO SID into the route as a modification if:

- an engine failure is sensed
- · flaps are extended
- and the navigation database has an EO SID for the departure runway.

The modification can be executed or erased.

Air Turnback

Arrivals Page

During a turn—back situation, the flight crew requires quick access to the arrivals data for the origin airport. The arrivals page allows access without changing the destination on the route page.

During climb if the airplane is less than 400 miles from the origin and less that half way to the destination, push the DEP ARR key to show the ARRIVALS page for the origin airport.

1 Standard Terminal Arrivals (STARS)

Displays STARS for origin airport.

2 Transitions (TRANS)

Displays transitions for origin airport.

3 APPROACHES

Displays approaches for origin airport.

4 RUNWAYS

Displays runways for origin airport.

Flight Management, Navigation NOT USE FOR FLIGHT FMC Takeoff and Climb

767 Flight Crew Operations Manual

Intentionally Blank

DO NOT USE FOR FLIGHT

767 Flight Crew Operations Manual

Flight Management, Navigation FMC Cruise

Chapter 11 Section 42

Introduction

The cruise phase starts at the top of climb.

During cruise, the primary FMC pages are:

- RTE X LEGS
- CRZ
- PROGRESS

The RTE LEGS pages are used to modify the route. The CRZ pages display VNAV related data. The PROGRESS pages display flight progress data. During cruise, the specific page listed below is used to:

- POS REF page verify the FMC position
- RTE DATA page display progress data for each waypoint on the RTE LEGS page
- REF NAV DATA page display data about waypoints, navaids, airports, or runways, and can be used to inhibit navaids
- RTE X page select a route offset
- FIX INFO page display data about waypoints. Page data can be transferred to other pages to create new waypoints and fixes
- SELECT DESIRED WAYPOINT page shows a list of duplicate waypoints from the navigation database. The flight crew selects the correct waypoint from the list
- POS REPORT page display data for a position report.
- WINDS page enter forecast wind and temperature

The CLB page changes to CRZ at the top of climb. The CRZ CLB and CRZ DES pages change to CRZ at the new cruise altitude. The CRZ page changes to DES at top of descent.

LNAV Modifications

This section shows typical techniques to modify the route. The modifications include:

- add and delete waypoints
- connect discontinuities
- change waypoint's sequence
- intercept a course.

RTE LEGS Page Modifications

Modifications to the LNAV route are usually made on the RTE LEGS page. When the route is modified, MOD is displayed in the title and the execute light is illuminated.

Copyright © The Boeing Company. See title page for details.

Add Waypoints

Waypoints can be added to the route at any point. Added waypoints are followed by route discontinuities.

First, enter the waypoint name in the scratchpad.

Second, locate the correct line in the flight plan and push the adjacent line select key. The scratchpad waypoint name is put into the selected line. The entered waypoint is connected to the waypoint above it via a direct route. A route discontinuity follows the waypoint.

For example, OED is typed into the scratchpad. Push line select key 2L to put OED into line 2. The FMC assumes BTG direct OED. RBL and the rest of the flight plan are kept but, are put after the route discontinuity.

1 Page Title

MOD – replaces ACT when modification is in progress.

ACT – replaces MOD when ERASE is selected or execute key is pushed.

2 Modified Waypoint

OED waypoint entered into the route after BTG. Modification creates a route discontinuity because OED was not in the active route. The FMC now requires routing beyond OED.

3 Discontinuity Waypoint

Discontinuity is corrected when applicable waypoint is entered in boxes.

4 ERASE

Push – removes all modifications and shows active data.

Displayed when the FMC contains modified data.

Removed when selected or the modifications are executed.

5 ROUTE DISCONTINUITY

Line title separates route segments when there is a discontinuity.

Note: Performance predictions to destination on the PROGRESS page are calculated assuming the route of flight is direct between waypoints on either side of a route discontinuity.

Delete Waypoints

Use the RTE LEGS page to remove waypoints from the route. The active waypoint can not be deleted. Two methods to remove a waypoint are:

- delete the waypoint with the DEL function key
- change the waypoint's sequence.

The data in the route before the deleted waypoint does not change. A discontinuity is put in the route when the DEL function key is used to remove a waypoint.

1 Active Route

The active route shows RBL followed by OAK and AVE.

2 DELETE Entry

Pushing the DEL function key arms the delete function and selects DELETE to the scratchpad.

3 Route Discontinuity

With DELETE in the scratchpad, pushing the line select key for RBL deletes the waypoint. Boxes replace RBL and a route discontinuity is displayed.

Change Waypoint Sequence

Waypoints moved from one position in the flight plan to another do not cause route discontinuities.

The waypoint may be manually typed or copied from any of the RTE LEGS pages. To copy the waypoint, push the line select key adjacent to the waypoint.

The example below shows the flight plan being modified to fly from BTG direct OAK. Push the line select key adjacent to OAK to put OAK in the scratchpad. Push the line select key adjacent to RBL. RBL is removed from the flight plan and the routing is direct from BTG to OAK to AVE. The modification does not cause a route discontinuity. Several waypoints can be removed from the flight plan at a time with this method.

1 Active Route

The active route shows RBL followed by OAK and AVE. The clearance is to fly from BTG direct OAK. The OAK waypoint is selected to the scratchpad.

2 Change OAK's Sequence

OAK is selected to the waypoint after BTG. RBL is removed with no discontinuity.

Remove Discontinuities

A discontinuity exists when two waypoints are not connected by a route segment.

To remove a discontinuity, copy the subsequent waypoint from the route into the scratchpad and enter it into the discontinuity.

1 Route Discontinuity

The active route has a discontinuity after BTG. The example shows how to fly direct from BTG to OAK. Copy OAK to the scratchpad. Any subsequent waypoint in the route can be selected to the scratchpad to remove the discontinuity.

2 Continuous Route

Select OAK to the boxes to remove the discontinuity.

If a waypoint which does not already exist on the route is entered into the boxes the discontinuity moves one waypoint further down the route.

Direct To And Intercept Course To

If the airplane is not on the active leg segment, LNAV may deactivate or it may not activate when armed. This happens after the airplane crosses a discontinuity, or is not on an intercept heading to the active leg segment. Here are three ways to arm or activate LNAV:

- When the airplane is within 2.5 miles of the active leg, push the LNAV switch. LNAV activates and intercepts the active route leg
- When more than 2.5 miles from the active leg, push the LNAV switch when the airplane is on an intercept heading to the active route leg. Initially, LNAV arms and then activates as the airplane approaches the active leg. An intercept heading must intersect the active leg inbound before the active waypoint
- Fly direct to a waypoint or intercept a course to a waypoint. Enter a waypoint in the RTE LEGS page active waypoint line to fly direct. Use the INTC CRS prompt in line 6R to create an intercept course to the waypoint. When the modification has been executed, push the LNAV switch and LNAV arms or activates, depending on the distance from the active leg.

Modification of the Active Waypoint

The following example shows a modification to go direct to a waypoint. After vectors off the original route a clearance is received to proceed direct to BTG.

1 Course to Active Waypoint

Prior to execution, displays direct—to inbound course at waypoint; changed by entry in INTC CRS line or by selecting intercept course.

After execution, displays current required track to fly inbound course to waypoint.

Flight Management, Navigation NOT USE FOR FLIGHT

767 Flight Crew Operations Manual

2 Active Waypoint

Displays crew entered direct/intercept waypoint. If entered waypoint is not part of the active route it will be followed by a discontinuity.

3 ABEAM Points (PTS)

Push -

- creates abeam points on new route to indicate waypoints bypassed by direct to function
- abeam points are perpendicular to the waypoints bypassed
- line title displays ABEAM PTS, line data displays SELECTED
- subsequent route modifications remove ABEAM PTS prompt.

4 Route (RTE) COPY

Push -

- copies active unmodified route into inactive route
- erases previous inactive route
- line title displays RTE COPY, line data displays COMPLETE
- subsequent route modifications remove RTE COPY prompt.

5 Intercept Course (INTC CRS) TO

Displays boxes if entered waypoint not in the active route.

Displays current route course and prompt caret if the entered waypoint is in the active route. Allows entry of a different inbound course via the scratchpad.

When boxes displayed, valid entry is intercept course from 000 to 360.

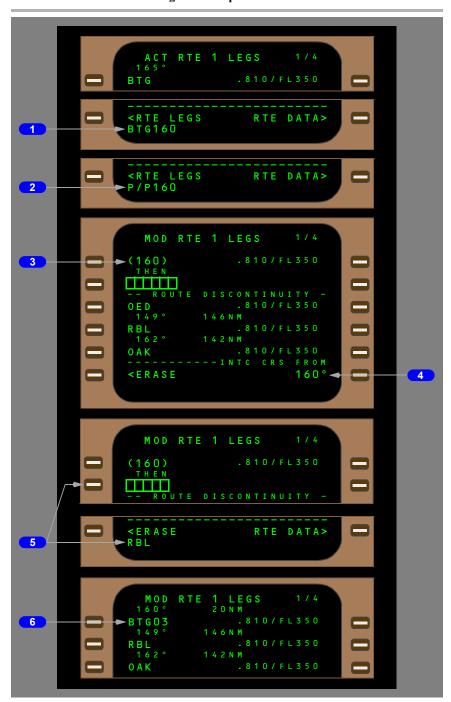
Push -

- when course displayed, selects current route course as intercept course to active waypoint
- when course is displayed and a different course has been entered in the scratchpad, the scratchpad value is entered as the intercept course to the active waypoint
- selection or entry is displayed as the course to the active waypoint
- selection or entry removes ABEAM PTS and RTE COPY prompts.

Intercept Course From

The steps to create an intercept course from a waypoint are nearly the same as the steps for an intercept course to. The waypoint name in the scratchpad is suffixed with the outbound course

DO NOT USE FOR FLIGHT Management, Navigation -


767 Flight Crew Operations Manual

An intercept course can be created outbound from a waypoint in the navigation data base or from present position. The waypoint does not have to be in the route. Entering a waypoint and course pair in the active waypoint line displays the INTC CRS FROM prompt. The FMC calculates a route leg with the waypoint as the origin of the entered course.

The following example demonstrates entering a 160° course from BTG BTG160 is entered in the scratchpad. When this entry is line selected to the active waypoint line, the entered course is displayed as a conditional waypoint.

11,42,9 August 21, 2008

767 Flight Crew Operations Manual

1 Waypoint and Outbound Course

Enter the waypoint name and outbound course in the scratchpad.

2 Present Position and Outbound Course

Enter P/P and outbound course in the scratchpad.

3 Active Outbound Course Entry

After the active waypoint line is selected, the outbound course is displayed. The waypoint name is not used.

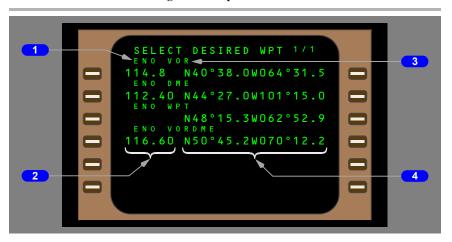
For example, BTG160 is entered into the active waypoint line. The FMC calculates a new route leg with BTG as the origin on a outbound course of 160°.

4 Intercept Course From (INTC CRS FROM)

Displays outbound course from the entered waypoint. Allows input of a different outbound course until the modification is executed.

Valid entry is any course from 000° through 360°.

5 Next Waypoint


Enter a down track waypoint into the boxes. To resolve the discontinuity the waypoint must be part of the active route and the inbound course to that waypoint must be intersected by the entered course.

6 Created Waypoint

If the 160° course intercepts the course inbound to the entered waypoint, a new waypoint is created at the intercept point. Line selecting the new waypoint results in a place, bearing, distance format in the scratchpad.

SELECT DESIRED Waypoint (WPT) Page

The SELECT DESIRED WPT page is displayed when a waypoint identifier or name is entered and the navigation database contains more than one location for that name. Selection of a waypoint returns the display to the previous page.

1 Identifier

Displays a list of the waypoints in the navigation database that have the same identifier as entered.

Up to 48 waypoints (8 pages) can be listed.

Waypoints are sorted as follows:

- when page is accessed as a result of a flight plan entry or modification, sort is based on proximity to the waypoint preceding the entered waypoint
- when page is accessed as a result of a DIR/INTC, FIX INFO, or REF NAV DATA entry, sort is based on proximity to current aircraft position.

Select the desired waypoint by pushing either the left or right line select key adjacent to the waypoint. The CDU page where the waypoint identifier was entered is redisplayed with the selected waypoint inserted.

2 Frequency

Displays frequency of the waypoint if it is a navaid. Blank if the waypoint is not a navaid.

3 Type

Displays the type of waypoint for each duplicate name.

4 Latitude/Longitude

Displays the latitude/longitude for each duplicate name.

Airway Intercept

Just as in intercept to, LNAV can be used to intercept an airway. An airway intercept changes the active waypoint on the RTE and LEGS pages.

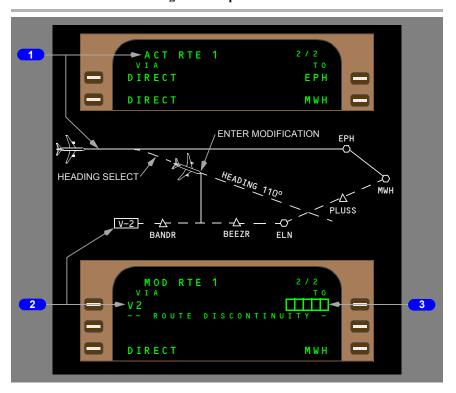
Enter the airway identifier under VIA on line 1 of the RTE page. Boxes display under TO. Enter the desired airway exit waypoint in the boxes. For this open—ended airway intercept, the FMC selects the waypoint preceding the closest abeam location as the starting waypoint of the airway. This waypoint is displayed on line 1. The entered airway and the desired exit point are displayed on line 2. When the modification is executed the leg inbound to the FMC selected starting waypoint becomes the active leg.

If the clearance heading intercepts the active leg segment, LNAV can be armed and the intercept will occur. In most airway intercept situations, the commanded heading will not intercept the active leg.

If the clearance heading does not intercept the active leg segment, use the intercept—course—to procedure to make the course inbound to the waypoint after the crossing location the active leg segment.

Example

The active route is direct to EPH, then direct to MWH. ATC clears the airplane to:


- turn right heading 110°
- intercept V2 to MWH.

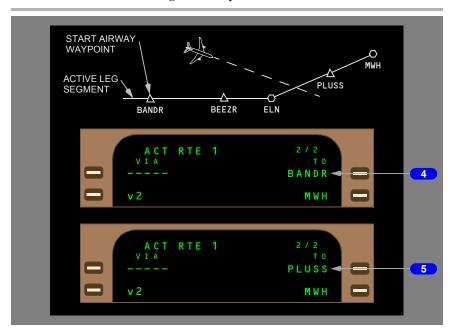
Following the V2 modification to MWH and execution, the LEGS page displays this waypoint sequence:

- BANDR
- BEEZR
- ELN
- PLUSS
- MWH

Modify the LEGS page using a course intercept to the waypoint after the crossing location. In this case, it would be PLUSS. PLUSS becomes the active waypoint on the V2 airway. The LEGS page now displays:

- PLUSS
- MWH.

1 Active RTE 1 Page


The route page before the ATC clearance.

2 Input Airway

Enter the airway in the first VIA position on the RTE page. Boxes display in the TO position. A route discontinuity follows on the next line.

3 Airway Exit

Enter desired airway exit point in the boxes.

4 Start Airway Waypoint

After entering MWH in the boxes:

- the FMC selects BANDR as the airway start waypoint
- the airway line moves down one line
- dashes are shown in the VIA to the start airway waypoint.

5 New Active Waypoint

Following modification and execution of the course intercept procedure to PLUSS, the LEGS page displays PLUSS as the active waypoint. LNAV can be armed and the airway intercept can be completed.

Route Offset

Route offsets are selected on the RTE page. The OFFSET prompt is displayed on the RTE page when the airplane is airborne and not on a SID, STAR, or transition. Entering a distance value into the OFFSET dashes creates the selected offset. An offset propagates along the route from the active waypoint until a discontinuity, approach, approach transition, holding pattern, course change of greater than 135°, or end of route is reached. An offset can be removed by deleting the offset, proceeding direct, or entering an offset value of zero.

The offset is shown as a white dashed line on the map display until the offset modification is executed or erased.

Copyright © The Boeing Company. See title page for details.

August 17, 2007

D632T001-300

11.42.15

After execution, the offset route is shown as a dashed magenta line on the map display. The original route remains a solid magenta line.

If LNAV is engaged when the offset is executed, the airplane turns to an intercept heading and captures the offset course.

1 OFFSET

Enter the necessary offset. When executed, the CDU offset (OFST) light illuminates.

Valid entries are L (left) or R (right) followed by a distance from 0 to 99 in nautical miles.

Cruise Page

All Engine Cruise

The cruise page is used to monitor and change cruise altitude and speed. Speed changes can be manually selected or automatically selected with the selection of other VNAV modes. Cruise climbs, cruise descents, and step climbs can be accomplished from the cruise page.

When using the economy mode, page data is based on operating at ECON SPD. Economy cruise speed is based on cost index. When the flight crew enters a selected speed, page data changes. When the FMC is in the engine out mode, the data changes to include the airplane capabilities with one engine inoperative. The long range cruise (LRC) mode calculates speeds to maximize airplane range.

1 Page Title

The page title displays active (ACT) or modified (MOD) cruise. Usually, the title contains ECON for economy cruise. Fixed speed, engine out, and long range cruise modify the title.

Flight Management, Navigation NOT USE FOR FLIGHT

767 Flight Crew Operations Manual

Page titles include:

- CO engine out mode and company speed selected
- CRZ CLB or CRZ DES cruise climb or descent
- ECON speed based on cost index
- EO engine out mode selected
- EO D/D engine out drift down displays when EO selected and the airplane altitude is above the maximum altitude for engine out performance
- LIM SPD based on an airplane configuration limiting speed
- LRC long range cruise selected
- MCP SPD speed intervention applied from the MCP
- M.XXX fixed Mach cruise speed
- XXXKT fixed CAS cruise speed.

Fixed cruise speeds are for:

- waypoint speed constraints
- · an altitude constraint associated with a speed constraint
- a flight crew selected speed (SEL SPD).

2 Cruise Altitude (CRZ ALT)

Displays cruise altitude entered on PERF INIT page.

Valid entries are: XXX, XXXX, XXXXX, OR FLXXX. Altitude displays in feet or flight level depending on the transition altitude. Changing the MCP altitude enters the new altitude in the scratchpad for entry. Entry creates a modification.

When the modification is executed the page title changes to CRZ CLB or CRZ DES.

3 Economy Speed (ECON SPD), Selected Speed (SEL SPD)

Displays target speed or Mach.

Allows entry of any valid speed or mach number. MOD displays in the page title until the modification is erased or executed.

A manually entered speed changes the line title to SEL SPD.

ECON can be replaced with LRC or company speed (CO SPD), depending on the VNAV mode.

4 EPR

Displays EPR necessary for level flight at the target airspeed.

4 N1

Displays N1 necessary for level flight at the target airspeed.

5 Economy (ECON)

Push – selects economy cruise speed.

Displayed when speed or Mach is not ECON.

6 Destination ETA/FUEL

Estimated time of arrival and calculated fuel remaining at the destination.

Displays the same data for the alternate airport when a DIVERT NOW modification is selected from the ALTN page.

Calculations are based on optimum step climbs and cruise altitudes.

7 Engine Out (ENG OUT)

Push -

- displays engine out cruise page
- · commands engine out performance calculations
- changes CRZ ALT if above maximum engine out altitude
- · changes target speed to engine out speed
- upon execution, thrust reference mode changes to CON.

8 Long Range Cruise (LRC)

Push – displays long range cruise page.

Engine Out Cruise

Engine out VNAV cruise guidance displays on the EO CRZ page. Engine out data is also available with both engines operating.

The initial page data includes engine out performance limitations. Manual entries are allowed. When above the maximum engine out cruise altitude, VNAV calculates engine out (EO) guidance for drift down (D/D). The EO D/D page changes to the EO CRZ page when reaching the engine out cruise altitude. Subsequent engine out cruise climb or descent is accomplished the same as two engine cruise climb or descent.

As the airplane gross weight decreases, maximum altitude increases. A step climb may be possible under these conditions.

The example is based on a cruise altitude above the maximum engine out altitude. When ENG OUT is first selected, the default speed is EO SPD.

1 Page Title

Displays EO D/D (for this example, airplane is above MAX altitude).

Displays MCP SPD D/D when controlling to a manually entered speed during the driftdown.

Displays EO LRC (long range cruise) D/D when LRC selected during driftdown.

Displays EO LRC when in level cruise flight and the LRC speed is selected.

Displays EO CRZ CLB or EO CRZ DES during engine out cruise climbs or descents and the airplane is below the engine out maximum altitude.

2 Cruise Altitude (CRZ ALT)

Displays altitude from MAX ALT line when current CRZ ALT above MAX ALT.

Manual entry of an altitude above maximum engine out altitude results in the scratchpad message, "MAX ALT FLXXX".

Valid entries are the same as all engine cruise page.

3 Engine Out Speed (EO SPD)

Displays the target speed or Mach.

Manual entry is allowed.

DO NOT USE FOR FLIGHTight Management, Navigation - FMC Cruise

767 Flight Crew Operations Manual

Valid entries are the same as all engine cruise page.

A manually entered speed changes the line title to SEL SPD.

ECON can be replaced with long range cruise (LRC), company (CO SPD), or engine out (EO SPD) speed using prompts at the bottom of the page.

Selecting any speed shows engine out speed (EO SPD) as a select prompt at 6L.

Manual entries may change MAX altitude.

4 Company Speed (CO SPD)

Push – Modifies the page with company speed, engine out data from the Airline Policy page.

5 Engine Out (EO SPD)

Push – enables execution of engine out minimum drag speed profile.

Display when EO LRC, EO SEL SPD, or CO SPD is the active speed mode.

6 Optimum, Maximum and Recommended Altitude (OPT MAX RECMD)

OPT – displays the most economical altitude based on airplane gross weight.

MAX – displays the maximum cruise altitude based on:

- engine out operation
- selected speed option
- without any altitude or speed constraints, and
- capable of a 100 feet per minute climb rate.

RECMD – displays the most economical altitude based on airplane performance and winds

7 ALL Engine (ENG)

Push – displays a MOD XXX CRZ page with performance based on both engines operating.

Selection and execution allows subsequent selection of two engine economy VNAV modes.

8 Long Range Cruise (LRC)

Push – enables execution of engine out long range cruise.

Displayed when EO or SEL SPD is the active mode.

VNAV Modifications

During the cruise phase, VNAV can calculate two types of climbs: cruise and step climbs. Cruise and planned climbs can be entered by the flight crew. Optimum step climbs are calculated by the FMC. In all cases, the new climb altitude must be selected in the MCP altitude window before VNAV commands the climb.

Cruise Climb

To initiate a cruise climb set the higher altitude on the MCP, then enter the altitude in the CRZ ALT line and execute. When the CRZ page is displayed, the new MCP altitude is automatically copied to the scratchpad to be line selected to the CRZ ALT line.

1 During Cruise Climb

VNAV page title displays ACT ECON CRZ CLB in a climb to a new cruise altitude. ECON is replaced by an indication of the selected speed if other than ECON.

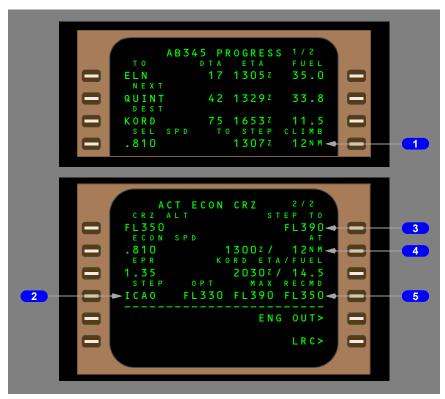
2 End of Cruise Climb

VNAV page title displays ECON CRZ after level off at cruise altitude.

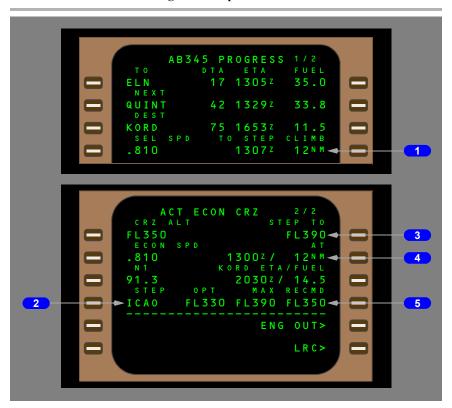
Planned Step Climb

When a step climb is planned to start at a waypoint, the data can be entered on the RTE LEGS page. The FMC performance predictions assume the airplane will start the climb at the identified waypoint.

The FMC displays the distance and ETA to the step point on the CRZ and PROGRESS page. The corresponding altitude profile point and identifier are shown on the map display.



1 Step Climb Altitude


Enter the cruise altitude as an altitude constraint and the letter S. The FMC assumes the step climb starts at the waypoint. Accomplish the step climb at the waypoint with the steps described in cruise climb.

Calculated Step Climb

When a non–zero value is entered into the STEP SIZE line on the PERF INIT or CRZ page, the FMC calculates optimum points for step climbs as the airplane performance permits. The climb altitude is determined by the value in STEP SIZE. Multiple step climbs are possible based on performance and route length. VNAV commands the step climbs, if the MCP altitude and the FMC CRZ ALT are set to the new altitude.

August 17, 2007 D632T001-300 11.42.23

1 TO STEP CLIMB

When the step climb start point is the next VNAV event, the line title changes to TO STEP CLIMB.

Displays the ETA and DTG to the point where the step climb starts.

If the airplane passes the step climb point and has not started to climb, the ETA and DTG are replaced with the word NOW.

When the FMC calculates that a step climb is not advised, the ETA and DTG are replaced with the word NONE.

2 STEP SIZE

Displays the default step climb size of ICAO.

Valid entries are altitudes from 0 to 9000 in 1000 foot increments.

Used for calculation of optimum step point and step climb predictions.

Deletion of a manual entry defaults back to ICAO.

3 STEP TO

An altitude can be entered for a step climb evaluation. The FMC calculates the predicted step climb data and displays the results on this page and the PROGRESS page.

Entering a zero value for STEP SIZE causes the FMC to calculate performance based on a constant altitude flight at the CRZ ALT. Entering a valid, non–zero increment or ICAO step size causes the FMC to calculate performance based on accomplishing step climbs at calculated step climb points.

Step climb altitudes entered on the RTE LEGS page can be higher or lower than the CRZ ALT. These step climb altitudes cannot be overwritten on the CRZ page.

When using the ICAO step size, the STEP TO altitude is the next higher altitude above the OPT altitude corresponding to the direction of flight, based on the CRZ ALT entered before takeoff. Changes to CRZ ALT while in flight do not affect calculation of STEP TO altitudes using ICAO step sizes. However, if an alternate route (for example, Route 2) is activated in flight, the hemispheric altitude will be calculated using the current CRZ ALT.

When using an altitude increment step size, the STEP TO altitude is the next higher altitude above OPT calculated by adding the STEP SIZE increment to the FMC CRZ ALT

When entering a cruise altitude above maximum altitude, the scratchpad message MAX ALT FLXXX is displayed.

Displays:

- the STEP TO altitude from the RTE LEGS page
- a calculated step climb altitude based on the step size.

Manual entry is allowed.

Blank when:

- there is no active flight plan
- within 200 NM of the T/D point or 500 miles from the destination
- the step size is zero
- in the EO D/D phase.

4 AT

Displays the ETA and DTG to the step climb point.

Displays NOW when past the calculated step climb point.

Line title changes to AVAIL AT when the climb is restricted by thrust or buffet.

Line title displays AT XXXXX where XXXXX is the waypoint where a planned step climb has been entered on the RTE LEGS page.

Line title changes to TO T/D when within 200 NM of the top of descent point. ETA and DTG are relative to the T/D point.

The data is the same as displayed on the PROGRESS page.

5 Optimum, Maximum and Recommended Altitude (OPT MAX RECMD)

OPT – displays the most economical altitude based on gross weight and the active cruise speed.

MAX – displays the two engine maximum altitude based on gross weight, climb and cruise speeds within the speed envelope, and sufficient excess thrust to provide a specified residual rate of climb capability.

RECMD – displays the most economical altitude based on winds and airplane performance.

Cruise Descent

Cruise descents can be started in the cruise phase when more than 50 miles from the T/D point.

A cruise descent can be started by selecting a lower altitude on the MCP, entering the new altitude in the CRZ ALT line and executing. A VNAV cruise descent is commanded at the current cruise speed and approximately 1250 feet per minute rate of descent.

The autothrottles adjust thrust to maintain the target descent rate; pitch maintains the commanded speed. Thrust levers can be manually positioned to adjust the descent rate.

1 During Cruise Descent

VNAV page title shows cruise phase in a descent to a new cruise altitude.

2 End of Cruise Descent

VNAV page title shows cruise phase after level off at new cruise altitude.

Early Descent

An early descent starts when the descent for landing is commenced prior to the top of descent point. Early descents should not be started when the distance to the top of descent point is greater than 50 nautical miles. When further from the top of descent point, the cruise descent function should be used.

Early descents are started on the DES page. Once an early descent is started, VNAV changes to the descent phase and cruise features are no longer available.

The autothrottle adjusts thrust to maintain the target descent rate; pitch maintains the commanded speed. Thrust levers can be manually positioned to adjust the descent rate.

1 Descend Now (DES NOW)

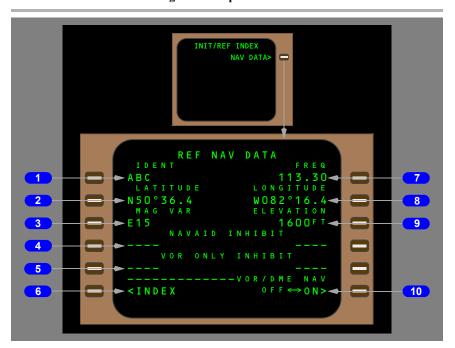
The DES NOW prompt is shown on the descent page when the cruise phase is active. Reset the MCP altitude and select the DES NOW prompt and execute to start an early descent. The descent page becomes active and the airplane starts a VNAV ECON descent of approximately 1250 feet per minute at ECON descent speed.

Once the descent is established the autothrottle mode changes to THR HLD to allow the pilot to adjust the rate of descent with power changes.

Upon reaching the planned descent path, VNAV commands pitch to maintain the planned descent path and ECON speed.

Navigation Data

Reference Navigation Data Page


The reference navigation data page displays data about waypoints, navaids, airports, and runways. Use this page to inhibit FMC position updates from radio navaids.

Copyright © The Boeing Company. See title page for details.

August 17, 2007

D632T001-300

11.42.27

1 Identification (IDENT)

Valid entries are any waypoint, navaid, airport, or runway from the navigation database. Only runways at the destination airport can be entered.

Dashes are displayed when the page is first selected. Entry changes to dashes when the page is exited and then reselected.

2 LATITUDE

Displays latitude of entered identifier. When the identifier is a runway the latitude displayed is for the threshold of the runway.

3 Magnetic Variation (MAG VAR), LENGTH

MAG VAR - displays magnetic variation when entered identifier is a navaid.

LENGTH - displays runway length when entered identifier is a runway.

4 NAVAID INHIBIT

When a navigation radio is known to provide erroneous position information, the FMC must be inhibited from automatically tuning that navaid.

Enter the identifier of up to two VOR, VOR/DME, VORTAC, or DME stations that must not be used for FMC position updates.

DO NOT USE FOR FLIGHTight Management, Navigation -

767 Flight Crew Operations Manual

Entries are blanked at flight completion. Deleting or overwriting removes a previous inhibit.

5 VOR ONLY INHIBIT

Use this line when only the VOR portion of a VOR/DME or VORTAC navaid must be inhibited. ALL is displayed if the VOR/DME NAV prompt is selected to OFF.

Enter the identifier of up to two VORs that must not be used for FMC position updates. Only the VOR portion of the navaid is inhibited, the FMC will still tune the DME for DME–DME updating.

Entries are blanked at flight completion. Deleting or overwriting removes a previous inhibit.

6 INDEX

Push – displays the INIT/REF INDEX page.

7 Frequency (FREQ)

Displays frequency of entered identifier when it is a navaid.

8 LONGITUDE

Displays longitude of entered identifier. When the identifier is a runway the longitude displayed is for the threshold of the runway.

9 ELEVATION

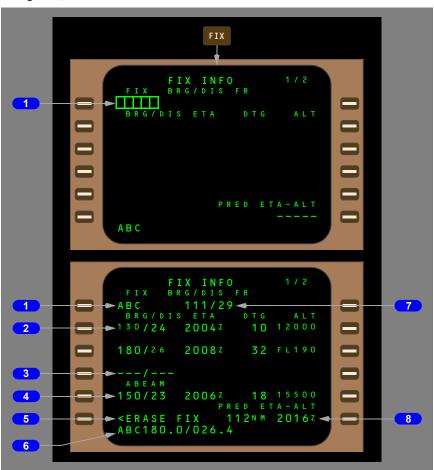
Displays elevation of entered identifier when it is a navaid, airport, or runway.

10 VOR/DME NAV

Alternately switches VOR/DME NAV updating between OFF and ON

Push – when ON is displayed in large font

- changes OFF to large font and ON to small font
- inhibits VOR/DME updates to the FMC by inhibiting all VORs. DME-DME updating is not inhibited.
- displays ALL in both locations of the VOR ONLY INHIBIT line.


Push – when OFF is displayed in large font

- · changes ON to large font and OFF to small font
- enables VOR/DME updating to the FMC
- deletes the ALL from the VOR ONLY INHIBIT line

Fix Information Page

Two identical fix information pages are used to create waypoint fixes and waypoints for the map display. Some of the created waypoints can be copied into the route.

Magnetic or true fix bearings depend on the position of the heading reference switch or airplane location. Refer to FMC Polar Operations, Flight Management Navigation, section 31.

1 FIX

Before entry of a name or identifier, boxes displayed and most data lines are blank.

Valid entries are airports, navaids, and waypoints from the navigation database. The selected fix appears on the map display highlighted by a green circle.

2 Bearing/Distance (BRG/DIS), ETA, DTG, ALT

Valid entries are XXX/YYYYY:

- · decimal values can be omitted
- leading zeros can be omitted for distance entries
- distance only entries must start with a slash (/).

Distances from the fix appear on the map display as a circle around the fix.

When the circle intersects the active route, the ETA, DTG, and predicted altitude at the intersection display for the closest of the two intersections.

Bearings from the fix appear on the map display as radial lines from the fix.

When the bearing intersects the active route, the ETA, DTG, and predicted altitude at the intersection display.

ETA – displays the estimated time if arrival to the intersection point.

DTG – displays the distance to go to the intersection point.

ALT – displays the predicted altitude at the intersection point.

Push - copies the fix place/bearing/distance into the scratchpad. This fix can be placed in the route on a LEGS or RTE page as a waypoint.

3 Bearing/Distance (BRG/DIS) – Dashes

Enter a bearing, distance, or both bearing and distance from the fix. A bearing and distance from the fix appear on the map display as a waypoint fix point. ETA, DTG, and predicted do not display.

4 ABEAM

Displays ABEAM prompt.

Push - displays bearing and distance from the fix perpendicular to the nearest segment of the flight plan path, and ETA, DTG, and altitude at the intersection point.

Second push - copies the fix place/bearing/distance into the scratchpad. This fix can be placed in the route on a LEGS or RTE page as a waypoint.

5 ERASE FIX

Push – removes all fix data from the page and the map display.

6 Route Intersection Point Copied

Pushing the line select key for one of the BRG/DIS entries copies the fix place/bearing/distance definition into the scratchpad. This fix can be placed into the route on a LEGS page as a waypoint.

7 Bearing/Distance From (BRG/DIS FR)

Displays the bearing and distance of the airplane from the fix.

8 Predicted Distance to ETA or Altitude (PRED ETA-ALT)

Valid entry is altitude, flight level, or time. Time entry must be followed by "Z".

Entering an altitude or flight level displays the predicted along track distance and altitude or flight level on this line. The predicted airplane position appears on the map as a green circle with the entered altitude/flight level or time.

In-Flight Position Update

FMC position update can be accomplished on the POS REF 2/4 page in flight.

1 UPDATE ARMED

Pushing the ARM prompt arms the position update function. ARM changes to ARMED. Each of the position update sources have a NOW prompt.

2 NOW

Push – to update the FMC position from the desired source. The FMC position is momentarily changed to the position of the selected system. If other valid sensor position exist, it returns to the most reliable sensor position.

Route and Waypoint Data

Route Data Page

The route data page displays progress data for each waypoint on the ACT RTE X LEGS page. This page also allows access to the WIND page. This page is available only for the active route.

One page shows data for five waypoints.

The ETA and calculated fuel remaining at the waypoint display for each waypoint. Manual entry is not possible.

1 Waypoint (WPT)

Displays identifier for waypoint.

2 ETA

Displays ETA for waypoint.

Flight Management, Navigation NOT USE FOR FLIGHT

767 Flight Crew Operations Manual

3 FUEL

Displays the FMC calculated fuel remaining at the waypoint.

Note: ETA and estimated fuel calculations assume a direct flight across route discontinuities.

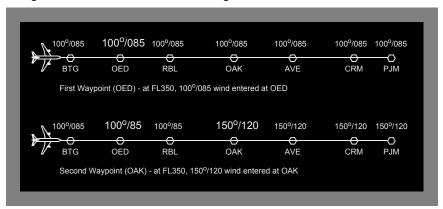
4 WIND Page Prompts

Push – selects WIND page for the selected waypoint.

A "W" next to the prompt indicates that wind data has been entered on the wind page for that waypoint.

5 LEGS

Push – displays RTE LEGS page.


Wind Data

The FMC uses wind data to improve performance prediction accuracy.

The FMC applies the first entered wind data to all waypoints in the flight plan. Wind data includes altitude and direction/speed.

Wind data entered at another waypoint (at the same altitude) changes wind data down track from the second entered waypoint either to the end of the track, or to the next entered wind. The wind data before the second entered waypoint does not change. Therefore, enter wind data for waypoints closest to the airplane, then enter wind data for waypoints down track from the airplane.

For example: at FL 350, 100°/085 is entered at waypoint OED. All waypoints in the route have the OED wind data. Then, additional wind data entered at OAK changes the wind data at OAK and through the end of the route.

Entered wind data are mixed with sensed wind data for performance predictions. The FMC uses entered winds for predictions far ahead of the airplane and sensed winds close to the airplane. The FMC mixes these winds for predictions in between.

Sensed winds are displayed on the HSI and on progress page 2.

Wind Page

The wind page is used to enter forecast winds and temperatures at specific altitudes for specific waypoints to enhance VNAV performance. The FMC calculates step climb points based on the wind effect.

The wind page displays waypoint wind data for one to four altitudes per waypoint. This data can be uplinked or manually entered.

The altitudes are entered first. The altitudes can be entered in any order and are sorted and displayed in ascending order.

Wind speed and direction are entered for the specific altitudes.

OAT can be entered for any one altitude. The FMC calculates the temperature for the entered altitudes using the standard lapse rate.

1 Page Title

Displays ACT XXXXX WIND, where XXXXX is the waypoint for which the wind page was selected.

Flight Management, Navigation NOT USE FOR FLIGHT

767 Flight Crew Operations Manual

When a route is being modified, MOD is shown in the page title. If ACT is displayed when the wind page is first accessed, entry of wind data caused MOD to be displayed. Wind entries must be executed.

2 Altitude (ALT)

Enter altitude or flight level for wind entries. Altitude data entry is possible only on line 1L.

After altitude entry, data is sorted in ascending order in lines 1 through 4. Dashes display on right side of line for wind direction and speed entry.

When all four lines have data, one must be deleted before new data can be entered. Entered altitudes are propagated to all wind pages.

3 Altitude/Flight Level Data

Displays the altitude or flight level for wind entries. Data entered on 1L is displayed on lines 1 through 4 in ascending order. Altitude entry is not possible in lines 2L through 4L.

Calculated OAT based on standard lapse rate from the entry made on the ALT/OAT line are display in small font.

4 ERASE

Push – removes modified data

5 Direction and Speed (DIR/SPD)

Displays dashes after altitude/flight level entry in the ALT line. Enter predicted wind direction and speed for the altitude.

Values propagate to other waypoint winds. Propagated values display in small font

Manual entries display in large font.

6 Altitude/Outside Air Temperature (ALT/OAT)

Enter altitude and OAT. The altitude for OAT does not have to be one of the wind altitudes. The FMC uses standard lapse rate to calculate the temperature at the other altitudes.

Entries must be executed.

7 Route Data (RTE DATA)

Push – displays the RTE DATA page.

Progress Pages

The progress page displays general flight progress data.

The position report page is accessed from the progress page.

Progress Page 1

The page title displays the company flight number entered on the RTE page.

Page one of the progress pages displays general data about:

- waypoints (active and next)
- destination

- FMC speed
- next VNAV profile point.

1 TO

Active waypoint is displayed.

Can not be modified.

2 NEXT

Waypoint after TO waypoint is displayed.

Can not be modified

3 Destination (DEST)

When the page is selected the active route destination is displayed. Any waypoint or airport in navigation database can be entered over the destination.

Flight Management, Navigation NOT USE FOR FLIGHT

767 Flight Crew Operations Manual

The line titles are:

- DEST performance predictions to destination. Default display.
- DIR TO FIX when entered waypoint is not in flight plan. Data is based on flying present position direct to the waypoint.
- EN ROUTE WPT when entered waypoint is in flight plan. Line data are based on flying the flight plan route to the waypoint.
- MOD a modification has been made on another page. Performance predictions include modification.

Entries do not modify the active route and are deleted when all CDUs are changed to a different page.

4 Selected Speed (SEL SPD)

Displays the FMC active command speed.

The active speed mode is the same as on the performance page, unless changed by the MCP or a limit. The speed modes are:

- LRC SPD long range cruise speed
- ECON SPD economy speed
- SEL SPD selected speed manually entered on the CDU
- LIM SPD speed is limited by VMO, MMO, flap limit, or buffet limit
- MCP SPD MCP speed entered on the MCP IAS/MACH indicator
- EO SPD engine out speed
- CO SPD engine out operations at airline specified engine out company speed

5 Position Report (POS REPORT)

Push – displays the POS REPORT page.

6 ETA

Estimated time of arrival at waypoint or destination.

7 Distance To Go (DTG)

Distance to go to waypoint or destination.

8 FUEL

Estimated fuel remaining at waypoint or destination.

9 TO Top Of Descent (T/D)

ETA and DTG to next VNAV profile point.

The line title and data change for other phases of flight. Other line titles:

DO NOT USE FOR FLIGHT Management, Navigation - FMC Cruise

767 Flight Crew Operations Manual

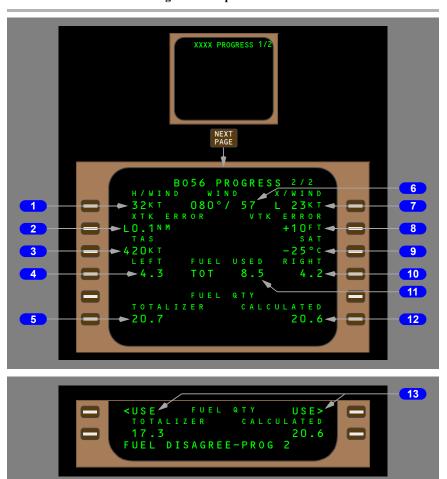
- TO T/C top of climb data
- TO STEP CLIMB step climb data
- TO E/D end of descent data
- LEVEL AT time and distance to level off in engine out mode.

10 Navigation Updating Mode

Displays the current FMC position updating source. Possible displays are:

- GPS
- RADIO
- IRS
- LOC-GPS
- LOC-RADIO
- LOC

11 Position Reference (POS REF)


Push – displays position reference page.

Progress Page 2

Progress page two contains:

- · wind data
- true airspeed
- fuel data

- track error data.
- static air temperature

1 Headwind (H/WIND), Tailwind (T/WIND)

Displays headwind (H/WIND) or tailwind (T/WIND) component relative to the airplane heading.

2 Crosstrack Error (XTK ERROR)

Displays crosstrack (XTK) error in nautical miles left or right of the active route.

3 TAS

Displays airplane true airspeed.

DO NOT USE FOR FLIGHTight Management, Navigation - FMC Cruise

767 Flight Crew Operations Manual

4 LEFT FUEL USED

Displays fuel used by left engine sensed by fuel flow meters.

5 Fuel Quantity (TOTALIZER)

Displays total fuel quantity from the fuel system quantity processor.

The fuel remaining line displays two independent fuel remaining values, TOTALIZER and CALCULATED. They can be compared to validate FMC calculations

6 WIND

Displays current wind direction and speed referenced to true north.

7 Crosswind (X/WIND)

Displays left (L) or right (R) crosswind component relative to airplane heading.

8 Vertical Track Error (VTK ERROR)

Displays vertical path (VTK) error above (+) or below (-) vertical path.

9 Static Air Temperature (SAT)

Displays outside static air temperature.

10 RIGHT FUEL USED

Displays fuel used by right engine sensed by fuel flow meters.

11 FUEL USED Total (TOT)

Displays sum of the LEFT and RIGHT fuel used values.

12 FUEL Quantity (QTY) CALCULATED

Displays fuel remaining as calculated by the FMC with these methods:

- before engine start, fuel quantity calculated by fuel quantity system totalizer
- after engine start, fuel quantity at engine start decreased by EICAS engine fuel flow rate
- after fuel dump or after erasing a manually entered fuel quantity, resets to fuel quantity system totalizer
- after all engines are shutdown, resets to fuel quantity system totalizer.

The fuel remaining line displays two independent fuel remaining values, TOTALIZER and CALCULATED. They can be compared to validate FMC calculations.

Copyright © The Boeing Company. See title page for details.

August 19, 2009

D632T001-300

11.42.41

13 USE

USE prompts display when TOTALIZER and CALCULATED values disagree by a significant amount. The scratchpad message FUEL DISAGREE–PROG 2 is also displayed.

Push – selects method to calculate fuel quantity, either TOTALIZER or CALCULATED

When one is selected:

- it is used for remainder of flight
- the other fuel calculation method blanks
- scratchpad clears.

Position Report Page

The position report page displays current flight data formatted as a position report. The page contains reference data only. Manual entries are inhibited.

1 Position (POS)

Waypoint used to report position. This is the previous active waypoint.

The actual time of arrival (ATA) and altitude (ALT) at the waypoint follow the waypoint name.

DO NOT USE FOR FLIGHT Management, Navigation - FMC Cruise

767 Flight Crew Operations Manual

2 Estimate (EST)

The active waypoint is displayed with the ETA to that waypoint.

3 NEXT

The waypoint following the active waypoint.

4 Temperature and Wind (TEMP WIND)

TEMP displays the OAT in degrees C.

WIND displays the wind direction and speed. Wind direction is shown in degrees true.

5 Destination ETA (DEST ETA)

The FMC calculated ETA for the destination is displayed.

6 Speed (SPD)

Displays the target FMC speed.

7 Position Fuel (POS FUEL)

Displays the fuel on board at the POS waypoint.

Flight Management, Navigation NOT USE FOR FLIGHT FMC Cruise

767 Flight Crew Operations Manual

Intentionally Blank

DO NOT USE FOR FLIGHT

767 Flight Crew Operations Manual

Flight Management, Navigation FMC Descent and Approach

Chapter 11 Section 43

Introduction

The descent phase starts at the top of descent point and continues to the end of descent point. Planning for the descent phase starts during cruise.

The approach phase starts at the end of descent point and continues to touchdown or go–around. When a go–around is accomplished, the FMC enters a modified cruise or approach phase, depending on the route and cruise conditions.

Alternates can be selected at any time. Alternates are available from preflight through all phases of flight and can be updated at any time. Diversion to an alternate can be accomplished during cruise, descent, or approach.

As the airplane passes the top of descent point with VNAV engaged, the descent page becomes active and the CDU automatically changes from the cruise page to the descent page.

Early Descent

Descent for the approach and landing may be commenced before reaching the top of descent point. The description of early descent options and functions is in Section 42, FMC Cruise.

Descent

During descent, LNAV is managed using the RTE LEGS page, as in the cruise phase. VNAV descent management is accomplished primarily on the DES page.

Other pages which support descent are:

- DESCENT FORECAST page to enter forecast wind data to aid descent planning
- OFFPATH DES page to analyze descent performance with and without the use of speedbrakes

Descent Page

The descent page is used to monitor and revise the descent path. Descent speed modes are economy (ECON) and fixed speed (SEL). The default VNAV descent mode is ECON. A fixed speed descent is flown when speed intervention is used or a speed is entered on the DES page. The descent page is no longer available after the end of descent.

The page title includes the VNAV speed mode. The ECON mode controls descent speed at the economy speed until reaching a lower speed restriction. The fixed speed mode controls descent speed until a lower speed restriction is reached.

Flight Management, Navigation NOT USE FOR FLIGHT FMC Descent and Approach

767 Flight Crew Operations Manual

1 Page Title

The title usually shows ECON during descent. Fixed speed descents modify the title

The page title shows the type of descent:

- ECON speed based on a cost index
- LIM SPD speed based on airplane configuration limiting speed
- MCP SPD MCP speed intervention is selected
- XXXKT fixed CAS descent speed profile
- M.XXX fixed Mach descent speed profile
- ACT prefix shown when descent phase is active
- MOD prefix shown when descent phase is active and the flight plan is modified.

Reasons for fixed descent speeds are:

- waypoint speed constraints
- an altitude constraint associated with a speed constraint
- a speed transition
- a flight crew entered selected speed (SEL SPD).

DO NOT USE FOR FLIGHFlight Management, Navigation - FMC Descent and Approach

767 Flight Crew Operations Manual

2 End Of Descent At (E/D AT)

Shows the end of descent altitude and waypoint.

The end of descent point is a waypoint in the descent phase with the lowest altitude constraint

Blank if no E/D point exists.

3 Economy Speed (ECON SPD), Selected Speed (SEL SPD)

Shows the current target descent speed.

ECON SPD -

- · economy speed based on cost index
- · shows CAS or Mach.

SEL SPD -

- shows when intermediate level off required below an existing speed constraint
- · shows when flight crew enters speed
- CAS or Mach value may be entered.
- page title changes to ACT XXXKT DES or ACT M.XXX DES
- <ECON prompt appears at line 5L to allow selection of economy descent speed

4 Speed Transition (SPD TRANS)

The transition speed is usually 10 knots less than the destination airport limiting speed from the navigation database. When no airport limit speed exists, the default speed of 240 knots is shown. The transition altitude is the point that the transition speed is active for the destination airport. When no altitude exists in the navigation database, the default of 10,000 feet is shown.

Blanks when the transition has occurred

Can be deleted.

5 Speed Restriction (SPD RESTR)

Speed restrictions not associated with specific waypoints are manually entered on this line

Dashes before entry by flight crew.

Valid entry is a CAS and altitude (example 240/8000).

An entry creates a modification.

6 Off Path Descent (OFFPATH DES)

Push – shows the OFFPATH DES page.

Copyright © The Boeing Company. See title page for details.

Flight Management, Navigation NOT USE FOR FLIGHT FMC Descent and Approach

767 Flight Crew Operations Manual

7 AT XXXXX

Shows the next waypoint constraint from the RTE LEGS page.

Line title shows:

- AT XXXXX (the waypoint identifier)
- HOLD AT XXXXX
- AT VECTORS
- AT (INTC).

The constraint is speed/altitude. Blank when no constraint exists.

Can be deleted on this page.

VNAV commands the lesser of constraint speed or present performance speed.

8 FORECAST

Push – shows the DESCENT FORECAST page.

9 Descend Direct (DES DIR)

Push – deletes all waypoint altitude constraints between the airplane altitude and the MCP altitude. FMC cruise altitude is not affected.

Shown in descent phase with altitude constraint between airplane and E/D.

10 Descend Now (DES NOW)

Shown when the descent phase is not active.

Push -

- starts a 1250 feet per minute descent schedule until intercepting the planned descent path
- activates the FMC descent phase.

Descent Forecast Page

The descent forecast page is used to enter wind data for descent, and the altitude at which anti-ice use is anticipated for more accurate descent path calculation.

The primary entries are wind direction and speed for up to four descent altitudes, and the altitude that anti-ice is turned on.

1 Transition Level (TRANS LVL)

Shows the transition level.

The transition level can be specified by the arrival procedure. The default transition level is FL 180.

Above transition level, altitudes are in flight levels. Below transition level, altitudes are in thousands of feet.

Valid entry is an altitude or flight level.

2 Altitude (ALT)

Enter altitude of forecast wind data.

Altitudes and flight levels can be entered in any order. Entries are not sorted.

Execute not necessary.

3 Thermal Anti–Ice On Altitude (TAI/ON ALT)

Enter the altitude where anti-ice is first turned on during the descent. The FMC calculates the descent profile based on the higher thrust caused by thermal anti-ice operation below this altitude.

Copyright © The Boeing Company. See title page for details.

4 Wind Direction/Speed (WIND DIR/SPD)

Enter the wind direction/speed for the specified altitude. Initial entry must have wind direction and speed, subsequent entries may have one or the other.

Execute not necessary.

5 Descent (DES)

Push – shows the DES page.

Offpath Descent Page

The offpath descent page allows the analysis of descent performance off the present route of flight, direct to a selected waypoint. Data entered on the page shows clean and drag descent ranges on the page and on the map display. The ranges are based on an entered waypoint and altitude constraint. The range can be used to determine if the altitude constraint can be met in a direct descent to the waypoint.

The FMC puts the last descent waypoint with an altitude constraint into DES TO. The ECON SPD, SPD TRANS, SPD RESTR, and DES data are the same as the DES page.

DO NOT USE FOR FLIGHFlight Management, Navigation - FMC Descent and Approach

767 Flight Crew Operations Manual

1 Descend To (DES TO)

The waypoint for a direct—to descent. Usually, this is the E/D waypoint from the active route. Manual entry of waypoints on or off of the route are allowed. The DTG calculations are for a descent direct to the selected waypoint.

When within 150 feet of the DES TO altitude for a waypoint other than the E/D waypoint, the display automatically changes the DES TO waypoint to the E/D waypoint from the DES page.

A waypoint is entered for direct-to analysis.

2 Distance To Go (DTG)

Shows the straight line distance to the entered waypoint.

3 Speed/Altitude (SPD/ALT)

Shows the speed/altitude constraint for the entered waypoint.

A manual waypoint entry shows boxes for manual speed and altitude entry.

4 TO CLEAN

Distance to the clean descent circle. The distance is negative when a clean descent is no longer possible.

A clean circle assumes no drag devices are used for descent.

A direct descent to the DES TO waypoint at a SPD/ALT constraint is possible when the airplane is outside the clean circle. The clean circle is shown on the map display when the DISPLAY prompt is ON.

5 TO DRAG

Distance to the drag descent circle. The distance is negative when a drag descent is no longer possible.

A drag circle assumes speedbrakes are UP for descent.

A direct descent to the DES TO waypoint at a SPD/ALT constraint is possible when the airplane is outside the drag circle. The drag circle is shown on the map display when the DISPLAY prompt is ON and the airplane is inside the clean circle.

6 DISPLAY

Push – alternates between ON and OFF.

ON – shows the clean and drag circles on the map display. The drag circle is not displayed until the airplane position is inside the clean circle.

OFF - removes the clean and drag circles from the map display.

Copyright © The Boeing Company. See title page for details.

Flight Management, Navigation NOT USE FOR FLIGHT FMC Descent and Approach

767 Flight Crew Operations Manual

Selected state is large font.

Automatically changes to OFF within 150 feet of the waypoint constraint altitude.

Engine Out Descent

There are no specific engine out pages for descent. Use the two engine descent planning features and pages.

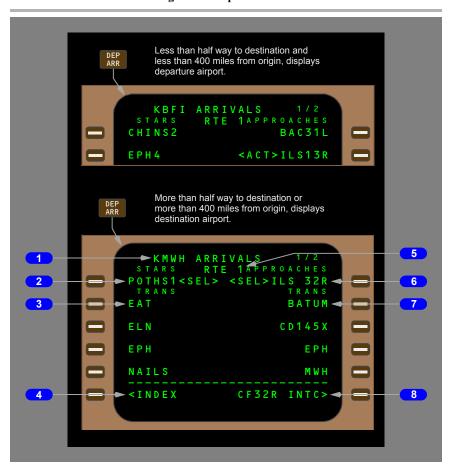
Approach

During approach, roll and pitch modes usually change to the approach guidance supplied by navigation radios. The FMC continues to calculate and show present position and can supply LNAV and VNAV approach guidance for certain types of approaches when radio navigation is not used.

The RTE LEGS and DESCENT pages are used to manage the airplane until other approach guidance becomes active. Other pages which support approaches are:

- ARRIVALS page to select arrival and approach procedures
- HOLD page to manage holding patterns.
- APPROACH REF page to specify approach flap settings and set the approach VREF speed

Holding is described in this section but it can be used during any phase of flight.


Arrivals Page – IFR Approaches

The arrivals page allows selection of an approach, standard terminal arrival route (STAR), and an arrival transition to the destination airport. This page can also be used to view data about a selected airport that is not the destination. Route 1 and Route 2 have separate arrival pages.

The approaches, STARS/profile descents, and transitions are shown and selected on this page.

Selecting Options

Selecting a runway, approach, approach transition, STAR/profile descent, or descent transition option shows <SEL> inboard of the selection, and makes a route modification. The other options within the same category are removed from the list. When the modification is executed, <SEL> changes to <ACT>. Select another page and return to ARRIVALS to show all options; the applicable <SEL> or <ACT> prompts are shown.

1 Page Title

The destination airport identifier is shown in the title.

Airports with more than 5 runways or STARs produce multiple arrivals pages.

2 Standard Terminal Arrivals (STARS)

Lists the STARS and PROFILE DESCENTS for the airport.

STARS are shown first in a list under the STAR line title. Profile descents are listed after the STARS under the PROF DES line title.

When a selection is made the procedures not selected are removed from the page. The selected procedure is listed with <SEL> and a list of compatible transitions is shown

Flight Management, Navigation NOT USE FOR FLIGHT FMC Descent and Approach

767 Flight Crew Operations Manual

3 Standard Terminal Arrivals Transitions (STARS TRANS)

Lists all the transitions for the selected STAR.

When a selection is made the transitions not selected are removed from the page. The selected transition is listed and marked <SEL>.

4 INDEX

Push – shows the DEP/ARR INDEX page.

5 Route 1 (RTE 1)

Shows the active route number (RTE 1 or RTE 2).

6 APPROACHES

Lists all approaches and runways for the destination airport.

When a selection is made, other approaches and runways are removed from the page and compatible transitions are listed. The list of STARS and profile descents is reduced to those compatible with the selected approach.

7 Approach Transitions (APPROACHES TRANS)

Transitions are listed when an approach is selected. Shows a list of available transitions to the selected approach.

Approach transitions include:

- IAF
- · feeder fix
- fixes which define routing to the FAF.

Selecting an approach without a transition makes a straight-in approach which starts at:

- a charted fix or CFXXX, where XXX is the runway number
- a waypoint 4–8 miles outside the final approach fix.

8 Final Approach Fix Intercept (XXXXX INTC)

Selecting the prompt shows a modified RTE LEGS page with an intercept course to the approach transition fix (usually the IAF) for the selected approach.

Vertical Angle Display on the Route Legs Page

When a runway is selected as part of the active route the vertical angle of the flight path approaching the runway is displayed on the RTE LEGS page.

Glide Path (GP) Angle

Displays the vertical angle for use by VNAV on the final approach to the runway. If the runway was selected as part of a published approach, the displayed angle will be close to the published glide path angle but may differ slightly.

Arrivals Page - VFR Approaches

The arrivals page also allows selection of a VFR approach if the navigation database contains a VFR approach for the selected runway.

August 17, 2007 D632T001-300 11.43.11

1 RUNWAYS

Push – removes approach list and other runways. Displays RWY EXT prompt and VFR APPR prompt in line 2 if a VFR approach is in the navigation database.

The RUNWAYS list for other runways is shown if a runway is not selected. Example shows runway 32R selected. Change the CDU to another page and return to the ARRIVALS page to show all arrival procedures.

2 ROUTE

Push – shows the active route page 2/X.

3 VFR Approach (VFR APPR)

Push – makes a transition waypoint, FAXXX at 8 NM and 2000 feet above the runway.

Shown when a VFR approach is in navigation data base for selected runway.

LNAV and VNAV guidance to the runway is available.

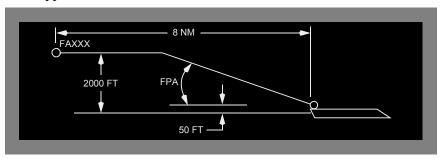
4 Runway Extension (RWY EXT)

After VFR APPR is selected, RWY EXT can not be modified.

5 Flight Path Angle (FPA)

Shows flight path angle. Shown only after VFR APPR is selected.

Default is 3.0 degrees. Valid entries are from 2.4 to 3.7 degrees.


6 Runway Extension (RWY EXT)

Valid entries are from 1.0 to 25.0 miles from the runway threshold.

Entry allowed if VFR APPR is not selected. Entry removes VFR APPR prompt. Example shows 6 NM entered.

Makes waypoint RXYYY, where YYY is the runway; example: RX32R. Makes a route discontinuity before and after the waypoint.

VFR Approach Path

The VFR approach is a level path until the FPA is intercepted. The FPA goes from the FAXXX waypoint altitude to the runway threshold at 50 feet and 170 knots. Default values are shown in RWY EXT and FPA.

Approach Reference Page

The approach reference page shows approach planning data and approach reference speed (VREF) selection.

1 Gross Weight (GROSS WT)

FMC calculated airplane gross weight is usually shown.

Manual entry is allowed in case the FMC calculated gross weight is unavailable or invalid, or to allow previewing recommended approach speeds at other than the calculated FMC gross weight. The manually entered gross weight is for reference only and is deleted when a different page is selected. Permanent changes to gross weight may only be made on the PERF INIT page.

Shows boxes when gross weight is not available from the FMC.

Valid entry is XXX.X.

2 Runway Length

The shown runway reference changes based on route progress. The destination runway is the reference when the present position is more than halfway to the destination or more than 400 NM from the origin airport. The origin airport runway is the reference when less than halfway or less than 400 NM from the origin airport.

Shows the length of the referenced runway in feet and meters.

3 ILS Frequency and FRONT Course (CRS)

Display is blank prior to entering a destination runway in the active route.

Displays the runway, corresponding ILS frequency, facility identifier and FRONT CRS from the navigation database for the runway shown.

4 INDEX

Push – shows the INT/REF INDEX page.

5 FLAPS VREF

A gross weight is necessary for VREF speed calculation. Push the applicable line select key to select the correct VREF speed. The three VREF speeds are based on landing flap setting.

Shows the calculated reference speed for flaps 20°, 25°, and 30°.

The display is blank until a gross weight is shown.

Alternate Airport Diversions

The ALTN page data helps the flight crew find the best alternate airport. The page has four airports shown in an ETA sequence. Each airport on the list has an ALTN XXXX page with more data. Select the ALTN XXXX page with a caret.

Alternate Page

The alternate page displays a list of alternate airports. An alternate airport can be selected from this page to change the flight plan destination.

The page displays a list of up to four alternate airports sorted in order of the ETA to the airport while airborne. The source of alternate airports can be:

- automatic selection from the navigation database
- · manual entry.

Alternate airports automatically selected from the navigation database are displayed in small font. The presently selected alternate airport is shown on the map display in normal airport symbology. All four alternate airports are shown on the plan mode.

Flight Management, Navigation NOT USE FOR FLIGHT FMC Descent and Approach

767 Flight Crew Operations Manual

1 Alternate Airports

Displays the identifier of four alternate airports in ETA order when airborne. Displays the identifier of four alternate airports in distance order when on the ground.

Valid manual entry is an airport from the navigation database. A manual entry replaces the alternate where the entry is made and is shown in large font. After entry, the four airports are resequenced according to ETA.

Use the DELETE function to remove manually entered alternate airports from the ALTN page.

2 Selected (<SEL>), Automatically Selected (<A>)

<SEL> indicates a manually selected alternate airport.

A manual selection of an alternate airport is made by pushing the line select key left of the airport identifier with nothing in the scratchpad.

When there is no manually selected alternate the FMC automatically selects the alternate airport with the earliest ETA. Automatically selected alternates are indicated by <A> next to the airport identifier.

DO NOT USE FOR FLIGHT SHIP HOLD HAVE A S

767 Flight Crew Operations Manual

The selected alternate identifier is shown in the line title of the DIVERT NOW prompt.

Entering a new airport into the list deletes the last airport in the list and selects the new airport. After entry, the airports are rearranged in ETA sequence. Manually entered airports are shown in large font and can be removed using the DELETE function

Use the DELETE function to remove the <SEL> from a manually selected alternate. The automatic selection function selects a new alternate.

3 ETA

Displays the alternate airport ETA.

ETA is calculated based on the routing, altitude, and speed shown on the XXXX ALTN page. ETA is blank when the airplane is on the ground.

4 FUEL

Displays the alternate airport predicted arrival fuel.

Predicted arrival fuel is calculated based on the routing, altitude, and speed shown on the XXXX ALTN page. The message UNABLE FUEL is shown in the FUEL column if the predicted arrival fuel is less than zero.

Fuel values are blank when the airplane is on the ground.

5 Alternate Select

Selects the XXXX ALTN page, which contains more data about the specific airport.

6 Alternate Inhibit (ALTN INHIBIT)

An airport will not be one of the four alternate airports if entered into the alternate inhibit line

One or two airports can be manually entered.

Valid entries are airports from the navigation database.

7 DIVERT NOW

The DIVERT NOW selection modifies the route to go from the present position to the selected alternate using the route shown on the XXXX ALTN page.

Push -

- makes an LNAV route modification for a divert to the selected alternate
- automatically displays the MOD XXXX ALTN page for the selected alternate

Copyright © The Boeing Company. See title page for details.

August 17, 2007

D632T001-300

11.43.17

Flight Management, Navigation NOT USE FOR FLIGHT FMC Descent and Approach

767 Flight Crew Operations Manual

- displays SELECTED in this position on the CDUs not involved with the modification
- · blank on ground
- blank in the air when a diversion is not permitted.

The DIVERT NOW selection changes the display to the XXXX ALTN page for the diversion airport. The details of the route can be confirmed or modified before the diversion is executed

Execution of the diversion:

- changes the route destination airport
- includes the route modification into the active flight plan
- deletes all parts of the original route that are not part of the diversion
- if a descent path exists, deletes all descent constraints (the scratchpad message DESCENT PATH DELETED is shown when DIVERT NOW is selected).

After a divert is executed the XXXX ALTN page is not updated until all CDUs are selected off of the XXXX ALTN page.

XXXX Alternate Page

Each of the four alternate airports shown on the ALTN page 1/2 have a related XXXX ALTN page. The XXXX ALTN pages show specific data about alternate airports, the route used for a diversion, and the conditions upon which the ETA and fuel calculations are based. All data on the page is related to the alternate airport shown in the page title.

Three route options to the airport can be selected:

- DIRECT TO direct to alternate
- OFFSET flight plan route with an offset
- OVERHEAD flight plan route to a waypoint then direct to alternate.

The selected route option is identified by <SEL>. ETA and fuel remaining are calculated based on the selected option. Selection of a route option for one alternate selects the same route option for the other three alternates.

1 VIA DIRECT TO

Push – selects present position DIRECT TO alternate route option.

All flight plan waypoints are deleted.

2 VIA OFFSET

Push -

- with scratchpad empty, selects OFFSET route option
- with offset data in scratchpad, enters offset data. Does not select option.

Entry and exit to the offset is the same as for the RTE page offset. All flight plan waypoints are kept.

Flight Management, Navigation NOT USE FOR FLIGHT FMC Descent and Approach

767 Flight Crew Operations Manual

3 VIA OVERHEAD

Push -

- with scratchpad empty, selects OVERHEAD option
- with overhead data in scratchpad, enters overhead data. Does not select route option.

Displays active waypoint in flight plan.

The waypoints up to the selected or entered overhead waypoint are kept, then routing is direct to the alternate airport. All waypoints after overhead waypoint are deleted.

Enter any waypoint in the active or modified route.

4 Engine Out (ENG OUT)

This prompt performs the same function as described on the cruise page in the FMC Cruise section. It can be selected before or after the diversion is selected.

5 Alternate (ALTN)

Push – displays the ALTN 1/2 page.

6 Altitude (ALT)

Entry of any valid altitude or flight level into this line causes a recomputation of ETA and arrival fuel. Altitude entries do not become part of the diversion modification. Altitude entries apply to all four alternates.

Displays the altitude for which ETA and arrival fuel are calculated.

The scratchpad displays the message UNABLE ALT, if the entry is above maximum altitude or the top of climb point for divert is after top of descent point for divert.

7 Speed (SPD)

Entry of speed or Mach number into this line causes a recomputation of ETA and arrival fuel. Speed entries do not become part of the diversion modification. Speed entries apply to all four alternates.

Speed modes available are:

- ECON (economy)
- LRC (long range cruise)
- EO (engine out)
- EO LRC (engine out long range cruise)
- CO (company speed)
- any CAS or Mach.

DO NOT USE FOR FLIGHT Flight Management, Navigation - FMC Descent and Approach

767 Flight Crew Operations Manual

8 WIND

Entry of data into these lines causes a recomputation of ETA and arrival fuel. A separate wind entry may be made for each of the four alternates.

Displays the estimated average wind for the divert route.

Valid entry is a direction in degrees/speed in knots from 1 to 999.

9 Altitude/Outside Air Temperature (ALT/OAT)

Entry of data into these lines causes a recomputation of ETA and arrival fuel. A separate ALT/OAT entry may be made for each of the four alternates.

Displays the OAT for a specific altitude.

Valid entry is an altitude/temperature in degrees C.

10 Alternate Airport ETA/Fuel (XXXX ETA/FUEL)

Displays the calculated airport ETA and arrival fuel based on the selected route, altitude, and speed shown on this page.

11 XXXX DIVERT NOW

This prompt performs the same function as described on the ALTN 1/2 page.

Note: After a divert is executed, the XXXX ALTN page data is not updated until all CDUs change to a page other than the XXXX ALTN page.

Holding

The FMC computes holding patterns with constant radius turns based on current wind and FMC commanded airspeed. The pattern size is limited to FAA or ICAO protected airspace. In LNAV, the AFDS tracks the holding pattern using up to a 30 degree bank angle. Strong winds or airspeed in excess of FAA or ICAO entry speeds may result in the airplane flying outside the protected airspace.

Flight Management, Navigation NOT USE FOR FLIGHT FMC Descent and Approach

767 Flight Crew Operations Manual

Entry to a holding pattern is via the parallel, teardrop, or direct entry methods, dependant upon the airplane's track to the hold fix. However, to make efficient use of the holding airspace, the airplane may begin the initial turn to the holding entry maneuver, parallel, teardrop or direct, just prior to crossing the hold fix ("fly-by"). In all entry maneuvers the airplane will "fly-over" or "fly-by" the holding fix as appropriate to remain on the holding side of the inbound hold course. Teardrop and parallel entry flight maneuvers are flown within the confines of the holding pattern as displayed on the HSI. Direct entry maneuvers may extend slightly beyond the end of the hold pattern.

Note: The holding pattern entry flight path is displayed on the HSI with an HSI selected range of 40 NM or less, and after the holding fix becomes the active waypoint.

Hold Page (First Hold)

The hold page is used to enter a holding pattern into the route.

When the flight plan does not have a holding pattern, push the HOLD function key to show the RTE X LEGS page with the HOLD AT line.

Two versions of the hold page are possible:

- an airway or procedure holding pattern
- a flight crew-entered holding pattern.

The holding page displays actual or default data about the holding pattern.

Entries make route modifications, which can be erased or executed.

Active holding patterns are magenta on the HSI.

1 HOLD AT

When the HOLD function key is pushed and no holding pattern exists in the route, the RTE LEGS page displays prompts to enter the holding fix. Enter the holding fix to show the RTE X HOLD page.

Normally a route waypoint is entered as the holding fix. If a waypoint that is not part of the active route is entered the scratchpad message HOLD AT XXX appears where XXX is the entered waypoint. The holding fix can then be inserted in the route in the proper sequence.

2 HOLD AT Present Position (PPOS)

Selects the airplane present position as the holding fix.

3 Holding FIX

Displays the holding fix.

4 Quadrant/Radial (QUAD/RADIAL)

The holding quadrant and radial are entered.

Flight Management, Navigation NOT USE FOR FLIGHT FMC Descent and Approach

767 Flight Crew Operations Manual

Valid entry is X/XXX, XX/XXX, or /XXX (example NE/040).

Automatically changes INBD CRS/DIR to agree.

5 Inbound Course/Direction (INBD CRS/DIR)

Displays the holding inbound course and turn direction.

Valid entry is XXX (inbound course), XXX/X (inbound course/turn direction), /X or X (turn direction).

Automatically changes QUAD/RADIAL to agree.

6 LEG TIME

Default display is 1.0 MIN (minute) at or below 14,000 feet or 1.5 MIN above 14,000 feet.

Displays -. – if a LEG DIST is entered.

Valid entry is X, X.X, or .X in minutes from 0.1 to 9.9.

When climbing/descending through 14,000 feet with VNAV engaged and the SPD/TGT ALT values are displayed in large font, the FMC adjusts leg time (1.0 MIN at or below 14, 000 feet; 1.5 MIN above 14, 000 feet).

7 Leg Distance (LEG DIST)

Default display is —.- NM if no leg distance has been entered or if a LEG TIME is entered

Valid entry is X.X, XX.X, or .X.

8 ERASE

Erases all FMC modifications.

9 Speed/Target Altitude (SPD/TGT ALT)

Waypoint holding fix speed/altitude constraint from the RTE LEGS page.

Manual entries are in large font.

During cruise, an altitude entry below cruise altitude activates the descent page, unless a new cruise altitude is entered. Altitude entry must be at or below cruise altitude.

A speed entry requires an altitude constraint.

10 FIX ETA

Displays the ETA to the next passing of the holding fix.

DO NOT USE FOR FLIGHT | FMC Descent and Approach

767 Flight Crew Operations Manual

11 Expect Further Clearance Time (EFC TIME)

Enter the expect further clearance time to enable accurate fuel and ETA predictions after the hold.

12 Hold Available (HOLD AVAIL)

Displays calculated holding time available before requiring reserve fuel to reach the destination.

13 BEST SPEED

Displays the best holding speed for the airplane gross weight, altitude, and flap setting.

Note: May exceed ICAO limit speed.

August 17, 2007 11.43.25

Hold Page (Existing Hold)

When one or more holding patterns are already in the route, push the HOLD key to show the hold page for the first holding pattern. Holding parameters can be monitored and changed on this page. New holding patterns are added using the NEXT HOLD prompt.

1 NEXT HOLD

Push – displays a new hold page for a new holding pattern entry.

2 EXIT HOLD

Push -

- arms a return to the holding fix via the inbound course for holding pattern exit
- EXIT ARMED displayed
- EXEC light illuminated.

When the EXEC key is pushed, the airplane will cross the holding fix and exit holding. If executed when outbound in the holding pattern the airplane will immediately turn inbound and exit holding when the fix is crossed.

DO NOT USE FOR FLIGHT FIGHT Management, Navigation - FMC Descent and Approach

767 Flight Crew Operations Manual

Exit from the hold will be initiated prior to crossing the hold fix ("fly-by") if the course to the next route waypoint is not closely aligned with the holding inbound course. Acute angles between the inbound hold course and the course to the next waypoint may result in a substantial distance from the airplane to the hold fix during the exit hold maneuver. However, flight is maintained at all times within FAA or ICAO protected holding airspace. The exit flight path is displayed on the HSI.

Note: If a turn (course change) of 110°- 135° is required to exit the hold toward the next flight plan waypoint, the exit flight path on the HSI may display as a zigzag line, typically in the shape of a Z. However, in all instances LNAV provides appropriate guidance via a smooth turn to intercept the active leg to the next route waypoint. There is no indication on the FMC CDU LEGS page if the exit flight path displayed on the HSI is irregular.

Flight Management, Navigation NOT USE FOR FLIGHT FMC Descent and Approach NOT USE FOR FLIGHT

767 Flight Crew Operations Manual

Intentionally Blank

767 Flight Crew Operations Manual

Flight Management, Navigation
FMS Alternate Navigation System Description

Chapter 11
Section 50

Introduction

The CDUs can be used as an alternate navigation system if both FMCs fail. The CDUs perform lateral navigation computations. LNAV and VNAV are not available.

During normal FMC operation, all system capabilities are contained within the FMCs. During alternate navigation operation, the CDUs use their own internal memory and computing capability.

Each CDU performs its calculations based on inputs from its own IRS and provides information for display independent of the other CDU. Each CDU can display its route on its respective map display without database symbology.

Alternate Navigation Waypoints

The CDUs do not have a performance or navigation database. The CDUs continuously load the active route from the FMC. If both FMCs fail, the CDUs keep flight plan waypoints except for conditional waypoints, offsets, and holding patterns. Waypoints which are part of the route when the FMCs fail can be referenced by either their identifier, or latitude and longitude.

New waypoints can only be entered as latitude and longitude. This includes waypoints the flight crew has deleted from the CDU. Complete departure or arrival/approach procedures cannot be manually entered.

Waypoint Operations

Waypoint operations include:

- add new waypoints (latitude/longitude entry only)
- · remove existing waypoints
- change the sequence of existing waypoints
- · connect discontinuities.

Alternate Lateral Navigation

All CDU calculations are based on a great–circle course between waypoints.

Route Changes

Route changes are made on IRS LEGS page in almost the same manner as normal FMC operations. All courses between waypoints are direct routes. When the active waypoint is modified, the only navigational choice is present position direct to the modified active waypoint.

Flight Management, Navigation NOT USE FOR FLIGHT

767 Flight Crew Operations Manual

The two CDUs operate independently. A route change to one CDU does not change the other one. The route entered in the left CDU can be displayed on the captain's HSI using his NAV source select switch. The route entered in the right CDU can be displayed on the first officer's HSI using his NAV source select switch.

Course Reference

System Description

Each CDU uses its associated IRS for navigation data. The IRS supplies magnetic variation only for the present position. Therefore only the active waypoint course can be referenced to magnetic north. All subsequent courses are referenced to true north.

Alternate Navigation CDU Pages

The alternate navigation system provides two CDU pages:

- IRS LEGS
- IRS PROGRESS

Failure of a single FMC causes the related CDU to display the MENU page. Selecting the operable FMC on the NAV selector switch restores the CDU displays to normal.

If the other FMC fails, the IRS LEGS and IRS PROGRESS pages are available on either CDU via the LEGS and PROG mode select keys. Selecting CDU on the NAV source selectors provides a CDU generated map on the map display.

IRS Legs Page

This page displays data about each leg of the route. The route can be modified. Waypoint speed and altitude restrictions are not displayed because performance data is not available.

1 Leg Direction

Displays course to the waypoint.

Course reference is M for magnetic, T for true.

Active waypoint leg direction can be magnetic or true. Subsequent waypoint leg directions are true.

2 Waypoint Identifier

Displays the waypoint by name or latitude/longitude.

Valid entries are waypoint names that were in the route when the FMCs failed, or latitude/longitude for new waypoints.

3 Distance to Waypoint

Displays the great circle distance between waypoints.

4 Waypoint Coordinates

Displays the waypoint coordinates.

Copyright © The Boeing Company. See title page for details.

11.50.3

IRS Progress Page

This page shows general data about flight progress.

1 LAST

Displays the identifier of the last waypoint.

2 TO

Displays the active waypoint.

3 NEXT

Displays the waypoint after the TO waypoint.

4 Destination (DEST)

Displays identifier for route destination waypoint or airport. Any waypoint on or off the route can be entered. Time and distance data temporarily displays for that waypoint.

OT USE FOR FLIGHT ight Management, Navigation -**System Description**

Display options:

- destination airport identifier; distance and time to go along track to the destination airport
- entry of an existing flight plan waypoint (identifier or latitude/longitude) causes the line title to change to ENROUTE WPT. Time and distance to go are along the track to the enroute waypoint
- entry of a waypoint not in the flight plan causes the line title to change to DIR TO ALTERNATE. Time and distance to go are from the present position direct to the new waypoint.

5 IRS Position

Displays IRS present position.

Line title displays IRS source for position.

6 Cross Track Error (XTK ERROR)

Displays airplane left or right cross–track error in nautical miles from the active route track.

7 Altitude (ALT)

Displays airplane altitude when the LAST waypoint was crossed.

8 Time to Go (TTG)

Displays time to go to waypoint or destination.

9 Distance to Go (DTG)

Displays distance to go to waypoint or destination.

10 Ground Speed (GS)

Displays IRS groundspeed.

11 Track (TK)

Displays airplane track angle relative to the true or magnetic reference selected on the HEADING REFERENCE switch

12 Desired Track (DTK)

Displays desired track angle relative to the true or magnetic reference selected on the HEADING REFERENCE switch

Copyright © The Boeing Company. See title page for details.

Intentionally Blank

767 Flight Crew Operations Manual

Flight Management, Navigation EICAS Messages

Chapter 11
Section 60

EICAS and CDU Messages

The following EICAS messages can be displayed to alert the flight crew to navigation system faults and failures.

Message	Level	Light	Aural	Condition
ATC FAULT	Advisory	ATC FAIL		Selected transponder has failed.
L FMC FAIL	Advisory	FAIL		FMC has failed.
R FMC FAIL				
FMC MESSAGE	Advisory	FMC		A message is in the FMC scratchpad.
L GPS	Advisory			Indicated GPS has failed.
R GPS				
GPS	Advisory			GPS system has failed.
L IRS DC FAIL	Advisory	DC FAIL		IRS DC backup power
C IRS DC FAIL				has failed and the IRS AC normal power is
R IRS DC FAIL				being used.
L IRS FAULT	Advisory	FAULT		An IRS fault is detected.
C IRS FAULT				
R IRS FAULT				
L IRS ON DC	Advisory	ON DC		Indicated IRS AC normal
C IRS ON DC				power has failed and the IRS DC backup power is
R IRS ON DC				being used.
UNABLE RNP	Caution		Beeper	Navigation performance
	Advisory			not meeting required accuracy.
				Message is a caution if fault occurs when the airplane is in "on approach" mode. Message is an advisory if fault occurs when the airplane is not in "on approach" mode.

Flight Management, Navigation NOT USE FOR FLIGHT

767 Flight Crew Operations Manual

FMC Messages

FMC messages alert the flight crew to conditions that could degrade the system operation and advise the crew of input errors.

The messages are categorized as:

- · alerting messages
- · advisory messages

The scratchpad messages display according to their level of importance. A less important message replaces another message in the scratchpad when the CLEAR key is pushed or the condition is corrected.

The FMC light illuminates and the EICAS advisory message FMC MESSAGE displays when there is an FMC alerting message.

Scratchpad advisory messages appear in the scratchpad without an EICAS message or FMC light. All FMC messages illuminate the CDU message (MSG) light. Clear the message or correct the condition to cancel the message.

Keying data into the scratchpad that contains an FMC message temporarily removes the message from the scratchpad. The message reappears in the scratchpad when the data is line selected into a display or cleared from the scratchpad.

FMC Alerting Messages

FMC alerting messages:

- display in the CDU scratchpad
- illuminate the amber FMC light on the center instrument panel
- cause the EICAS advisory message FMC MESSAGE to display
- illuminate the CDU message light (MSG).

Use the CLEAR key or correct the condition responsible for the message to remove the message.

CHECK AIRLINE POLICY – after loading a new airline modifiable information file, the FMC determines a parameter is invalid. The FMC uses the default value. This is a maintenance function

CHECK ALT TGT – VNAV active and the airplane is between the MCP and FMC altitudes. VNAV maintains level flight.

CYCLE IRS OFF – NAV – With the airplane on the ground any IRS has detected a condition that requires cycling inertial power off and back to NAV.

DESCENT PATH DELETED – VNAV active and all waypoint altitude constraints defining the descent profile deleted.

Note: This message displays before execution of the modification which deletes the descent path.

DO NOT USE FOR FLIGHT Management, Navigation - EICAS Messages

767 Flight Crew Operations Manual

DISCONTINUITY – LNAV active and the route is not defined after the waypoint (except when the waypoint is before a manually terminated leg, such as a VECTORS legs).

DRAG REQUIRED – VNAV active and additional drag required or autothrottle off and less thrust required to maintain the VNAV descent path.

END OF OFFSET – LNAV active and two minutes prior to end of active route offset. AFDS maintains last heading if active route offset overflown.

END OF ROUTE – LNAV active and end of active route overflown. AFDS maintains last heading.

ENTER IRS POSITION – the flight crew—entered present position did not pass one of the IRS comparison checks, or the IRS is ready to change to navigate mode and has not received a present position entry. Use the CLEAR key to remove this message.

FMC L (or R) OUTPUT LOSS – data output or discreet signals from indicated FMC are lost.

FUEL DISAGREE–PROG 2 – totalizer (TOTL) fuel quantity and FMC calculated (CALC) fuel quantity disagree by a significant amount.

INSUFFICIENT FUEL – estimated fuel at destination less than entered RESERVES value.

IRS MOTION – an IRS has detected motion while in ALIGN.

IRS NAV ONLY – the FMC has been without radio or GPS updating for a predetermined time.

IRS POS/ORIGIN DISAGREE – valid inertial position differs from active origin airport.

LIMIT ALT FLXXX – the flight crew– or FMC–selected altitude is greater than the VNAV limit altitude

NAV DATA OUT OF DATE – the clock calendar date is after the active navigation database valid calendar cycle.

NAV INVALID-TUNE XXXX – RNAV or VOR approach procedures must have a specific navaid tuned. It is either not tuned or a valid signal is not being received.

NO ACTIVE ROUTE – LNAV selected and no active route activated.

PERF/VNAV UNAVAILABLE – VNAV selected and gross weight, cost index, or cruise altitude are not entered.

RESET MCP ALT – 2 minutes prior to the top of descent point with VNAV active and MCP not set to altitude below cruise altitude.

RW/ILS CRS ERROR – LOC mode armed and the selected ILS course is incorrect for the active route runway.

Flight Management, Navigation NOT USE FOR FLIGHT

767 Flight Crew Operations Manual

RW/ILS FREQ ERROR – the selected ILS frequency does not match frequency for runway in active route.

SINGLE FMC L (or R) OPERATION – one FMC has failed, only the indicated FMC is operational.

SPLIT IRS OPERATION – a fault exists on an IRS making only two IRSs available for navigation.

TAKEOFF SPEEDS DELETED – selected V speeds have been deleted due to changes in takeoff performance or configuration data.

THRUST REQUIRED – VNAV active, autothrottle disconnected, and additional thrust required to track VNAV descent path and maintain speed.

UNABLE NEXT ALT – VNAV active and climb not sufficient to comply with waypoint altitude constraint.

VERIFY POSITION – the difference between the FMC position and other position data exceeds a comparison threshold. The possible conflicts are:

- the left FMC position differs from the right FMC position
- the radio position, with radio updating, differs from the FMC position
- the GPS position, with GPS updating, differs from the FMC position

VERIFY RNP – POS REF 2 – the default RNP has changed due to a change in flight phase and the flight crew entered RNP value exceeds the new default RNP value.

VIA OFFSET INVALID – flight conditions invalidate the modification with a divert to an alternate airport via OFFSET.

FMC Advisory Messages

FMC advisory messages are displayed on the CDU scratchpad and illuminate the CDU message light (MSG). There are no EICAS messages associated with these messages and they do not cause the FMC light to illuminate.

Those messages which are caused by an entry error must be cleared before the entry can continue.

CRS REVERSAL AT FA FIX – a conflict exists between the default final approach (FA) waypoint (result of a runway or VFR approach selection) and the flight plan before it.

DELETE – DELETE key pushed.

ENG OUT SID MOD – an engine failure is sensed after takeoff before the flaps are fully retracted; the FMC has automatically loaded an available engine out standard instrument departure as a route modification to the active route.

DO NOT USE FOR FLIGHT Management, Navigation - EICAS Messages

767 Flight Crew Operations Manual

HOLD AT XXXX – a waypoint not contained in the active route is entered into the HOLD AT box on the RTE LEGS page, after selection of the HOLD function key. Selection of HOLD AT XXXX into a RTE LEGS page waypoint line makes a holding fix at the XXXX waypoint.

INVALID DELETE – deletion of selected data is not allowed.

INVALID ENTRY – entry format or range is incorrect for the selected field or the entered airway or TO waypoint does not coincide with the navigation database.

INVALID TUNE REQUEST – attempt to remotely tune a VOR is not valid.

KEY/FUNCTION INOP – selected mode key is inoperative.

MANUALLY TUNED – attempt to remotely tune a VOR that is manually tuned.

MAX ALT FLXXX – the altitude entry on any CDU page is above the performance calculated maximum altitude.

NOT IN DATABASE – data is not in the route or the navigation database.

NOT ON INTERCEPT HEADING – LNAV selected and the airplane is outside active capture criteria and the present heading will not intercept the active leg.

ROUTE FULL – the route is filled to the allowable capacity.

RUNWAY N/A FOR SID – selected runway not compatible with SID.

STANDBY ONE - the FMC requires more than 4 seconds to display data.

TIMEOUT-RESELECT – communication between the FMC and the CDU has failed. The flight crew must reselect FMC on the CDU MENU page.

UNABLE CRZ ALT – performance predicts a zero cruise time at the entered cruise altitude

VERIFY RNP ENTRY – the entered RNP value is greater than the default RNP value for the present flight phase or, less than the present Actual Navigation Performance

VOR AAA INVALID – signal is lost from remotely tuned VOR. AAA is the identifier for the VOR.

XXXXX – altitude set in the MCP window when VNAV is engaged, the CLB or CRZ page is displayed, and the altitude is above, within 4000 feet below, and not equal to the CRZ ALT.

Flight Management, Navigation NOT USE FOR FLIGHT EICAS Messages

767 Flight Crew Operations Manual

CDU Annunciator Lights

These annunciator lights illuminate when certain conditions exists.

DSPY – a flight plan modification is pending and the RTE, RTE LEGS, RTE DATA, or RTE HOLD page not containing the active leg or route segment is displayed, or a VNAV page (CLB, CRZ, or DES) not corresponding to the active VNAV mode is displayed.

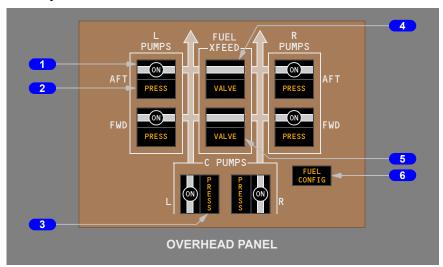
OFST – an offset path has been entered and executed.

MSG – an FMC message is waiting to display or is displayed.

FAIL – the associated FMC has failed.

767 Flight Crew Operations Manual

Fuel	Chapter 12
Table of Contents	Section 0
Controls and Indicators	12.10
Fuel System	12.10.1
Fuel Indications	12.10.2
Fuel Quantity Indicator	
Fuel Jettison	12.10.3
Fuel Quantity Test	12.10.4
System Description	12.20
Introduction	12.20.1
Fuel Quantity	12.20.1
Fuel Temperature	12.20.1
Fuel Pumps	12.20.1
Fuel Crossfeed	12.20.2
Suction Feed	12.20.2
Fuel Configuration Light	12.20.3
Fuel Imbalance	12.20.3
Fuel Tank Locations and Capacities	12.20.3
Fuel Tank Locations	12.20.3
Fuel Tank Capacities	12.20.4
Fuel System Schematic	
APU Fuel Feed	12.20.5
Fuel Jettison	12.20.6
Fuel Jettison Schematic	12.20.7
Fuel System FMS CDU Messages	12.20.7
EICAS Messages	12.30
Fuel System FICAS Messages	12 30 1


767 Flight Crew Operations Manual

Intentionally Blank

767 Flight Crew Operations Manual

Fuel Chapter 12 Controls and Indicators Section 10

Fuel System

1 Left/Center/Right (L/C/R PUMPS) Switches

ON – the fuel pump is selected ON

Off (ON not visible) – the fuel pump is selected off

2 Left/Right Pump Pressure (PRESS) Lights

Illuminated (amber) – fuel pump output pressure is low

3 Center Pump Pressure (PRESS) Lights

Illuminated (amber) -

- fuel pump output pressure is low with the pump selected ON
- associated N2 below 50% with pump switch ON

Note: Illumination is inhibited when the center tank fuel pump switch is selected OFF

4 Fuel Crossfeed (FUEL XFEED) Switches

On (bar visible) – the crossfeed valve is selected open

Off (bar not visible) – the crossfeed valve is selected closed

767 Flight Crew Operations Manual

5 Crossfeed VALVE Light

Illuminated (amber) – the crossfeed valve is not in the selected position

6 Fuel Configuration (FUEL CONFIG) Light

Illuminated (amber) -

- low fuel quantity
- imbalance between left and right main tanks
- center tank fuel pumps off with fuel in center tanks

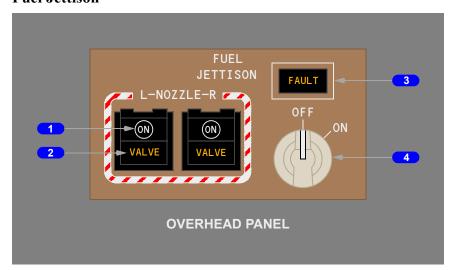
Fuel Indications

Fuel Quantity Indicator

1 Fuel Quantity (L/C/R FUEL QTY) Indication

Displays usable fuel quantity in the left main, center, and right main tank (pounds x 1000)

2 Fuel Temperature (TEMP) Indication


Displays temperature of fuel in the left main tank (degrees celsius)

3 TOTAL Fuel Quantity Indication

Displays total usable fuel quantity in all tanks (pounds x 1000)

Fuel Jettison

1 Fuel Jettison Nozzle Switches (L–NOZZLE–R)

ON – opens respective jettison nozzle

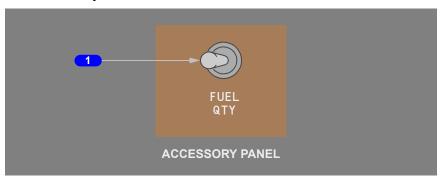
Off (ON not visible) – closes respective jettison nozzle

2 Fuel Jettison Nozzle VALVE Lights

Illuminated (amber) – the jettison nozzle valve is not in the selected position

3 FAULT Light

Illuminated (amber) – jettison pump(s) and/or transfer valve(s) disagree with jettison switch position


4 Fuel Jettison Selector

OFF – closes both jettison transfer valves and turns off jettison pumps

ON – opens both jettison transfer valves and turns on jettison pumps

767 Flight Crew Operations Manual

Fuel Quantity Test

1 Fuel Quantity (FUEL QTY) Test Switch

Spring-loaded to center Initiates fuel quantity test

767 Flight Crew Operations Manual

FuelChapter 12System DescriptionSection 20

Introduction

The fuel system supplies fuel to the engines and the APU. The fuel is contained in a center tank, and left and right main tanks.

Refer to Chapter 7, Engines, APU, for an additional description of the engine and APU fuel systems.

Fuel Quantity

Fuel quantity data, measured by probes in each tank, is fed to the fuel quantity processor where it is corrected for density then displayed on a fuel quantity indicator for each tank. Total fuel quantity, from a separate calculation, is shown on the total fuel quantity indicator and is also provided to the FMC.

When total usable fuel in either left or right main tank drops below approximately 2200 pounds, the FUEL CONFIG light illuminates and the LOW FUEL caution message is displayed.

Fuel Temperature

Temperature of the fuel in the left main tank is displayed on the fuel temperature indicator.

Fuel Pumps

Each fuel tank contains two AC-powered fuel pumps. A single pump can supply sufficient fuel to operate one engine under all conditions.

The two center tank fuel pumps have greater output pressure than the left and right main tank fuel pumps. When all six pumps are operating, the center tank pumps override the left and right main tank pumps so that center tank fuel is used before left or right main tank fuel.

If any pump has low output pressure, the appropriate switch PRESS light illuminates and the pump pressure EICAS message is displayed. If the main tank pump switches are OFF, the low pressure lights are illuminated and EICAS messages for the pumps are displayed. When the center pump switches are OFF, the low pressure lights and EICAS messages for the center pumps are inhibited.

To reduce electrical loads, the center tank pumps are inhibited when the associated N2 is less than 50% RPM. Thus both center tank pumps are inhibited when the engines are shutdown. As an engine is started and N2 RPM increases above 50%, the inhibit is removed for the associated center tank pump.

Copyright © The Boeing Company. See title page for details.

767 Flight Crew Operations Manual

The EICAS caution messages, L or R FUEL SYS PRESS, displays when all fuel pumps have low output pressure or all fuel pumps on one side have low output pressure and the crossfeed switches are off.

The fuel pump low pressure messages are inhibited by the corresponding L or R FUEL SYS PRESS messages.

During normal operation, the EICAS advisory messages CTR L FUEL PUMP and CTR R FUEL PUMP display to indicate depletion of center tank fuel.

With either message displayed, a small amount of center tank fuel may be indicated. A scavenge system will operate automatically to transfer any remaining center tank fuel to the main tanks. Fuel scavenge begins when the main tanks are approximately half empty.

The left main tank contains a DC-powered fuel pump. It has no controls or indicators. The DC pump operates automatically to provide fuel to the APU when AC power is not available and the APU selector is ON.

Fuel Crossfeed

The fuel manifolds are arranged so that any fuel tank pump can supply either engine. Two crossfeed valves isolate the left fuel manifold from the right. These valves are normally closed providing fuel feed from tank to engine. Both valves are opened any time it becomes necessary to feed an engine from an opposite fuel tank. Only one open crossfeed valve is required for successful crossfeed operation. A valve disagreement light illuminates and the EICAS advisory message FWD FUEL X–FEED or AFT FUEL X–FEED displays if a valve position does not agree with its switch position. The L or R FUEL SYS PRESS messages are inhibited with either crossfeed valve open.

Suction Feed

When main tank fuel pump pressure is low, each engine can draw fuel from its corresponding main tank through a suction feed line that bypasses the pumps. As the airplane climbs, dissolved air is released from the fuel in the tank due to the decrease in air pressure. This air may collect in the suction feed line and restrict fuel flow. At high altitude, thrust deterioration or engine flameout may occur as a result of the fuel flow reduction

Fuel pressure can be provided from a main tank with operating fuel pumps to both engines by opening the fuel crossfeed valves. Continued crossfeed use will result in a progressive fuel imbalance.

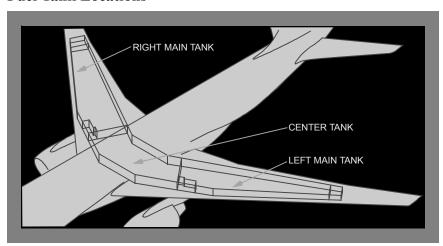
The dissolved air in the fuel tank will eventually deplete after reaching cruise altitude. The depletion time is dependent upon airplane altitude, fuel temperature, and type of fuel. Once the dissolved air is depleted, the engine may be capable of suction feed operation at cruise power.

12.20.3

767 Flight Crew Operations Manual

Fuel Configuration Light

When the fuel quantity in left and right main tanks differ by 2000 pounds (plus or minus 500 pounds) or center fuel pump switches are OFF with more than 1200 pounds in the center tank, the FUEL CONFIG light illuminates and the EICAS advisory message FUEL CONFIG is displayed.


The FUEL CONFIG light also illuminates when the EICAS caution message LOW FUEL is displayed.

Fuel Imbalance

Fuel balancing is accomplished by opening the crossfeed valves and turning off the fuel pump switches for the left or right main fuel tank that has the lowest quantity. Fuel balancing may be done in any phase of flight.

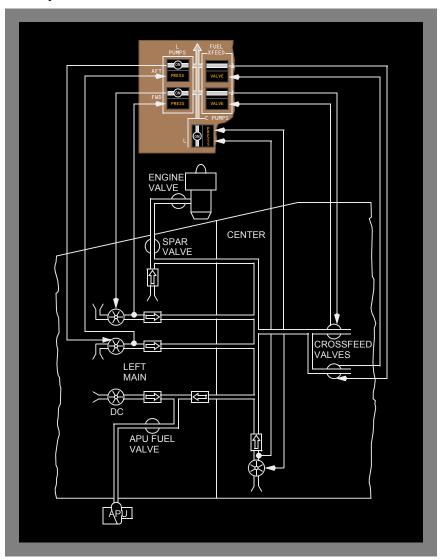
Fuel Tank Locations and Capacities

Fuel Tank Locations

767 Flight Crew Operations Manual

Fuel Tank Capacities

Tank	U.S. Gallons	Pounds *
Left main	6,010	40,267
Right main	6,010	40,267
Center	11,900	79,730
Total	23,920	160,264


^{*} Usable fuel at level attitude, fuel density = 6.7 LB/U.S. per Gallon

Tank	U.S. Gallons	Pounds *
Left main	6,010	40,267
Right main	6,010	40,267
Center	11,960	80,132
Total	23,980	160,666
# TT 11 0 1 1 1 1 1 1 1	0 11 : (575,577	G 11

^{*} Usable fuel at level attitude, fuel density = 6.7 LB/U.S. per Gallon

767 Flight Crew Operations Manual

Fuel System Schematic

APU Fuel Feed

APU fuel is supplied from the left fuel manifold. APU fuel can be provided by any AC fuel pump supplying fuel to the left fuel manifold or by the left main tank DC fuel pump.

767 Flight Crew Operations Manual

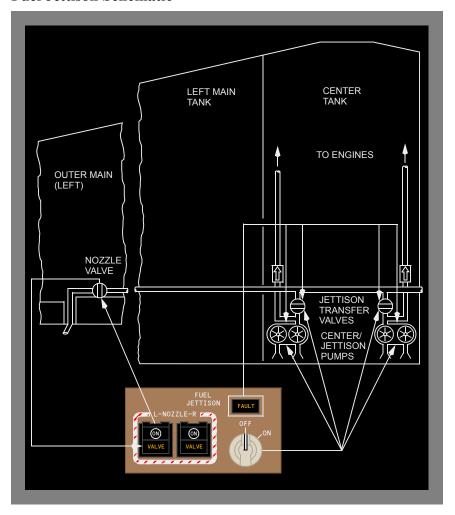
On the ground, with the APU selector ON and no AC power available, the DC pump runs automatically. With AC power available, the left forward AC fuel pump operates automatically, regardless of fuel pump switch position, and the DC fuel pump turns off.

Fuel Jettison

The fuel jettison system allows jettison from the center fuel tank. Fuel is jettisoned through nozzles inboard of each outboard aileron. The common fuel manifold allows jettison pumps in the center tank to pump fuel overboard.

Two dual pump units provide a high capacity jettison rate of approximately 2600 pounds per minute.

Fuel jettison begins when:


- the FUEL JETTISON selector is selected ON
- the jettison transfer valves open
- the FUEL JETTISON NOZZLE switches are selected ON
- the nozzle valves open, and
- the jettison pumps operate

The FMC discontinues fuel value calculations and the totalizer value is used during fuel jettison operation. After fuel jettison is complete, the calculated value will reset using the same value as the totalizer value.

The fuel disagree message is not displayed during fuel jettison operation.

767 Flight Crew Operations Manual

Fuel Jettison Schematic

Fuel System FMS CDU Messages

The CDU can display the following messages.

INSUFFICIENT FUEL – Predicted fuel at destination is less than the FMC reserves

FUEL DISAGREE–PROG 2 – The fuel totalizer and calculated fuel quantity disagree

767 Flight Crew Operations Manual

Intentionally Blank

767 Flight Crew Operations Manual

Fuel EICAS Messages Chapter 12 Section 30

Fuel System EICAS Messages

The following EICAS messages can be displayed.

Message	Level	Light	Aural	Condition
FUEL CONFIG	Advisory	FUEL CONFIG		Both center pump switches are OFF with fuel in the center tank or a fuel imbalance between main tanks
AFT FUEL X-FEED	Advisory	VALVE		The crossfeed valve
FWD FUEL X-FEED				position disagrees with the commanded position
FUEL JET NOZ	Advisory	VALVE		In flight, the nozzle valve position disagrees with the commanded position
				On the ground indicates one or both fuel nozzle valves are open
L FUEL JET PUMP R FUEL JET PUMP	Advisory	FAULT		The associated fuel jettison pump is inoperative
L JET XFER VALVE R JET XFER VALVE	Advisory	FAULT		The associated fuel jettison transfer valve is not in the commanded position
CTR L FUEL PUMP	Advisory	PRESS		Fuel pump output
CTR R FUEL PUMP				pressure is low
L AFT FUEL PUMP				
R AFT FUEL PUMP				
L FWD FUEL PUMP				
R FWD FUEL PUMP				

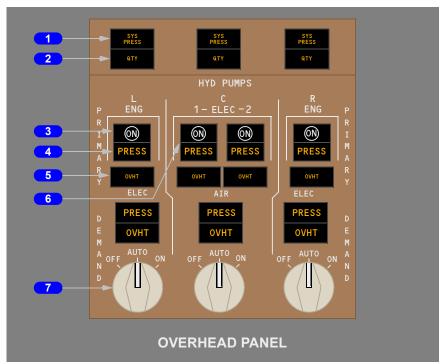
767 Flight Crew Operations Manual

Message	Level	Light	Aural	Condition
L FUEL SYS PRESS R FUEL SYS PRESS	Caution		Beeper	All fuel pumps have low output pressure or all fuel pumps on one side have low output pressure and the crossfeed switches are off
LOW FUEL	Caution	FUEL CONFIG	Beeper	Fuel quantity is low in either left or right main tank

767 Flight Crew Operations Manual

Hydraulics Table of Contents	Chapter 13 Section 0
Controls and Indicators	13.10
Hydraulic Panel	13.10.1
Status Display	13.10.2
Miscellaneous Hydraulic System Controls	13.10.2
Reserve Brakes and Steering Reset/Disable Switch.	13.10.2
Ram Air Turbine	13.10.3
System Description	13.20
Introduction	13.20.1
Hydraulic Systems Schematic	13.20.2
Left Hydraulic System	13.20.4
Fluid Supply	13.20.4
Engine-driven Primary Pump	13.20.4
Electric Motor-driven Demand Pump	13.20.4
System Pressure Indications	13.20.5
Right Hydraulic System	13.20.5
Fluid Supply	13.20.5
Engine-driven Primary Pump	13.20.5
Electric Motor–driven Demand Pump	13.20.5
System Pressure Indications	13.20.5
Center Hydraulic System	13.20.5
Fluid Supply	13.20.6
Electric Motor-driven Primary Pumps	13.20.6
Air-driven Demand Pump	
System Pressure Indications	
Reserve Brakes and Steering Isolation	
Hydraulic Driven Generator	13.20.6
Ram Air Turbine (RAT) Pump	13.20.7
EICAS Messages	13.30
Hydraulics EICAS Messages	13.30.1

767 Flight Crew Operations Manual


Intentionally Blank

767 Flight Crew Operations Manual

Hydraulics Controls and Indicators

Chapter 13
Section 10

Hydraulic Panel

1 System Pressure (SYS PRESS) Lights

Illuminated (amber) – system pressure is low.

2 Reservoir Low Quantity (QTY) Lights

Illuminated (amber) – reservoir quantity is low.

3 Left/Right Engine (L/R ENG) Primary Pump Switches

ON – the engine–driven hydraulic pump pressurizes when engine rotates.

Off (ON not visible) – the engine–driven hydraulic pump is turned off and depressurized.

4 Pump Pressure (PRESS) Lights

Illuminated (amber) – pump output pressure is low.

767 Flight Crew Operations Manual

5 Pump Overheat (OVHT) Lights

Illuminated (amber) – pump temperature is high.

6 Center 1/2 Electric (C1/2 ELEC) Primary Pump Switches

ON – the electric motor–driven pump pressurizes the center hydraulic system.

OFF (ON not visible) – the electric motor–driven hydraulic pump is turned off.

7 Left/Right Electric and Center Air (L/R ELEC and C AIR) Demand Pump Selectors

ON – continuous operation.

AUTO -

- left/right electric pumps operate when engine pump pressure is low
- center air demand pump operates when both center electric pump pressures are low
- center air demand pump operates when heavy load items are selected

OFF – pump off.

Status Display

1 Hydraulic Fluid Quantities (HYD QTY)

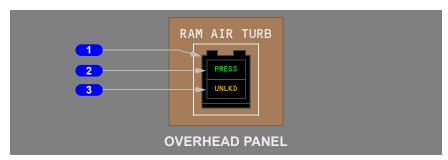
- displays system reservoir quantity (1.00 is the normal service level)
- RF (magenta) displayed when the reservoir requires refilling

Miscellaneous Hydraulic System Controls

Reserve Brakes and Steering Reset/Disable Switch

767 Flight Crew Operations Manual

1 Reset/Disable Switch


RESET/DISABLE – resets or disables the automatic isolation feature of the center hydraulic system.

NORM – the isolation feature is armed for automatic operation.

2 Isolation (ISLN) Light

Illuminated (white) – the center number one electric primary hydraulic pump is isolated to provide hydraulic pressure to the reserve brakes and steering system.

Ram Air Turbine

1 RAM AIR Turbine (TURB) Switch

Push – deploys the RAT.

2 Ram Air Turbine Pressure (PRESS) Light

Illuminated (green) –

- the RAT is deployed
- the RAT is producing hydraulic pressure

3 Ram Air Turbine Unlocked (UNLKD) Light

Illuminated (amber) – the RAT is not stowed and locked.

767 Flight Crew Operations Manual

Intentionally Blank

767 Flight Crew Operations Manual

Hydraulics System Description

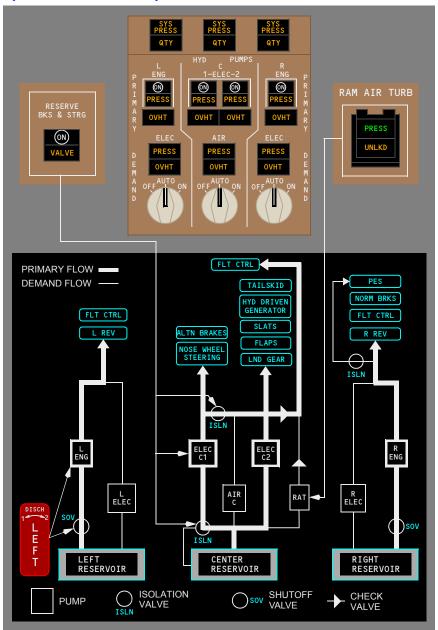
Chapter 13
Section 20

13.20.1

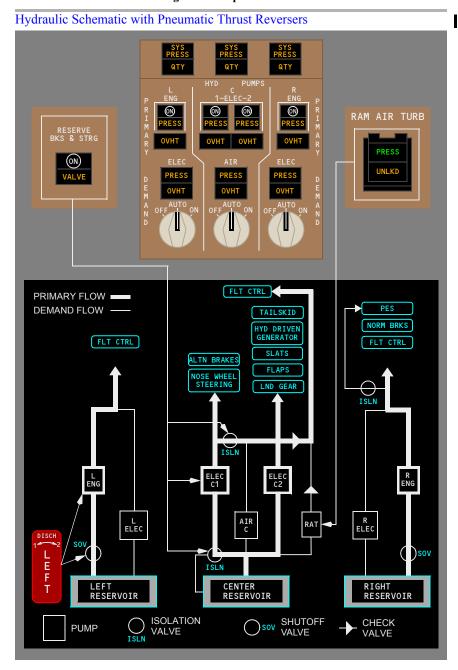
Introduction

The airplane has three independent hydraulic systems: left, right, and center. The hydraulic systems power the:

- · flight controls
- · leading edge slats
- · trailing edge flaps
- · landing gear
- · wheel brakes
- nose wheel steering
- · autopilot servos
- · thrust reversers
- tailskid


Flight control system components are distributed so that any one hydraulic system can provide adequate airplane controllability.

Hydraulic fluid is supplied to each hydraulic pump from the associated system reservoir. The reservoirs are pressurized by the bleed air system.


767 Flight Crew Operations Manual

Hydraulic Systems Schematic

Hydraulic Schematic with Hydraulic Thrust Reversers

767 Flight Crew Operations Manual

767 Flight Crew Operations Manual

Left Hydraulic System

The left hydraulic system powers:

- · flight controls
- · left engine thrust reverser

The system consists of a reservoir, engine–driven primary pump, and an electric motor–driven demand pump.

Fluid Supply

Hydraulic fluid is supplied to each hydraulic pump from a reservoir. The reservoir is pressurized by the bleed air system. A quantity measuring system provides information to the EICAS status display. RF displays on the EICAS status page when a reservoir requires refilling prior to dispatch.

The QTY light illuminates and the EICAS advisory message L HYD QTY displays when the reservoir quantity is low.

Fluid for the engine—driven pump flows through a shutoff valve controlled by the engine fire switch. Pulling the fire switch shuts off the flow of fluid to the engine pump and depressurizes the pump.

Engine-driven Primary Pump

The primary hydraulic system pump is an engine-driven pump.

The primary pump PRESS light illuminates and the EICAS advisory message L HYD PRIM PUMP displays when the pump output pressure is low. The pump OVHT light illuminates and the EICAS advisory message L PRIM HYD OVHT displays when the pump temperature is high.

Electric Motor-driven Demand Pump

An electric motor—driven demand pump provides additional hydraulic power either on demand or continuously for periods of high system demand. The demand pump also provides a backup hydraulic power source for the engine—driven primary pump.

The pump PRESS light illuminates and the EICAS advisory message L HYD DEM PUMP displays when the pump output pressure is low. The pump OVHT light illuminates and the EICAS advisory message L DEM HYD OVHT displays when the pump temperature is high.

To reduce electrical load, the left electric demand pump is inhibited on the ground during engine start of either engine, when only one electrical generator is operating. The left demand pump PRESS and SYS PRESS lights may illuminate when starting engines on the ground.

767 Flight Crew Operations Manual

System Pressure Indications

The SYS PRESS light illuminates and the EICAS caution message L HYD SYS PRESS displays when the hydraulic system pressure is low.

Right Hydraulic System

The right hydraulic system is similar to the left system. The right system powers:

- · flight controls
- · normal brakes
- pitch enhancement system
- · right engine thrust reverser

The system consists of a reservoir, engine–driven primary pump, and an electric motor–driven demand pump.

Fluid Supply

The right reservoir is similar to the left system. The associated EICAS message for low reservoir quantity is R HYD QTY.

Engine-driven Primary Pump

The right engine—driven primary pump is identical to the left system. The associated EICAS messages for low pump output pressure or high pump temperature are R HYD PRIM PUMP and R PRIM HYD OVHT.

Electric Motor-driven Demand Pump

The right electric motor—driven demand pump is identical to the left system. The associated EICAS messages for low pump output pressure or high pump temperature are R HYD DEM PUMP and R DEM HYD OVHT.

System Pressure Indications

The right system pressure indications are similar to the left system. The associated message for low system pressure is R HYD SYS PRESS.

Center Hydraulic System

The center system powers:

- flight controls
- · nose wheel steering
- flaps and slats
- · alternate brakes
- · landing gear
- hydraulic driven generator
- tailskid

Copyright © The Boeing Company. See title page for details.

767 Flight Crew Operations Manual

The system consists of a reservoir, two electric motor–driven pumps, an air–driven demand pump, and a ram air turbine (RAT) pump.

Fluid Supply

The center reservoir is similar to the left system. The associated EICAS messages for low reservoir quantity is C HYD QTY.

The reservoir maintains reserve hydraulic fluid for use by the brakes and steering in the event of a center system hydraulic leak.

Electric Motor-driven Primary Pumps

The two center electric motor–driven primary pumps are identical to the left and right system electric motor-driven pumps. The C2 pump may be load shed automatically to reduce electrical loads. The associated EICAS messages for low pump output pressure or high pump temperature are C HYD PRIM 1, C HYD PRIM 2, C HYD 1 OVHT, and C HYD 2 OVHT.

Air-driven Demand Pump

An air–driven demand pump provides additional hydraulic power either on demand or continuously for periods of high system demand. The demand pump also provides a backup hydraulic power source for the electric motor–driven primary pumps.

The pump PRESS light illuminates and the EICAS advisory message C HYD DEM PUMP displays when the pump output pressure is low. The pump OVHT light illuminates and the EICAS advisory message C DEM HYD OVHT displays when the pump temperature is high.

System Pressure Indications

The center system pressure indications are similar to the left system. The associated message for low system pressure is C HYD SYS PRESS.

Reserve Brakes and Steering Isolation

The center number one electric primary hydraulic pump is automatically isolated, if system quantity is sensed low, to provide hydraulic pressure to the reserve brakes and steering system.

Hydraulic Driven Generator

A hydraulic driven generator is automatically powered by the center hydraulic system when electrical power is lost from both main AC busses. The center air demand pump will then operate continuously to ensure sufficient hydraulic pressure to drive the generator.

767 Flight Crew Operations Manual

Ram Air Turbine (RAT) Pump

When deployed, the RAT, provides hydraulic power to the flight controls portion of the center hydraulic system. The RAT provides adequate hydraulic power at speeds above 130 knots. In flight, the RAT deploys automatically when both engines fail. The RAT is inhibited from auto deployment on the ground.

The RAT can be deployed manually by pushing the RAM AIR TURB switch. The UNLKD light illuminates and the EICAS advisory message RAT UNLOCKED displays when the RAT is not stowed and locked. Once the RAT is producing pressure the ram air turbine PRESS light illuminates. The SYS PRESS light remains illuminated if the RAT is the only source of center system pressure. Once deployed, the RAT cannot be stowed in flight.

767 Flight Crew Operations Manual

Intentionally Blank

767 Flight Crew Operations Manual

Hydraulics EICAS Messages

Chapter 13
Section 30

Hydraulics EICAS Messages

The following EICAS messages can be displayed.

Message	Level	Light	Aural	Condition
C DEM HYD OVHT	Advisory	OVHT		Pump temperature is
L DEM HYD OVHT				high.
R DEM HYD OVHT				
C HYD 1 OVHT				
C HYD 2 OVHT				
L PRIM HYD OVHT				
R PRIM HYD OVHT				
C HYD DEM PUMP	Advisory	PRESS		Pump output pressure is
L HYD DEM PUMP				low.
R HYD DEM PUMP				
L HYD PRIM PUMP				
R HYD PRIM PUMP				
C HYD PRIM 1				
C HYD PRIM 2				
C HYD QTY	Advisory	QTY		Hydraulic quantity is
L HYD QTY				low.
R HYD QTY				
C HYD SYS PRESS	Caution	SYS	Beeper	Hydraulic system
L HYD SYS PRESS		PRESS		pressure is low.
R HYD SYS PRESS				
RAT UNLOCKED	Advisory	UNLKD		The ram air turbine is not stowed and locked.

767 Flight Crew Operations Manual

Intentionally Blank

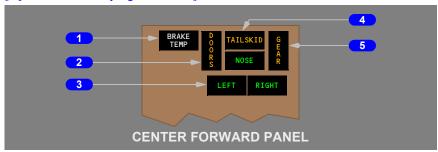
767 Flight Crew Operations Manual

767 Flight Crew Operations Manual	
Landing Gear	Chapter 14
Table of Contents	Section 0
Controls and Indicators	14.10
Landing Gear Panel	14.10.1
Gear Extension/Retraction	14.10.3
Nose Wheel Steering Tiller	14.10.4
Brake System	14.10.4
Rudder/Brake Pedals	14.10.4
Auto Brakes Selector	14.10.5
Parking Brake Handle	
Brake Accumulator Pressure Indicator	
Brake Source Light	
Reserve Brakes and Steering Switch	
Antiskid Light	
Brake Temperature	14.10.7
System Description	14.20
Introduction	14.20.1
Air/Ground Sensing System	14.20.1
Landing Gear Operation	14.20.1
Landing Gear Retraction	14.20.2
Landing Gear Extension	14.20.2
Landing Gear Alternate Extension	14.20.2
Nose Wheel Steering	14.20.3
Brake System	14.20.3
Normal Brake Hydraulic System	14.20.3
Alternate Brake Hydraulic System	
Reserve Brakes and Steering	14.20.3
Brake Accumulator	
Antiskid Protection	
Autobrake System	
Parking Brake	
Brake Temperature Indication	14.20.6

Landing Gear -Table of Contents

DO NOT USE FOR FLIGHT

767 Flight Crew Operations Manual


Tailskid	14.20.6
EICAS Messages	14.30
Landing Gear EICAS Messages	14.30.1

767 Flight Crew Operations Manual

Landing GearChapter 14Controls and IndicatorsSection 10

Landing Gear Panel

[Option-Brake Temp light installed]

1 Brake Temperature (BRAKE TEMP) Light

Illuminated (white) – a wheel brake temperature is in high range (a value of 5 or above on the status page).

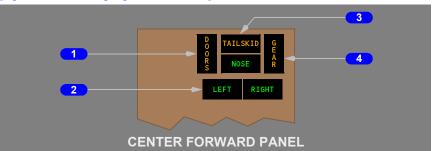
2 DOORS Light

Illuminated (amber) – a door is not closed.

3 Landing Gear Down Lights (NOSE, LEFT, and RIGHT)

Illuminated (green) – the associated landing gear is down and locked.

4 TAILSKID Light


Illuminated (amber) – the tailskid position disagrees with the landing gear lever position.

5 Landing GEAR Disagree Light

Illuminated (amber) –the gear position disagrees with the lever position.

767 Flight Crew Operations Manual

[Option-Brake Temp light not installed]

1 DOORS Light

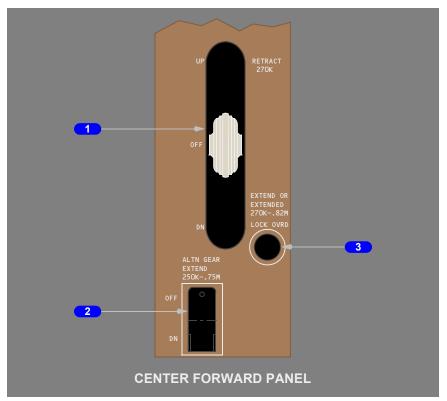
Illuminated (amber) – a door is not closed.

2 Landing Gear Down Lights (NOSE, LEFT, and RIGHT)

Illuminated (green) – the associated landing gear is down and locked.

3 TAILSKID Light

Illuminated (amber) – the tailskid position disagrees with the landing gear lever position.


4 Landing GEAR Disagree Light

Illuminated (amber) –the gear position disagrees with the lever position.

767 Flight Crew Operations Manual

Gear Extension/Retraction

1 Landing Gear Lever

UP – the landing gear retracts.

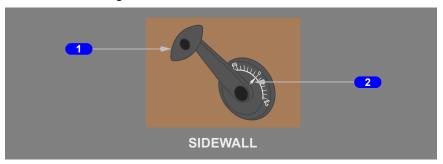
OFF – hydraulic pressure is removed from landing gear system.

DN – the landing gear extends.

2 Alternate Gear Extend (ALTN GEAR EXTEND) Switch

OFF – the landing gear lever operates normally.

DN (down) – the landing gear extends by the alternate extension system.


3 Landing Gear Lever Lock Override (LOCK OVRD) Switch

Push – releases the landing gear lever lock.

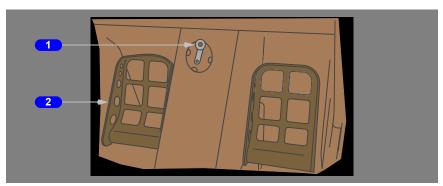
767 Flight Crew Operations Manual

Nose Wheel Steering Tiller

A nose wheel steering tiller is installed on the left sidewall.

1 Nose Wheel Steering Tiller

Rotate -


- turns the nose wheels up to 65 degrees in either direction
- · overrides rudder pedal steering

2 Tiller Position Indicator

Shows tiller displacement from the straight-ahead, neutral position.

Brake System

Rudder/Brake Pedals

1 Rudder Pedal Adjust Crank

Pull and Rotate – adjusts the rudder pedals forward or aft.

Rudder/Brake Pedals

Push the full pedal –turns the nose wheel up to seven degrees in either direction.

767 Flight Crew Operations Manual

Push the top of the pedals – actuates the wheel brakes.

Refer to Chapter 9, Flight Controls for the description of rudder operation.

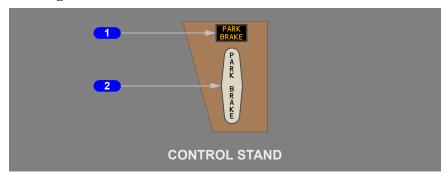
Auto Brakes Selector

1 AUTO BRAKES Light

Illuminated (amber) – the auto brakes are disarmed or inoperative.

2 AUTO BRAKES Selector

OFF – deactivates the autobrake system.


DISARM -

- · disengages the auto brake system
- · releases brake pressure

1,2,3,4, MAX AUTO – selects the desired deceleration rate.

RTO – automatically applies maximum brake pressure when the thrust levers are retarded to idle above 85 knots.

Parking Brake Handle

1 Parking Brake (PARK BRAKE) Light

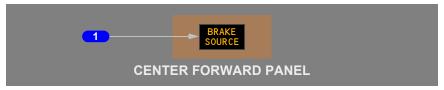
Illuminated (amber) – the parking brake is set.

767 Flight Crew Operations Manual

2 Parking Brake (PARK BRAKE) Handle

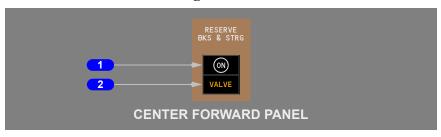
Pull – sets the parking brake when both brake pedals are simultaneously depressed.

Release – simultaneously depress both brake pedals.


Brake Accumulator Pressure Indicator

1 Brake Accumulator Pressure (BRAKE PRESS) Indicator

Indicates brake accumulator pressure (psi x1000).


Brake Source Light

BRAKE SOURCE Light

Illuminated (amber) – both normal and alternate brake system pressures are low.

Reserve Brakes and Steering Switch

767 Flight Crew Operations Manual

1 RESERVE Brakes and Steering (BKS & STRG) Switch

ON – provides pressure to alternate brake system and nose wheel steering system.

Off – (ON not visible) – the reserve brakes and steering system is commanded off.

2 Reserve Brakes and Steering VALVE Light

Illuminated (amber) –

- switch OFF valve(s) disagree with commanded position from automatic isolation feature
- switch ON valve(s) disagree with manually selected switch position

Antiskid Light

1 ANTISKID Light

Illuminated (amber) – a fault is detected in the antiskid system.

Brake Temperature

[Option-EICAS Status Display Brake Temp]

1 Brake Temperature (BRAKE TEMP)

Indicates a relative value of wheel brake temperature.

- values range from 0 to 9
- 0 to 2 initial range, box and number are cyan

767 Flight Crew Operations Manual

- 3 to 4 normal range, box is white for the first brake per truck that exceeds a value of 2 and number is cyan
- 5 to 9 high range, box and number are white for each brake with a value of 5 or above

767 Flight Crew Operations Manual

Landing Gear System Description

Chapter 14
Section 20

Introduction

The airplane has two main landing gear and a single nose gear. The nose gear is a conventional steerable two—wheel unit. Each main gear has four wheels in tandem pairs.

Hydraulic power for retraction, extension, and steering is supplied by the center hydraulic system. An alternate extension system is also provided.

The normal brake hydraulic system is powered by the right hydraulic system. The alternate brake hydraulic system is powered by the center hydraulic system. Antiskid protection is provided with both systems, but the autobrake system is available only through the normal system.

A brake temperature monitor system displays each brake temperature on the EICAS status display.

Air/Ground Sensing System

In–flight and ground operation of various airplane systems are controlled by the air/ground sensing system and the nose air/ground sensing system.

The air/ground sensing system receives air/ground logic signals from tilt sensors located on each main landing gear. These signals are used to configure the airplane systems to the appropriate air or ground status.

A nose air/ground sensing system receives air/ground logic signals from nose gear strut compression sensors. These signals are for controlling stall warning and portions of the caution and warning system.

An EICAS advisory message AIR/GND SYS or NOSE A/G SYS indicates that some portion of the sensing system failed. Affected equipment and systems will not operate normally and therefore takeoff is not allowed.

Landing Gear Operation

The landing gear are normally controlled by the landing gear lever. On the ground, the lever is prevented from moving to the UP position by an automatic lever lock controlled by the main gear tilt sensors. When the gear is not tilted (aircraft on the ground) the lock is engaged. The lever lock can be manually overridden by pushing and holding the landing gear lever LOCK OVRD switch. In flight, the lever lock is automatically released through air/ground sensing of main gear tilt sensor.

767 Flight Crew Operations Manual

Landing Gear Retraction

After takeoff both main gear tilt, releasing the lever lock. When the landing gear lever is positioned to UP, the tilted landing gear begins to retract. The landing gear doors open and the gear retracts to up position. Automatic wheel braking occurs during gear retraction.

The GEAR and DOORS lights illuminate as the landing gear retracts into the wheel wells. After retraction, the nose gear is held up by uplocks and the main gear is held up by the door structure. The GEAR and DOORS lights extinguish. The landing gear lever is placed in the OFF position to depressurize the landing gear system. The GEAR light remains illuminated and the EICAS caution message GEAR DISAGREE displays if any gear is not up and locked up after the normal transit time. The affected gear's, gear down light, remains illuminated if the gear never unlocked from the down position. The DOORS light remains illuminated and the EICAS advisory message GEAR DOORS displays if any hydraulically actuated main gear door is not closed after normal transit time.

Landing Gear Extension

When the landing gear lever is moved to DN, the landing gear doors open, the gear are unlocked, and the GEAR and DOORS lights illuminate.

The gear are hydraulically powered to the down and locked position. The downlocks are powered to the locked position, all hydraulically actuated gear doors close, and the main gear trucks hydraulically tilt to the flight position. When all gear are down and locked, the gear down lights illuminate and the GEAR and DOORS lights extinguish.

The amber GEAR light remains illuminated and the EICAS caution messages GEAR DISAGREE, L or R SIDE BRACE, L or R DRAG BRACE displays if any gear is not locked down after the normal transit time. The extinguished green gear down light indicates the affected gear. The DOORS light remains illuminated and the EICAS advisory message GEAR DOORS displays if any hydraulically actuated door is not closed after the normal transit time.

Landing Gear Alternate Extension

The alternate landing gear extension system uses an electric motor to trip the locking mechanism for each gear. Selecting DN on the ALTN GEAR EXTEND switch releases all door and gear uplocks. The landing gear free–fall to the down and locked position.

When all gear are down and locked, the gear down lights illuminate and the GEAR light extinguishes. During alternate extension, the DOORS light remains illuminated and the EICAS advisory message GEAR DOORS displays because all the hydraulically powered gear doors remain open.

Nose Wheel Steering

Nose wheel steering is powered by the center hydraulic system. In the event of a center hydraulic system leak, a reserve brakes and steering system can power the nose wheel steering.

Primary steering control is provided by the nose wheel steering tiller.Limited steering control is available through the rudder pedals. The tiller can turn the nose wheel up to 65 degrees in either direction. A pointer on the tiller assembly shows tiller position relative to the neutral setting. The rudder pedals can be used to turn the nose wheels up to seven degrees in either direction. Tiller inputs override rudder pedal inputs.

Brake System

Each main gear wheel has a multiple disc brake. The nose wheels have no brakes. The brake system includes:

- · normal brake hydraulic system
- · alternate brake hydraulic system
- · brake accumulator
- · antiskid protection
- · autobrake system
- · parking brake

Normal Brake Hydraulic System

The normal brake hydraulic system is powered by the right hydraulic system. The brake pedals provide independent control of the left and right brakes.

Alternate Brake Hydraulic System

Alternate brake hydraulic system selection is automatic. If the right hydraulic system pressure is low, the center hydraulic system automatically supplies pressure to the alternate brake system. Pushing a brake pedal then sends hydraulic pressure through the alternate antiskid valves to the brakes.

The BRAKE SOURCE light illuminates and the EICAS advisory message BRAKE SOURCE displays if both normal and alternate brake system pressures are low.

Reserve Brakes and Steering

Pressing the RESERVE BKS & STRG switch provides hydraulic fluid to the center number one electric primary hydraulic pump. Pump pressure is then supplied exclusively to the alternate brake system and nose wheel steering system. The BRAKE SOURCE light and EICAS message extinguish when pressure is available.

767 Flight Crew Operations Manual

The VALVE light illuminates and the EICAS advisory message RSV BRAKE VAL displays if a reserve brake valve disagrees with the commanded position.

Brake Accumulator

If normal and alternate brake hydraulic power is lost, the brake accumulator can provide several braking applications or parking brake application.

Antiskid Protection

Antiskid protection is provided in the normal and alternate brake hydraulic systems.

The normal brake hydraulic system provides each main gear wheel with individual antiskid protection. When a wheel speed sensor detects a skid, the associated antiskid valve reduces brake pressure until skidding stops.

The alternate brake hydraulic system provides antiskid protection to laterally paired wheels.

Touchdown, hydroplaning, and locked wheel protection are provided.

The ANTISKID light illuminates and the EICAS advisory message ANTISKID displays to indicate a fault is detected in the antiskid system.

The ANTISKID light illuminates and the EICAS advisory message ANTISKID OFF displays to indicate the antiskid system is inoperative.

Autobrake System

The autobrake system provides automatic braking at pre–selected deceleration rates for landing.

The system operates only when the normal brake system is functioning. Antiskid system protection is provided during autobrake operation.

The AUTO BRAKES light illuminates and the EICAS advisory message AUTOBRAKES displays if the autobrake system is disarmed or inoperative.

Rejected Takeoff

Selecting RTO prior to takeoff arms the autobrake system. The RTO mode can be selected only on the ground. The RTO autobrake setting commands maximum braking pressure if:

- the airplane is on the ground
- groundspeed is above 85 knots, and
- both thrust levers are retarded to idle

Maximum braking is obtained in this mode. If an RTO is initiated below 85 knots, the RTO autobrake function does not operate.

767 Flight Crew Operations Manual

Landing

Five levels of deceleration can be selected for landing. However, on dry runways, the maximum autobrake deceleration rate in the landing mode is less than that produced by full pedal braking.

After landing, autobrake application begins when:

- · both thrust levers are retarded to idle, and
- the wheels have spun up

Autobrake application occurs slightly after main gear touchdown. Deceleration is limited until main landing gear truck until occurs, then deceleration increases to the selected level. The deceleration level can be changed (without disarming the system) by rotating the selector.

To maintain the selected airplane deceleration rate, autobrake pressure is reduced as other controls, such as thrust reversers and spoilers, contribute to total deceleration. The system provides braking to a complete stop or until it is disarmed.

Autobrake – Disarm

The system disarms immediately, the AUTO BRAKES light illuminates, and the EICAS advisory message AUTOBRAKES displays if any of the following occur:

- · pedal braking applied
- · either thrust lever advanced after landing
- speedbrake lever is moved from the full up position after the speedbrakes have deployed on the ground
- DISARM or OFF position selected on the autobrakes selector
- · autobrake fault
- · normal antiskid system fault

When the autobrakes system disarms after landing:

- the autobrakes selector automatically moves to the DISARM position
- power is removed from the autobrake system
- the AUTO BRAKES light illuminates

When the autobrake system disarms during takeoff, the autobrakes selector remains in the RTO position. After takeoff, the autobrakes selector automatically moves to OFF

Parking Brake

The parking brake can be set with the normal or alternate brake hydraulic system pressurized. If the normal and alternate brake systems are not pressurized, parking brake pressure is maintained by the brake accumulator. The brake accumulator is pressurized by the right hydraulic system. Accumulator pressure is shown on the BRAKE PRESS indicator.

767 Flight Crew Operations Manual

The parking brake is set by fully depressing both brake pedals, pulling the parking brake handle up, then releasing the pedals. This mechanically latches the pedals in the depressed position and commands the parking brake valve to close.

The parking brake is released by depressing the pedals until the parking brake handle releases.

The PARK BRAKE light illuminates and the EICAS advisory message PARKING BRAKE displays when the parking brake is set.

Brake Temperature Indication

Wheel brake temperatures are displayed on the EICAS status page. Numerical values related to wheel brake temperature are displayed for each main gear brake. Brake temperature values range from 0 to 9. Temperature values are not instantaneous and tend to build for 10 to 15 minutes after the brakes are applied. Initial range values of 0 to 2 are cyan numbers in a cyan box. For normal range values of 3 and 4, the number is cyan and the box is white for the first brake per truck that exceeds a value of 2. Values in the high range of 5 to 9 have a white number and box. The BRAKE TEMP light illuminates for values of 5 and above.

Tailskid

The airplane is equipped with a tailskid system. The tailskid extends for takeoff and landing and retracts during flight. It helps to protect the pressurized part of the airplane from contact with the runway. The tailskid uses the main landing gear actuation system.

The TAILSKID light illuminates and the EICAS advisory message TAILSKID is displayed when the tailskid position disagrees with the landing gear lever position.

767 Flight Crew Operations Manual

Landing Gear EICAS Messages

Chapter 14 Section 30

Landing Gear EICAS Messages

The following EICAS messages can be displayed.

Note: Refer to Chapter 15, Warning Systems, for configuration warning

messages.

Brakes

Message	Level	Light	Aural	Condition
ANTISKID	Advisory	ANTISKID		A fault is detected in the antiskid system.
ANTISKID OFF	Advisory	ANTISKID		Antiskid system is inoperative.
AUTOBRAKES	Advisory	AUTO BRAKES		Auto brakes are disarmed or inoperative.
BRAKE SOURCE	Advisory	BRAKE SOURCE		Normal and alternate brake system pressures are low.
PARKING BRAKE	Advisory	PARK BRAKE		The parking brake is set.
RSV BRAKE VAL	Advisory	VALVE		Valve(s) position disagrees with the commanded position.

Landing Gear

Message	Level	Light	Aural	Condition
AIR/GND SYS	Advisory			Air/ground sensing system failed.
GEAR DISAGREE	Caution	GEAR	Beeper	Gear position disagrees with landing gear lever position.
GEAR DOORS	Advisory	DOORS		One or more gear doors are not closed.
L DRAG BRACE R DRAG BRACE	Caution	GEAR	Beeper	The main gear drag brace is not locked down.
L SIDE BRACE R SIDE BRACE	Caution	GEAR	Beeper	The main gear side brace is not locked down.

767 Flight Crew Operations Manual

Message	Level	Light	Aural	Condition
NOSE A/G SYS	Advisory			Nose air/ground sensing system failed.

Tailskid

Message	Level	Light	Aural	Condition
TAILSKID	Advisory	TAILSKID		Tailskid position disagrees with landing gear lever position.

707 Fight Crew Operations Manual	
Warning Systems	Chapter 15
Table of Contents	Section 0
Controls and Indicators	15.10
Engine Indication and Crew Alerting System (EICAS)	15.10.1
Primary EICAS Display	15.10.1
Secondary EICAS Display	15.10.3
EICAS Message Display	15.10.4
EICAS Status Display	15.10.7
EICAS Control Panel	
Caution Cancel/Recall Switches	15.10.9
Warning System Switches and Lights	15.10.11
Master Warning/Caution Reset Switches and Lights	515.10.11
Miscellaneous Lights	15.10.11
Ground Proximity Warning System (GPWS)	15.10.13
GPWS Controls	15.10.13
GPWS Immediate-Alert Annunciations	15.10.14
Enhanced GPWS	15.10.15
GPWS with Look-Ahead Display and Alerting	15.10.15
Windshear Warning System	15.10.20
Windshear Immediate-Alert Annunciations	15.10.20
Predictive Windshear (PWS)	15.10.21
Traffic Alert and Collision Avoidance System (TCAS)	15.10.23
TCAS Controls	15.10.23
TCAS Displays	15.10.24
TCAS Vertical Guidance	15.10.27
Miscellaneous Switches	15.10.28
Configuration (CONFIG) Test Switches	15.10.28
Stall Warning Test Switches	15.10.29
EICAS Test Switch.	15.10.29
System Description	15.20
Introduction	
	

Engine Indication and Crew Alerting System (EICAS) 15.20.1
System Alert Messages
System Alert Level Definitions
Communication Alerts
Status Messages
Alert Message Displays
Master Warning/Caution Reset Switches and Lights
Flight Deck Panel Annunciator Lights
Aural Alerts
Alert Inhibits
Message Consolidation
Engine Start Message Inhibits
Takeoff Inhibits
Landing Inhibits
Engine Shutdown Inhibits
Alert Message Inhibits
Altitude Alerting Inhibits
Master Caution Lights and Beeper Inhibit
EICAS Event Record
EICAS Failure Indications
Warning System
Configuration Alerts
Airspeed Alerts
Altitude Alerts
Ground Proximity Warning System (GPWS)
Introduction
GPWS Alert Prioritization
GPWS Immediate-Alerts
GPWS Voice Callouts
GPWS Look-Ahead Alerts and Display
Windshear Warning System
Windshear Immediate-Alerts
Predictive Windshear (PWS)

Warning Systems -Table of Contents

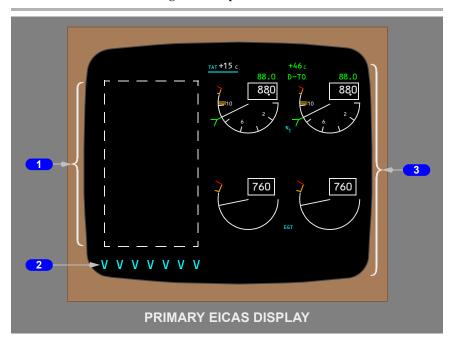
Traffic Alert and Collision Avoidance System (TCAS) 15.20.27
Normal Operations
Resolution Advisories (RA) and Displays
Traffic Advisories (TA) and Displays
Automatic TA and RA Display
Proximate Traffic and Other Traffic Displays 15.20.29
TCAS Voice Annunciations
Inhibits
Non–Normal Operations
EICAS Messages
Warning Systems EICAS Messages
GPWS
TCAS
Configuration
Miscellaneous

767 Flight Crew Operations Manual

Intentionally Blank

767 Flight Crew Operations Manual

Warning Systems
Controls and Indicators


Chapter 15 Section 10

Engine Indication and Crew Alerting System (EICAS)

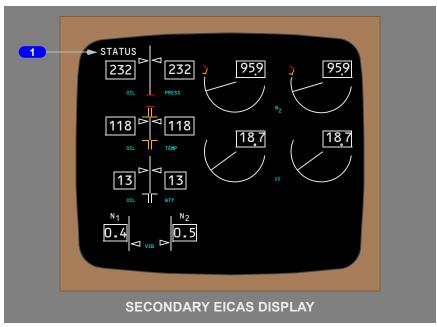
Primary EICAS Display

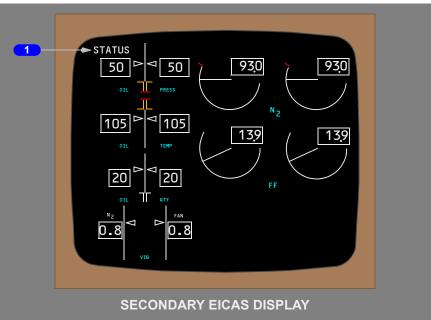
767 Flight Crew Operations Manual

1 EICAS Message Field

Eleven lines are available for system and communications alerts.

Additional pages are available.


2 Engine Secondary Data Cue

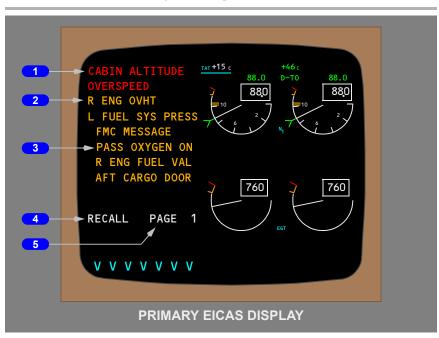

Displays (cyan) – secondary engine data should be displayed on lower CRT

3 Primary Engine Indications

Displays full time on the EICAS display.

Secondary EICAS Display

767 Flight Crew Operations Manual


1 Status Cue

Displays when a new status message exists

Removed when the status page is displayed.

EICAS Message Display

767 Flight Crew Operations Manual

1 Warning Messages

Displays (red) – the highest priority alert messages

Caution Messages

Displays (amber) – the next highest priority alert messages after warning messages

3 Advisory Messages

Displays (amber) –

- the lowest priority alert messages
- · indented one space

4 Recall Indication

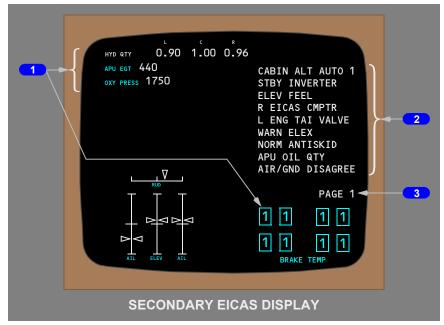
Displays when the RECALL switch is pushed

Remains displayed for one second after the switch is released

5 Page Number

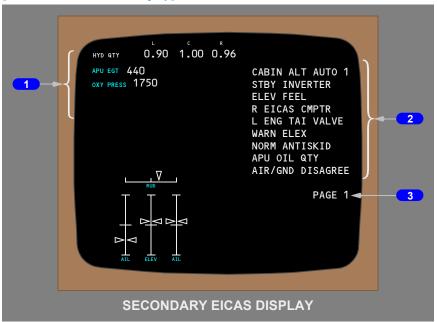
Displays (white) -

- more than one page of alert or communication messages exists
- indicates the number of the page selected


6 Communication Messages

Displays (white) -

- indicates incoming communication messages
- · preceded by a white dot
- · COMM LOW messages are indented one space


EICAS Status Display

[Option -- EICAS Status Display with Brake Temperature]

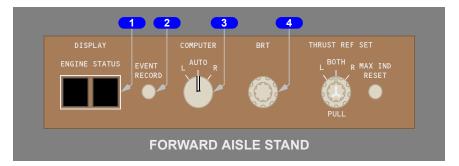
767 Flight Crew Operations Manual

[Basic -- EICAS Status Display]

1 System Indications

System indications are displayed.

2 Status Messages


Status messages indicate conditions requiring minimum equipment list (MEL) reference for dispatch.

3 Page Number

A page number appears if additional pages of status messages exist.

EICAS Control Panel

1 STATUS Display Switch

Push – displays the status display on the lower EICAS CRT.

Subsequent pushes -

- displays the next page of status messages when additional pages exist
- the status display blanks after the last page of status messages is displayed.

2 EVENT RECORD Switch

Push – records the last EICAS event into memory.

3 COMPUTER Selector

L – left EICAS computer controls displays.

AUTO – EICAS display control automatically transfers to the right EICAS computer if the left computer fails.

R – right EICAS computer controls displays.

4 Brightness (BRT) Control

Rotate -

- Outer control adjusts brightness of lower display
- Inner control adjusts brightness of upper display

Caution Cancel/Recall Switches

Warning Systems -Controls and Indicators

DO NOT USE FOR FLIGHT

767 Flight Crew Operations Manual

1 CANCEL Switch

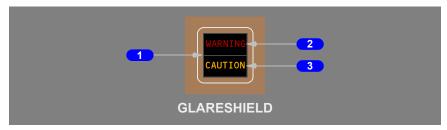
Push -

- displays the next page of EICAS messages when additional pages exist
- cancels caution and advisory messages when the last page is displayed

Note: Warning messages remain

Note: Communication messages remain

2 RECALL Switch


Push -

- displays the previously cancelled EICAS messages, if the associated condition(s) still exist
- displays the first page of messages when multiple pages exist.

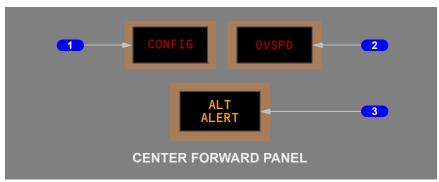
Warning System Switches and Lights

Master Warning/Caution Reset Switches and Lights

1 Master WARNING/CAUTION Reset Switch

Push -

- extinguishes the master WARNING lights
- extinguishes the Master CAUTION lights
- silences most associated aural alerts (for exceptions, see Section 20, Master Warning/Caution Reset Switches and Lights)


2 Master WARNING Light

Illuminated (red) – a time critical warning or warning condition exists

3 Master CAUTION Light

Illuminated (amber) – a caution condition exists

Miscellaneous Lights

1 Configuration (CONFIG) Light

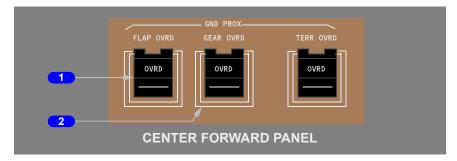
Illuminated (red) – a configuration warning exists

767 Flight Crew Operations Manual

2 Overspeed (OVSPD) Light

Illuminated (red) – airplane is exceeding Mmo or Vmo

3 Altitude Alert (ALT ALERT) Light


Illuminated (amber) -

• between 300 and 900 foot deviation from selected altitude

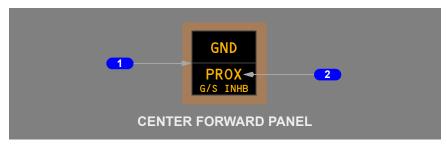
Ground Proximity Warning System (GPWS)

GPWS Controls

1 Ground Proximity Flap Override (GND PROX FLAP OVRD) Switch

Push (OVRD visible) -

- inhibits the ground proximity TOO LOW FLAPS caution
- inhibits the ground proximity TOO LOW TERRAIN caution


Note: The EICAS advisory message GND PROX SYS is displayed when FLAP OVRD is selected for more than 60 seconds while airspeed is greater than 250 knots.

2 Ground Proximity Configuration Gear Override (GND PROX/CONFIG GEAR OVRD) Switch

Push (OVRD visible) -

- inhibits the ground proximity TOO LOW GEAR caution
- inhibits the ground proximity TOO LOW TERRAIN caution
- · inhibits the landing configuration warning siren

Note: The EICAS advisory message GND PROX SYS is displayed when GEAR OVRD is selected for more than 60 seconds while airspeed is greater than 290 knots.

767 Flight Crew Operations Manual

1 Ground Proximity Glide Slope Inhibit (GND PROX G/S INHB) Switch

Push (momentary) -

inhibits the ground proximity GLIDE SLOPE caution when below 1,000 feet radio altitude

2 Ground Proximity (GND PROX) Light

Illuminated (amber) -.

- a ground proximity caution exists
 - an enhanced GPWS look-ahead caution exists

GPWS Immediate-Alert Annunciations

1 PULL UP Light

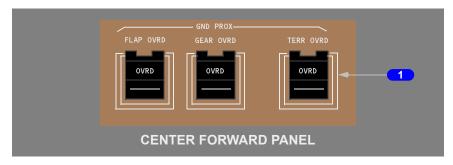
PULL UP (red) -

- the airplane descent rate is severe
- the airplane closure rate is excessive with the landing gear and/or flaps not in the landing configuration
- an enhanced GPWS look-ahead warning exists

Enhanced GPWS

GPWS with Look-Ahead Display and Alerting

Look-Ahead Display Switches

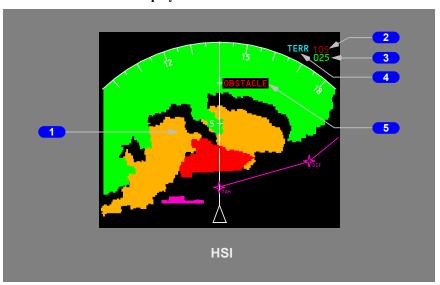


1 Terrain (TERR) Display Select Switch

Push -

- displays GPWS look-ahead data in VOR, APP, MAP, and CTR MAP modes
- arms GPWS look-ahead data in CTR VOR, CTR APP, and PLAN modes
- deselects the weather radar display regardless of the HSI mode selector position
- second push deselects GPWS look-ahead display

Look-Ahead Inhibit Switches


767 Flight Crew Operations Manual

1 Terrain System Override Switch

Push – (OVRD visible)

- inhibits GPWS look-ahead alerts and displays
- · second push deselects inhibit

Obstacles and Terrain Display

1 Obstacle and Terrain Display

When the airplane is higher than 2,000 feet above the terrain, display color density depends on obstacle or terrain height:

- solid green highest obstacles or terrain displayed
- high density green intermediate height obstacles or terrain displayed
- low density green lowest obstacles or terrain displayed

When the airplane is at or lower than 2,000 feet above the terrain, color and density depends on obstacle height, terrain height, and airplane altitude:

- dotted green obstacles or terrain from 2,000 feet below to 500 feet (250 feet with gear down) below airplane altitude
- dotted amber obstacles or terrain 500 feet (250 feet with gear down) below to 2,000 feet above airplane altitude
- dotted red obstacles or terrain more than 2,000 feet above airplane altitude
- dotted magenta no terrain data available

Warning Systems -

15,10,17

Controls and Indicators

767 Flight Crew Operations Manual

- solid amber look-ahead obstacle or terrain caution is occurring
- solid red look-ahead obstacle or terrain warning is occurring

Note: In areas without obstacle or terrain data, look-ahead obstacle or terrain alerting and display functions are not available. GPWS immediate-alert modes function normally.

Obstacles or terrain are displayed automatically when:

- a look-ahead obstacle or terrain alert occurs: and
- Terrain (TERR) Display Select Switch is not selected by either pilot; and
- HSI Mode Selector in the VOR, APP, MAP, or CTR MAP mode

The look-ahead display updates with a sweep similar to the weather radar display.

2 Highest Elevation of Obstacle or Terrain Displayed

Highest elevation within selected map range expressed in hundreds of feet above sea level. Color (amber, green, or red) same as color of corresponding obstacle or terrain displayed.

3 Lowest Elevation of Obstacle or Terrain Displayed

Lowest elevation within selected map range expressed in hundreds of feet above sea level. Color (amber, green, or red) same as color of corresponding obstacle or terrain displayed. Blank above leval terrain or if all terrain is within 400 feet of nearest airport elevation.

4 Terrain Mode Annunciation

TERR (cyan) – GPWS look-ahead display enabled

5 TERRAIN/OBSTACLE Annunciations

TERRAIN (red):

- terrain warning is occurring
- 20-30 seconds from projected impact with terrain

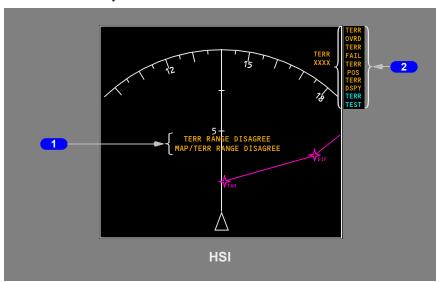
OBSTACLE (red):

- obstacle warning is occurring
- 20-30 seconds from projected impact with an obstacle

TERRAIN (amber):

- · terrain caution is occurring
- 40-60 seconds from projected impact with terrain

OBSTACLE (amber):


- obstacle caution is occurring
- 40-60 seconds from projected impact with an obstacle

767 Flight Crew Operations Manual

Displays in all HSI navigation modes.

Note: If an obstacle alert occurs while a TERRAIN alert message is displayed, the OBSTACLE alert message replaces the TERRAIN alert message. Both messages can not be displayed at the same time.

Look-Ahead HSI Systems Annunciations

1 Terrain Range Disagree Annunciation

TERR RANGE DISAGREE (amber) -

- GPWS look-ahead display enabled
- GPWS look-ahead display output range disagrees with the HSI Range Selector

MAP/TERR RANGE DISAGREE (amber) -

- GPWS look-ahead display enabled
- GPWS look-ahead display output range disagrees with the HSI Range Selector
- · map display output range disagrees with the HSI Range Selector

2 GPWS Status/Mode Annunciation

TERR OVRD (amber) – GND PROX TERR OVRD switch pushed

TERR FAIL (amber) – GPWS look-ahead alerting and display have failed

TERR POS (amber) – GPWS look-ahead alerting and display unavailable due to FMS position uncertainty

Warning Systems -Controls and Indicators

767 Flight Crew Operations Manual

TERR DSPY (amber) - HSI overheat or loss of distribution unit cooling.

TERR TEST (cyan) - GPWS operating in self-test mode

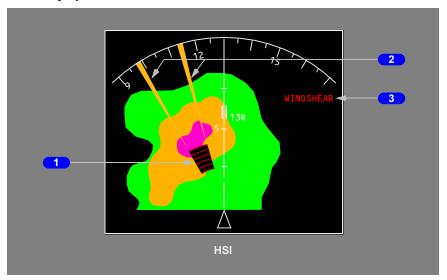
767 Flight Crew Operations Manual

Windshear Warning System

Windshear Immediate-Alert Annunciations

WINDSHEAR Light

WINDSHEAR (red) - encountering a windshear condition


1 WINDSHEAR Annunciation

WINDSHEAR (red) – encountering a windshear condition

Predictive Windshear (PWS)

PWS Displays

1 Predictive Windshear Symbol

Displayed (red and black) – PWS alert active

Shows predicted windshear location and approximate geometric size (width and depth).

Symbol, radials and weather radar returns display automatically on an HSI when:

- the aircraft is below 1200' AGL
- · a PWS alert occurs
- weather (WXR) display select switch is not selected by either pilot; and
- respective HSI Mode Selector in the VOR, APP, MAP, or CTR MAP mode

Note: If a PWS alert occurs when terrain (TERR) is selected on both pilot HSI displays and there is not an active terrain alert occurring, weather radar display replaces terrain display. The weather radar display, including PWS symbology, can be deselected by pushing the TERR switch for the respective HSI.

2 Predictive Windshear Symbol Radials

Displayed (amber) – PWS alert active

Extend from predictive windshear symbol to help identify location of the PWS event.

767 Flight Crew Operations Manual

3 WINDSHEAR

WINDSHEAR (red) – PWS warning is active

WINDSHEAR (amber) - PWS caution is active

Note: The size of the PWS symbol is proportional to the geographic size of the PWS event it represents and bears no relationship to its intensity.

Traffic Alert and Collision Avoidance System (TCAS)

TCAS Controls

Transponder Panel

1 TCAS Mode Selector

STBY – places transponders and TCAS system in standby

· displays TCAS OFF on HSI

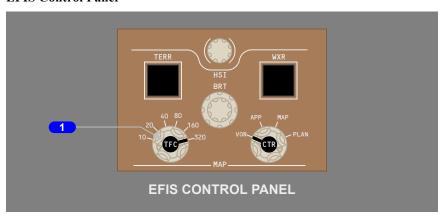
ALT RPTG OFF – deactivates altitude reporting, TCAS system in standby

displays TCAS OFF on HSI

XPDR – activates transponder only mode, TCAS system in standby

· displays TCAS OFF on HSI

TA ONLY – enables TCAS in Traffic Advisory mode


- display of Traffic Advisory (TA) symbols
- · voice alerts
- displays TA ONLY on HSI

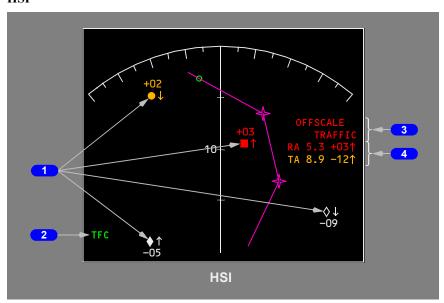
TA/RA – enables TCAS in Traffic Advisory and Resolution Advisory mode

- display of Traffic Advisory (TA) and Resolution Advisory (RA) symbols
- · voice alerts
- · vertical guidance for RAs
- displays TFC on HSI

767 Flight Crew Operations Manual

EFIS Control Panel

1 Traffic (TFC) Switch


Note: TCAS must be enabled on the Transponder Panel.

Push -

· displays or removes TCAS traffic information on HSI

TCAS Displays

HSI

Note: See HSI TCAS symbology tables for description.

767 Flight Crew Operations Manual

1 Traffic Aircraft Symbology

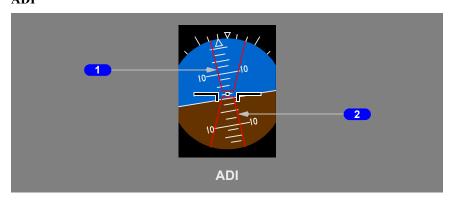
Indicates the relative position of traffic aircraft.

- 2 Mode Annunciations
- **3** Traffic Messages
- 4 No-Bearing Symbology

HSI TCAS Symbology

Symbol	Name (Color)	Applicable Mode(s)	Remarks
□ ↑ -03	TCAS resolution advisory (RA), relative altitude (R)	MAP CTR MAP APP VOR	These symbols are displayed only when the EFIS control panel traffic (TFC) switch is selected
+02 • ↓	TCAS traffic advisory (TA), relative altitude (A)		on. The arrow indicates traffic climbing or descending at a rate greater than or equal to 500 fpm. At rates less than
♦ ↓ -05	TCAS proximate traffic, relative		500 fpm, the arrow is not displayed. The number and associated
+09 ♦ ↑	altitude (W) TCAS other traffic, relative altitude (W)		signs indicate altitude of traffic in hundreds of feet relative to the airplane. The number is below the traffic symbol when the traffic is below, and above the traffic symbol when the traffic is above the airplane. Absence of the number implies altitude unknown.

767 Flight Crew Operations Manual


Symbol	Name (Color)	Applicable Mode(s)	Remarks
RA 5.3 +03 ↑ TA 8.9 -12 ↑	TCAS no bearing message (RA–R, TA–A)	MAP CTR MAP APP VOR	A TA (amber) or RA (red) is occurring and bearing information is not available • maximum of two messages • data tag provides distance (nm), relative altitude (hundreds of feet), and vertical motion (in excess of 500 feet per minute) Only displayed when the EFIS control panel traffic (TFC) switch is selected on.
TRAFFIC	TCAS traffic alert message (RA-R, TA-A)	All	Displayed whenever a TCAS RA or TA is active. EFIS control panel TFC switch does not have to be selected on.
OFFSCALE	TCAS off scale message (RA-R, TA-A)	MAP CTR MAP APP VOR	Displayed whenever RA or TA traffic is outside the traffic area covered by the HSI range. Displayed only if the EFIS control panel TFC switch is selected on.
TFC	TCAS mode (G)	MAP CTR MAP APP VOR	Indicates the HSI TCAS display is active and the EFIS control panel TFC switch is selected on. Not displayed when TCAS TEST, TCAS FAIL, or TCAS OFF is annunciated.

767 Flight Crew Operations Manual

Symbol	Name (Color)	Applicable Mode(s)	Remarks
TA ONLY	TCAS mode (G)	All	TCAS control panel Mode Selector in:
			• TA ONLY
			Indicates TCAS computer is not computing RAs.
			Displayed whether the EFIS control panel TFC switch is selected on or off.
TCAS TEST	TCAS mode (W)	All	Indicates TCAS is operating in the test mode.
			Displayed whether EFIS control panel TFC switch is selected on or off.
TCAS OFF	TCAS off message (W)	MAP CTR MAP APP	Displayed when the TCAS/ATC mode switch is not in TA ONLY or TA/RA.
		VOR	Not displayed if TCAS is failed.
TCAS FAIL	TCAS fail message (A)	MAP CTR MAP APP VOR	Indicates TCAS failure.

TCAS Vertical Guidance

ADI

767 Flight Crew Operations Manual

1 Vertical Guidance (Down Advisory)

Displayed (red) -

- a RA is occurring
- indicates pitch attitude region to be avoided for traffic-avoidance maneuver

2 Vertical Guidance (Up Advisory)

Displayed (red) -

- a RA is occurring
- indicates pitch attitude region to be avoided for traffic-avoidance maneuver

Note: Both of the TCAS RA pitch commands (above and below) may be displayed at the same time and are shown for clarity.

Note: The area inside the red lines indicates the pitch region to avoid in order to resolve the traffic conflict. The center of the airplane symbol must be outside the red RA pitch command area to ensure traffic avoidance.

Miscellaneous Switches

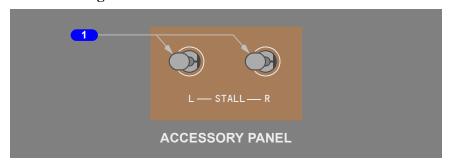
Configuration (CONFIG) Test Switches

1 Takeoff (T/O) Test Switch

Spring-loaded to center

T/O – activates configuration warning if improper takeoff configuration exists

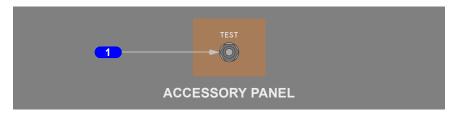
2 Landing (LDG) Test Switch


Spring-loaded to center

767 Flight Crew Operations Manual

LDG – activates a landing configuration warning

Stall Warning Test Switches



1 Stall (STALL L/R) Warning Test Switch

Spring-loaded to center

Activates stall warning system

EICAS Test Switch

1 TEST Switch

Push – activates EICAS test

767 Flight Crew Operations Manual

Intentionally Blank

767 Flight Crew Operations Manual

Warning Systems System Description

Chapter 15
Section 20

Introduction

The warning system consists of the following separate systems:

- engine indication and crew alerting system (EICAS)
- · warning system
- ground proximity warning system (GPWS)
- traffic alert and collision avoidance system (TCAS)

These systems provide all airplane crew alerting.

Alert is defined as a visual, tactile and/or aural alert requiring crew awareness and possible crew action.

Engine Indication and Crew Alerting System (EICAS)

EICAS consolidates engine and subsystem indications and provides a centrally located crew alerting message display. EICAS also displays some system status and maintenance information. EICAS provides:

- · system alerts
- · maintenance information
- · status messages
- · communication alerts

System Alert Messages

System alert messages are associated with aircraft-system failures or faults. These may require performance of non–normal procedures, or affect the way the flight crew operates the airplane. There are four categories of system alert messages:

- · time-critical warning
- · warning
- · caution
- advisory

System alert messages not associated with aircraft-system failures or faults but which may affect the way the flight crew operates the airplane include the following:

- · configuration
- airspeed
- altitude
- windshear
- ground proximity warning system (GPWS)
- traffic alert and collision avoidance system (TCAS)

767 Flight Crew Operations Manual

- communication alert messages such as SELCAL, ACARS, ATC or PRINTER
- FMC messages (See Chapter 11, Flight Management, Navigation)

Non-normal airplane system conditions not affecting the normal airplane operations are annunciated using status or maintenance messages.

System Alert Level Definitions

Time Critical Warnings

Time critical warnings alert the crew of a non–normal operational condition requiring immediate crew awareness and corrective action to maintain safe flight. Time critical warnings are usually associated with primary flight path control. Master WARNING lights, voice alerts, and ADI indications or stick shakers announce time critical warning conditions.

Warnings

Warnings alert the crew to a non–normal operational or system condition requiring immediate crew awareness and corrective action.

Cautions

Cautions alert the crew to a non–normal operational or system condition requiring immediate crew awareness. Corrective action may be required.

Advisories

Advisories alert the crew to a non–normal operational or system condition requiring routine crew awareness. Corrective action may be required.

Communication Alerts

Communication alerts are triggered by the communication management system. These alerts direct the crew to the appropriate message display:

There are three levels of communication alert:

- low identifies an incoming communication requiring timely awareness and response
- medium identify an incoming communication requiring immediate awareness and a prompt response. It is accompanied by an aural chime
- high reserved for future use.

A detailed description of the communication management system is described in Chapter 5, Communications.

Status Messages

Status messages identify system faults affecting airplane dispatch and are not considered crew alerts. The messages are displayed on the EICAS STATUS page.

767 Flight Crew Operations Manual

Alert Message Displays

Alert messages are displayed in both prioritized and chronological order. The priority in descending order is:

- warning (red)
- caution (amber)
- advisory (amber, indented)
- medium level communication (white, preceded by a dot)
- low level communication (white, indented, preceded by a dot)

Warnings, cautions, and advisories are displayed from the top down in the EICAS display message area.

The most recent message is displayed at the top of its respective level.

If the number of messages exceeds eleven, the area below the alert field displays a page cue, indicating more than one page of messages is available for display. Paging is accomplished by pushing the CANCEL/RECALL switch on the display select panel.

Warning alerts can only be cleared by correcting the condition causing the warning. All caution and advisory alerts can be cleared. When the last page is displayed, pushing the CANCEL/RECALL switch clears all displayed caution and advisory alerts. Cleared caution and advisory alerts whose conditions still exist can be recalled by pushing the CANCEL/RECALL switch again. This also recalls the first page for review.

Communication alert messages are displayed at the bottom of the message area. Except for the Communication Alert Line, an overflow of system alert messages displaces communication alerts.

The Communication Alert Line, the bottom line of the EICAS message field (line 11), is reserved for a communication alert (medium or low) if one is active. The Communication Alert Line can not be displaced by a system alert even if more than 10 lines are active.

Communication alerts are removed when a pilot selects the appropriate switch on the Pilot's call panel.

Master Warning/Caution Reset Switches and Lights

Two Master WARNING/CAUTION reset switches each contain a Master WARNING light and Master CAUTION light.

767 Flight Crew Operations Manual

The red Master WARNING lights illuminate when any warning alert or time critical warning occurs (except a stall warning). The lights remain illuminated as long as the warning alert exists or until either Master WARNING/CAUTION reset switch is pushed. Pushing either switch:

- · extinguishes both Master WARNING lights
- resets the lights for future warning alerts.

Pushing either Master WARNING/CAUTION reset switch also silences the warning siren and fire bell except for the following warnings:

- landing configuration (for example, when the flaps are in a landing position and landing gear are not down)
- autopilot disconnect
- · takeoff configuration

[Basic -- Overspeed warning siren not resetable]

· overspeed warning

[Option -- Overspeed warning siren resetable]

Pushing either Master WARNING/CAUTION reset switch also silences the overspeed warning siren.

The amber Master CAUTION lights illuminate when any caution alert occurs. The lights remain on as long as the caution alert exists or until either Master WARNING/CAUTION reset switch is pushed. Pushing either switch:

- · extinguishes both Master CAUTION lights
- resets the lights for future caution alerts.

Flight Deck Panel Annunciator Lights

Flight deck panel annunciator lights are used in conjunction with EICAS messages to:

- · help locate and identify affected systems and controls
- reduce the potential for error.

The annunciator lights provide system feedback in response to flight crew action. The lights also assist in fault detection and system preflight configuration when the engines are shut down and to supplement EICAS information.

Aural Alerts

Aural alerts are provided to ensure crew attention, recognition, and response. Aural alerts include synthetic voices and tones. Aural voice alerts are the most direct and rapid method of communicating a specific alert condition to the crew. Aural tones are used to alert the crew and to discriminate between the different alert types and levels.

767 Flight Crew Operations Manual

Aural alerts annunciate warnings and cautions. There are no aural annunciations associated with advisories.

Aural alerts also annunciate medium level communication alerts. There are no aural alerts associated with low level communication alerts.

The aural alerts are:

- Beeper used for all system alert caution level messages. The beeper consists of a tone that sounds four times in a second. The beeper automatically silences after one series of four beeps
- Bell used for fire warnings. The bell sounds repeatedly until crew action is initiated
- Voice synthetic voices annunciate time critical warning alert conditions.
 Synthetic voices also annunciate certain normal but time critical operational information, such as approach phase altitude callouts.

[Basic -- Autopilot disconnect siren]

- Siren used to annunciate cabin altitude, configuration, autopilot disconnect, and overspeed warning alerts. The siren consists of alternating high and low tones
- Siren used to annunciate cabin altitude, configuration and overspeed warning alerts. The siren consists of alternating high and low tones

[Option -- Autopilot disconnect wailer]

- Wailer used to annunciate autopilot disconnect warning.
- Chime a high–low tone chime used for medium level communication alerts. The chime sounds once for each communication alert.

All continuous aural alerts are silenced automatically when the respective alert condition no longer exists.

Alert Inhibits

Alerts are inhibited during part of the takeoff in order not to distract the crew. Alerts are also inhibited when they are operationally unnecessary or inappropriate.

Alert messages, except for warnings and messages directly relevant to flight operations, are inhibited during engine start to eliminate nuisance messages.

Alert messages are inhibited individually at other times, such as during the preflight and postflight phases or engine shutdown, when they are operationally unnecessary.

767 Flight Crew Operations Manual

Message Consolidation

On the ground with both engines shut down, certain caution and advisory alert messages are inhibited by collecting them into more general alert messages. These include individual fuel, hydraulic, door, and electrical messages. For example, two or more individual entry, cargo, and access door EICAS messages are replaced by the EICAS advisory message DOORS.

Engine Start Message Inhibits

During ground engine start, most new caution and advisory alerts are inhibited from engine start switch engagement until one of the following occurs:

- the engine reaches idle RPM
- the start is aborted, or
- 2 minutes elapse from engine start switch engagement.

The following messages are not inhibited:

- ENG FUEL VAL
- ENG SHUTDOWN
- ENG STARTER
- STARTER CUTOUT.

Takeoff Inhibits

Warning Inhibits

The Master WARNING lights and fire bell are inhibited for fire during part of the takeoff. The inhibit begins at nose gear extension during rotation and continues until the first to occur:

- 400 feet AGL, or
- 20 seconds elapsed time

If a fire occurs during the inhibit, an EICAS warning message appears, but the fire bell and Master WARNING lights do not activate. If the warning condition still exists when the inhibit is removed, the fire bell and Master WARNING lights activate immediately.

Note: Takeoff configuration warnings are terminated at rotation.

Caution Inhibits

The Master CAUTION lights and aural annunciations are inhibited for all cautions during part of the takeoff. The inhibit begins at 80 knots and continues until the first to occur:

- 400 feet AGL, or
- 20 seconds elapsed time following nose gear extension

Warning Systems -System Description

DO NOT USE FOR FLIGHT

767 Flight Crew Operations Manual

If a caution occurs during the inhibit and exists on the ground when the airspeed decreases below 75 knots, both Master CAUTION lights and aural activate.

Note: EICAS caution messages are not inhibited during takeoff.

Advisory Inhibits

The following EICAS advisory messages are inhibited on takeoff:

 WINDSHEAR SYS to indicate windshear alerting functions are inoperative.

The inhibit begins from the time either engine is advanced to takeoff thrust until the first to occur.

- 400 feet AGL, or
- 20 seconds elapsed time following nose gear extension

All other EICAS advisory messages are not inhibited on takeoff:

Communication Inhibits

The following are inhibited during takeoff:

 EICAS communication alert messages such as SELCAL, ACARS, ATC or PRINTER and associated aural chimes. The CABIN ALERT message is not inhibited. The chime associated with the CABIN ALERT message is inhibited.

The inhibit begins from the time either engine is advanced to takeoff thrust until the first to occur.

- 400 feet AGL, or
- 20 seconds elapsed time following nose gear extension

Inhibits are cleared on the ground with both engines below takeoff thrust. If a message alert occurs during the inhibit and exists when the inhibit ends, the EICAS alert message and aural chime activate.

Landing Inhibits

Communication Inhibits

The following are inhibited during landing:

 EICAS communication alert messages such as SELCAL, ACARS, ATC or PRINTER and associated aural chimes. The CABIN ALERT message is not inhibited. The chime associated with the CABIN ALERT message is inhibited.

The inhibit begins on descent at 800 feet AGL and terminates at:

- less than 75 knots groundspeed
- 900 feet AGL on missed approach

If a communication alert message occurs during the inhibit and exists when inhibit ends, the EICAS alert message and associated aural chime activate.

767 Flight Crew Operations Manual

Engine Shutdown Inhibits

Engine—driven pumps, generators, and other components whose alert messages would result from an engine shutdown are inhibited by the ENG SHUTDOWN message. When an engine is shutdown (FUEL CONTROL switch in cut off or fire handle pulled), the EICAS alert message L ENG SHUTDOWN or R ENG SHUTDOWN is displayed and the following L or R alerts are inhibited:

- ENG ANTI-ICE
- ENG BLEED OFF
- GEN DRIVE
- · GEN OFF
- ENG OIL PRESS
- HYD PRIM PUMP
- ENG CONTROL

When the airplane is on the ground and both FUEL CONTROL switches are in the CUT OFF position, the Master CAUTION lights and the caution alert beeper are inhibited. This prevents alerts associated with routine gate operations from triggering nuisance lights and aural alerts.

When the shutdown inhibit is removed, the Master CAUTION lights and alert beeper do not activate for alerts that existed prior to its removal. For example, if the right hydraulic system is depressurized with both engines shutdown, and the left engine is then started, the Master CAUTION lights and beeper do not activate. The Master CAUTION lights and beeper activate only when the alert first occurs, provided no other inhibit is in effect.

Alert Message Inhibits

Alert message inhibits are those inhibits where one message is inhibited by the presence of another alert message. For example, individual fuel or hydraulic pump pressure messages are inhibited by higher priority system pressure messages.

Certain alert messages are time delayed, even though discrete system lights may illuminate. Time delay inhibits prevent normal in–transit indications from appearing as EICAS system alert messages. For example, valves are generally only sensed open and/or closed, not in–transit. When a valve is in–transit, the alert message indicating the valve has failed to open or close is inhibited to allow the valve time to move to the commanded position. If the valve is not in the commanded position at the end of the inhibit period, an EICAS system alert message is displayed.

Altitude Alerting Inhibits

Altitude alerting is inhibited in flight with all landing gear down and locked.

767 Flight Crew Operations Manual

Master Caution Lights and Beeper Inhibit

The Master CAUTION lights and the associated alert beeper are inhibited for the L and R ENG SHUTDOWN caution level message.

EICAS Event Record

The flight crew can manually capture and record any suspect condition into EICAS memory using the EICAS EVENT RECORD switch.

Systems which provide recorded information when the switch is activated include:

- anti-ice, ice detection
- air systems
- APU
- electrical
- · electronic engine control
- fire protection

- flight controls/flaps and slats
- fuel quantity and fuel management
- hydraulic
- · landing gear and brakes
- performance.

Only the last manual event recorded will be retained for future retrieval. The event record function also has an automatic feature. When an EICAS event occurs, conditions are automatically written to EICAS memory.

EICAS Failure Indications

If a fault is detected in one of the cathode ray tubes (CRTs), the faulty display is blanked. Engine indications and crew alerting messages appear on the operable display. An EICAS DISPLAY advisory message displays when one CRT fails.

To ensure that all engine indications can be displayed with a CRT failure, an EICAS compacted display mode is available. The compacted display mode is described in the Engines, APU chapter.

If the EICAS control panel fails an EICAS CONT PNL advisory message displays and the EICAS full up engine mode automatically displays. The full engine mode is described in Chapter 7, Engines, APU. The cancel and recall switches will not operate when the EICAS control panel fails, however, brightness and computer select controls remain operative.

If both EICAS computers or CRTs fail, a standby engine indicator (SEI) is automatically activated. The SEI, system lights and indicators are used to monitor the engines and system operation when a total EICAS failure occurs.

Warning System

The warning system consists of flight deck speakers, Master WARNING/CAUTION lights, EICAS alert messages, and stick shaker motors.

767 Flight Crew Operations Manual

The warning system controls and activates alerts for:

- fire (See Chapter 8, Fire Protection)
- cabin altitude (See Chapter 2, Air Systems)
- autopilot disconnect (See Chapter 4, Automatic Flight)
- · configuration
- airspeed
- altitude
- ground proximity warning system (GPWS)
- · windshear
- traffic alert and collision avoidance system (TCAS)

Configuration Alerts

Takeoff

Takeoff configuration warnings are armed when the airplane is on the ground and thrust is in the takeoff range on either engine. Takeoff configuration warnings consist of:

- · Master WARNING lights illuminate
- CONFIG warning light illuminates
- · aural warning siren sounds
- applicable EICAS configuration warning alert message(s) are displayed.

Takeoff configuration warning messages include:

- FLAPS
- PARKING BRAKE
- SPOILERS
- STABILIZER

Takeoff configuration warnings are disarmed at rotation.

Existing takeoff configuration warning are:

- cancelled when the configuration error is corrected
- · terminated at rotation

When a takeoff configuration warning occurs, pushing either Master WARNING/CAUTION reset switch resets the Master WARNING lights but does not silence the siren or clear the EICAS alert message. Before reaching rotation, the siren can be silenced and the EICAS alert message cleared only by retarding both thrust levers or correcting the condition. If thrust is reduced, the EICAS takeoff configuration message remains displayed for 10 seconds so the crew can positively identify the configuration problem.

767 Flight Crew Operations Manual

Holding the configuration test switch in the takeoff (T/O) position simulates accelerating an engine to takeoff power. No warnings occur when testing an airplane properly configured for takeoff. If the airplane is not configured for takeoff a configuration warning results. Releasing the test switch cancels the test.

Landing

The landing configuration warning system alerts the crew that the landing gear is not extended for landing. The landing configuration warning activates if:

- · the airplane is in flight, and
- any landing gear is not down and locked, and
- either of the following conditions exists:
 - flaps in a landing position (25 or 30), or
 - any thrust lever is at idle with radio altitude below 800 feet.

The landing configuration warning consists of:

- · Master WARNING lights illuminate
- CONFIG warning light illuminates
- aural warning siren activates
- the GEAR NOT DOWN EICAS warning alert message is displayed.

With the flaps in a landing position, the siren and alert message cannot be deactivated with the Master WARNING/CAUTION reset switches. The siren and message continue until the condition is corrected or the gear override switch is pushed.

If the warning is due to an idle thrust setting at low altitude, pushing either Master WARNING/CAUTION reset switch silences the siren and extinguishes the Master WARNING lights. The EICAS message remains displayed until the configuration error is corrected.

Holding the configuration test switch in the landing (LDG) position results in a configuration warning regardless of landing gear position. All warning indications disappear when the switch is released.

Airspeed Alerts

Stall Warning

Warning of an impending stall is provided by left and right stick shakers, which independently vibrate the left and right control columns. If the flaps are in the retracted position and the angle of attack continues to increase, a control column nudger moves the control column forward. Both systems are energized in flight and deactivated on the ground through air/ground logic.

Holding the stall warning tests switches to either the L or R position checks the left and right stall warning systems, respectively. If the systems are tested at the same time, both columns vibrate and the control column nudger activates.

767 Flight Crew Operations Manual

Overspeed Warning

An overspeed warning occurs if Vmo/Mmo limits are exceeded. The overspeed warning consists of:

- · Master WARNING lights illuminate
- OVSPD light illuminates
- the EICAS warning alert message OVERSPEED is displayed
- aural warning siren sounds

All warning indications remain activated until airspeed is reduced below Vmo/Mmo.

The aural warning can be silenced by pushing either Master WARNING/CAUTION reset switch.

Altitude Alerts

Altitude alerting occurs when approaching or departing the MCP–selected altitude.

Approaching A Selected Altitude

At 900 feet prior to reaching the selected altitude, the ALT light on each pilot's altimeter illuminates. At 300 feet prior to reaching the selected altitude, the ALT lights extinguish.

Deviating From A Selected Altitude

When deviating 300 feet from the selected altitude:

- the Master CAUTION lights illuminate
- the caution aural sounds
- the EICAS caution message ALTITUDE ALERT is displayed
- the ALT ALERT light illuminates.

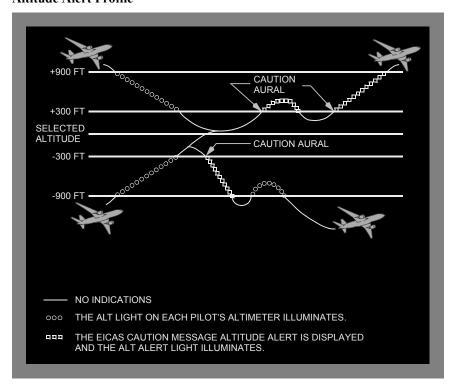
When deviating more than 900 feet from the selected altitude, or upon returning to within 300 feet of the selected altitude:

- the Master CAUTION lights extinguish
- the EICAS caution message ALTITUDE ALERT is no longer displayed
- The ALT ALERT light extinguishes.

Resetting To A Selected Altitude

Altitude alerting is reset when:

- the airplane returns to within 300 feet of the altitude selected or deviates more than 900 feet from the altitude selected
- the MCP-selected altitude is changed


Altitude Alert Inhibits

Altitude alerting is inhibited in flight with all landing gear down and locked.

767 Flight Crew Operations Manual

Altitude Alert Profile

767 Flight Crew Operations Manual

Ground Proximity Warning System (GPWS)

Introduction

The ground proximity warning system (GPWS) provides time-critical alerts for potentially hazardous flight conditions involving imminent impact with the ground. GPWS is enabled whenever power is applied to the airplane. Override or inhibit switches allow the flight crew to inhibit certain GPWS alerts.

GPWS provides voice callouts (Mode 6) to assist the flight crew with situational awareness and to advise the flight crew of the aircraft's approximate height above the ground.

In addition to aircraft configuration, GPWS requires inputs from the following for proper operation:

- air data system
- inertial reference system
- · instrument landing system
- · radio altimeters

Note: Loss of an input does not necessarily inhibit operation of the entire GPWS.

Standard GPWS alerts are radio altitude based and provided for the following:

- excessive and severe descent rate (Mode 1)
- excessive terrain closure rate (Mode 2)
- altitude loss after takeoff or go-around (Mode 3)
- unsafe terrain clearance when not in the landing configuration (Mode 4)
- excessive deviation below an ILS glide slope (Mode 5)
- windshear (Mode 7)

GPWS (Enhanced)

In addition to standard alerts, enhanced GPWS provides look-ahead terrain awareness, including alerting and display functions. These functions compare the airplane's geographic position and altitude against an internal terrain database to predict and display potential conflicts between the airplane flight path and terrain.

The enhanced GPWS internal database also provides prediction and display of potential conflicts between the airplane flight path and man-made obstacles.

In addition to standard GPWS inputs, enhanced GPWS requires inputs from the following for proper operation:

· global positioning system

Note: Loss of an input does not necessarily inhibit operation of the entire GPWS.

767 Flight Crew Operations Manual

GPWS Alert Prioritization

GPWS and Windshear Warning System alerts are prioritized based on the level of hazard and the required flight crew response. The following are listed in order of decreasing priority:

GPWS Alerts

Condition	Alert Level	Description
Windshear - Immediate	Warning	Mode 7 - Actual windshear conditions (downdraft)
		A windshear immediate-alert warning inhibits all other GPWS and windshear alerts.
Ground proximity - Immediate	Warning	Mode 1 - Severe decent rate
Ground proximity - Immediate	Warning	Mode 2 - Severe terrain closure rate
Terrain - Awareness	Warning	Look-Ahead - Terrain along flight path (Near)
Obstacle - Awareness	Warning	Look-Ahead - Obstacle along flight path (Near)
Windshear - Awareness	Warning	Predictive - Windshear condition along flight path
Ground proximity - Immediate	Caution	Mode 2 - Excessive terrain closure rate
Terrain - Awareness	Caution	Look-Ahead - Terrain along flight path
Obstacle - Awareness	Caution	Look-Ahead - Obstacle along flight path
Ground proximity - Immediate	Caution	Mode 4 - Unsafe terrain clearance
Altitude - Awareness		Mode 6 - Altitude callouts

767 Flight Crew Operations Manual

Condition	Alert Level	Description
Ground	Caution	Mode 4 - Unsafe terrain clearance - Gear
proximity - Immediate		Mode 4 - Unsafe terrain clearance - Flaps
		Mode 1 - Excessive decent rate
		Mode 3 - Decent (sink rate) after takeoff
		Mode 5 - Below glideslope - ILS deviation
Windshear - Awareness	Caution	Predictive - Windshear adjacent to flight path

GPWS Immediate-Alerts

GPWS immediate-alert warnings (Modes 1-2) are accompanied by:

- visual alerts (see tables)
- aural alerts (see tables)

If illuminated, pushing a Master WARNING/CAUTION Reset switch resets the Master WARNING lights but does not inhibit the GPWS warning.

GPWS immediate-alert cautions (Modes 1-5) are accompanied by:

- visual alerts (see tables)
- voice aural alerts (see tables)

GPWS Immediate-Alert Warnings

Aural Alert	Visual Alert	Description
PULL UP	PULL UP light (red)	Follows SINK RATE alert if descent rate becomes severe. (Mode 1)
	Master WARNING lights	Follows TERRAIN alert if excessive terrain closure rate continues and landing gear and/or flaps are not in landing configuration. (Mode 2)

767 Flight Crew Operations Manual

GPWS Immediate-Alert Cautions

Aural Alert	Visual Alert	Description
TERRAIN	GND PROX light (amber)	Excessive terrain closure rate. (Mode 2)
DON'T SINK	GND PROX light (amber)	Excessive altitude loss after takeoff or go–around. (Mode 3)
GLIDE SLOPE	GND PROX light (amber)	Deviation below glide slope. (Mode 5) Volume and repetition rate increase as deviation increases.
		Note: Pushing the GND PROX G/S INHB switch cancels or inhibits the alert below 1,000 feet radio altitude.
SINK RATE	GND PROX light (amber)	Excessive descent rate. (Mode 1)
TOO LOW, FLAPS	GND PROX light (amber)	Unsafe terrain clearance at low airspeed with flaps not in landing configuration. (Mode 4)
		Note: Pushing the GND PROX FLAP OVRD switch to OVRD inhibits the alert.
TOO LOW, GEAR	GND PROX light (amber)	Unsafe terrain clearance at low airspeed with landing gear not down. (Mode 4)
		Note: Pushing the GND PROX/CONFIG GEAR OVRD switch to OVRD inhibits the alert.

767 Flight Crew Operations Manual

Aural Alert	Visual Alert	Description
TOO LOW, TERRAIN	GND PROX light (amber)	Follows DON'T SINK if another descent is initiated after initial alert and before climbing to the altitude where the initial descent began. (Mode 3)
		Unsafe terrain clearance at low airspeed with either landing gear not down or flaps not in landing position. (Mode 4)
		Note: Pushing the GRND PROX FLAP OVRD switch to OVRD inhibits the alert, when the alert is due to flaps not in landing position.
		Note: Pushing the GND PROX/CONFIG GEAR OVRD switch to OVRD inhibits the alert, when the alert is due to gear not down.

GPWS Voice Callouts

GPWS provides voice callouts (Mode 6) to assist the flight crew with situational awareness and to advise the flight crew of the aircraft's approximate height above the ground.

Callout	Description
BANK ANGLE, BANK ANGLE	Voice callout occurs when airplane roll angle reaches: • 35 degrees • 40 degrees • 45 degrees Note: Callout is reset when roll angle decreases below 30 degrees.

GPWS Look-Ahead Alerts and Display

GPWS provides look-ahead alerts for potentially hazardous flight conditions involving impact with the ground. GPWS monitors terrain proximity and generates a display from a world-wide terrain data base in the GPWS computer. The data base contains detailed terrain data near major airports and data in lesser detail for areas between airports.

767 Flight Crew Operations Manual

In addition to terrain alerting, GPWS provides look-ahead alerts for potentially hazardous flight conditions involving impact with human-made obstacles (minimum height of approximately 100 feet). GPWS monitors obstacle proximity and generates a display from a a separate obstacle data base in the GPWS computer. The data base contains detailed obstacle data near major airports and data in lesser detail for areas between airports.

Note: The obstacle data base is not yet world wide.

Airplane horizontal position is determined using the:

• global positioning system. If GPS data is intermittently unavailable, GPWS derives horizontal position from the IRS.

Barometric altitude errors induced from temperature extremes or from non-standard pressure altitudes are minimized. Airplane vertical position is determined using a blended solution calculated from the following:

- · GPS altitude
- · barometric altitude
- radio altitude
- static air temperature

Look-Ahead Displays

When the EFIS control panel terrain (TERR) display select switch is pushed on, the TERR annunciation is displayed on the HSI and terrain contours may be displayed.

GPWS look-ahead data and weather radar returns cannot be displayed simultaneously on an HSI. If either pilot selects terrain while the other selects weather radar, each display updates on alternating sweeps. All other navigation displays can be simultaneously displayed with terrain data.

When the airplane is lower than 2,000 feet above the terrain, terrain within 2,000 feet of airplane barometric altitude is displayed on the HSI. Non-threat terrain is depicted as several densities of dot patterns in green, amber, or red depending on relative vertical distance between the airplane and the terrain.

The HSI may also display man-made obstacles. When the airplane is higher than 2,000 feet above the terrain, non-threat obstacles and terrain peaks are displayed using solid, high density, and low density contours of green. The highest obstacle or terrain is represented by solid green, and the lowest obstacle or terrain displayed is represented by low density green.

767 Flight Crew Operations Manual

When the enhanced GPWS look-ahead display is selected the HSI displays a digital indication of the highest and lowest terrain or obstacle within the selected map range. The elevation numbers are expressed in hundreds of feet above sea level (e.g. 125 is 12,500 ft. MSL) with the highest elevation on top and the lowest on the bottom. The color of the elevation numbers match the color of the represented terrain or obstacle.

Note: The GPWS look-ahead display is not designed to be used as an independent navigation aid.

Look-Ahead Alerting

The enhanced GPWS computer continuously computes clearance envelopes looking down and ahead of the airplane. Estimated time to impact is calculated from airplane position, barometric altitude, present track, vertical path, and ground speed. FMC VNAV or LNAV (Refer to Chapter 11, Flight Management, Navigation) paths are not considered in the estimated time to impact.

When the terrain clearance boundaries are crossed the GPWS issues alerts. Alert levels, warning or caution, are based on estimated time to impact. Look-ahead alerts will cause the GPWS look-ahead awareness display to "pop-up" when:

- the HSI display is in an appropriate mode (see tables)
- neither terrain (TERR) display select switch is ON

Note: Obstacles or terrain ahead of the airplane may exceed available climb performance. A GPWS caution or warning alert does not guarantee obstacle or terrain clearance.

Look-Ahead Alerting - Warnings

GPWS look-ahead warning alerts are accompanied by:

- visual alerts (see tables)
- voice aural alerts (see tables)
- solid red obstacles or solid red terrain displayed on HSIs

767 Flight Crew Operations Manual

If illuminated, pushing a Master WARNING/CAUTION Reset switch resets the Master WARNING lights but does not inhibit the GPWS warning.

Aural Alert	Visual Alert	Description
TERRAIN TERRAIN	PULL UP light (red)	20 to 30 seconds from projected impact with terrain shown in solid red on the HSI.
PULL UP	Master WARNING lights	Pop-up look-ahead display is only available in the following modes:
	Solid red terrain on HSI	VOR, APP, MAP and CTR MAP
	Red TERRAIN annunciation on both HSIs	Note: Pushing the TERR OVRD switch to OVRD inhibits the alert.
OBSTACLE OBSTACLE	PULL UP light (red)	20 to 30 seconds from projected impact with an obstacle shown solid red on the HSI.
PULL UP	Master WARNING lights	Pop-up look-ahead display is only available in the following modes:
	Solid red obstacle	VOR, APP, MAP and CTR MAP
	on HSI Red OBSTACLE message on both	Note: Pushing the TERR OVRD switch to OVRD inhibits the alert.
	HSIs	Note: If an obstacle alert occurs while a
		TERRAIN annunciation is displayed, the OBSTACLE annunciation
		replaces the TERRAIN annunciation. Both annunciations can not be
		displayed at the same time.

Look-Ahead Alerting - Cautions

GPWS look-ahead caution alerts are accompanied by:

- visual alerts (see tables)
- voice aural alerts (see tables)

767 Flight Crew Operations Manual

• solid amber obstacles or solid amber terrain displayed on HSIs

Aural Alert	Visual Alert	Description
CAUTION TERRAIN	GND PROX light (amber)	40 to 60 seconds from projected impact with terrain shown in solid amber on the HSI.
	Solid amber terrain on HSI	Pop-up look-ahead display is only available in the following modes:
	Amber TERRAIN	VOR, APP, MAP and CTR MAP
	annunciation on both HSIs	Note: Pushing the TERR OVRD switch to OVRD inhibits the alert.
CAUTION OBSTACLE	GND PROX light (amber)	40 to 60 seconds from projected impact with an obstacle shown in solid amber on the HSI.
	Solid amber obstacle on HSI	Pop-up look-ahead display is only available in the following modes:
	Amber	VOR, APP, MAP and CTR MAP
	OBSTACLE annunciation on both HSIs	Note: Pushing the TERR OVRD switch to OVRD inhibits the alert.
		Note: If an obstacle alert occurs while a TERRAIN annunciation is displayed, the OBSTACLE annunciation replaces the TERRAIN annunciation. Both annunciations can not be displayed at the same time.
TOO LOW, TERRAIN	GND PROX light (amber)	Terrain Clearance Floor (TCF) alert indicating unsafe terrain clearance based on current airplane location, nearest runway center point and radio altitude. Similar to Mode 4 but available in all flight modes.
		Note: Pushing the TERR OVRD switch to OVRD inhibits the alert.

767 Flight Crew Operations Manual

Windshear Warning System

Windshear Immediate-Alerts

The GPWS takes additional data from the stall warning computer (STC) and determines if decreasing-performance windshear conditions are occurring in the immediate vicinity of the airplane. GPWS issues Windshear Immediate-Warnings whenever decreasing-performance windshear conditions are present during takeoff, approach and landing.

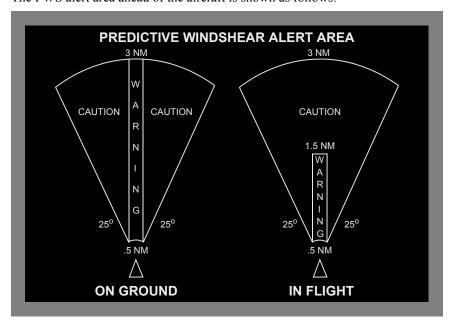
Warnings

Windshear warnings are accompanied by:

- visual alerts (see tables)
- voice or aural alert (see tables)

If illuminated, pushing a Master WARNING/CAUTION reset switch resets the Master WARNING lights but does not deactivate the windshear warning.

Windshear Immediate-Alert Warnings


Aural Alert	Visual Alert	Description
Two-tone siren followed by WINDSHEAR	WINDSHEAR light (red) Master WARNING lights Red WINDSHEAR on both ADIs	Excessive windshear at the current airplane position detected by GPWS. Enabled below 1,500 feet radio altitude. GPWS Windshear detection begins at rotation.

Predictive Windshear (PWS)

The weather radar (See Chapter 11, Flight Management, Navigation) provides PWS alerts when it detects disturbed air ahead of the aircraft which contains moisture or particulate matter and which fits a known pattern of windshear activity.

767 Flight Crew Operations Manual

The PWS alert area ahead of the aircraft is shown as follows:

When the PWS mode is enabled, the radar system is time-shared between the weather display and the PWS display. During the time-share:

- the weather display is slower to update
- PWS alerts are available approximately 12 seconds after the system begins scanning
- PWS automatically, regardless of actual Weather Radar Control Panel settings, adjusts the antenna TILT and the system GAIN for optimum windshear detection

The PWS mode is automatically enabled when:

- on the ground, the thrust levers are set for takeoff
- in flight, the aircraft is below 2,300 feet AGL

PWS alerts are automatically enabled below 1,200 feet AGL. If a PWS alert occurs when weather (WXR) is not selected on either pilot HSI displays and there is not an active terrain alert occurring; the weather radar display, including PWS symbology, automatically pops-up on the HSI.

Note: PWS does not provide alerting for all types of windshear. The flight crew must continue to rely on traditional windshear avoidance methods.

767 Flight Crew Operations Manual

Warnings

PWS warnings are accompanied by:

- visual alerts (see tables)
- voice or aural alerts (see tables)

If illuminated, pushing a Master WARNING/CAUTION reset switch resets the Master WARNING lights but does not deactivate the windshear warning.

Predictive Windshear Warnings

Aural Alert	Visual Alert	Description		
WINDSHEAR AHEAD	WINDSHEAR light (Red)	Enabled during takeoff, below 1,200 feet AGL.		
WINDSHEAR AHEAD	MASTER WARNING lights	Windshear within 3.0 miles and directly ahead of the airplane.		
	Red WINDSHEAR annunciation on both ADIs	If weather (WXR) is not selected on either HSI, the weather display, including PWS symbology, will automatically pop-up on the HSI.		
	RED and BLACK PWS symbol on HSI	PWS symbol on the HSI shows windshear position and size only when the HSI Mode		
	Red WINDSHEAR annunciation on HSI (all modes)	Selector is in the VOR, APP, MAP or CTR MAP mode.		
GO AROUND, WINDSHEAR	WINDSHEAR light (Red)	Enabled during approach, below 1,200 feet AGL.		
AHEAD	MASTER WARNING lights	Windshear within 1.5 miles and directly ahead of the airplane.		
	Red WINDSHEAR annunciation on both ADIs	If weather (WXR) is not selected on either HSI, the weather display, including PWS symbology, will automatically pop-up on the		
	RED and BLACK PWS symbol on HSI	HSI. PWS symbol on the HSI shows windshear position and size only when the HSI Mode		
	Red WINDSHEAR annunciation on HSI (all modes)	Selector is in the VOR, APP, MAP or CTR MAP mode.		

Cautions

PWS caution alerts are accompanied by:

- visual alerts (see tables)
- voice or aural alerts (see tables)

767 Flight Crew Operations Manual

Predictive Windshear Caution

Aural Alert	Visual Alert	Description
MONITOR RADAR DISPLAY	RED and BLACK PWS symbol on HSI Amber WINDSHEAR annunciation on HSI	Windshear within 3 miles and not directly ahead of the airplane. Enabled during takeoff and approach, below 1,200 feet AGL. If weather (WXR) is not selected on either HSI, the weather display, including PWS symbology, will automatically pop-up on the HSI. PWS symbol on the HSI shows windshear position and size only when the HSI Mode Selector is in the VOR, APP, MAP or CTR MAP mode.

Inhibits

PWS alerts are inhibited during takeoff and landing as follows:

- WARNINGS, between 100 knots and 50 feet AGL
- CAUTIONS, between 80 knots and 400 feet AGL

Note: These inhibits do not remove existing PWS alerts.

PWS alerts are also inhibited by:

- Windshear Immediate-Alert Warnings
- GPWS Immediate-Alert Warnings
- GPWS Look-Ahead-Alert Warnings

767 Flight Crew Operations Manual

Traffic Alert and Collision Avoidance System (TCAS)

TCAS alerts the crew to conflicting traffic. The system identifies a three–dimensional airspace around the airplane where a high likelihood of air traffic conflicts exist. These dimensions depend upon closure rates between the airplane and potentially conflicting traffic.

TCAS interrogates operating transponders in other aircraft, analyzes the replies, predicts flight paths and designates possible conflicting traffic as a "traffic aircraft"

When the system designates a traffic aircraft, TCAS provides the flight crew with a situational display. Additionally, TCAS may provide an aural annunciation and flight path guidance.

Note: Other aircraft that do not have an operating transponder can not initiate situational displays, aural annunciations or flight path guidance.

Note: TCAS is independent of ground–based air traffic control.

During normal operations, when TCAS designates a traffic aircraft, the system provides the following advisories and displays:

- Resolution Advisories (RA) and Displays
- Traffic Advisories (TA) and Displays
- · Proximate Traffic and Other Traffic Displays

Normal Operations

TCAS is enabled from the Transponder Panel. The system is normally operated with the TCAS Mode Selector in the TA/RA mode.

The TA ONLY mode may be used:

- during engine out operations to prevent RAs when adequate thrust may not be available to follow the RA commands
- when intentionally operating near other traffic that may cause RAs, such as during parallel approaches or during VFR operations.

Resolution Advisories (RA) and Displays

A Resolution Advisory (RA) is an immediate-threat prediction that traffic aircraft will enter the TCAS collision airspace within approximately 20 to 30 seconds. If altitude data from the traffic aircraft's transponder is not available, no RA can be provided.

When TCAS issues a RA:

- · a voice alert sounds
- vertical guidance is displayed
- symbology is displayed

767 Flight Crew Operations Manual

Voice Alert

When a RA is predicted, one of several initial RA voice alerts will sound. These voice alerts aurally elaborate on the displayed Vertical Guidance and are described in this Chapter under:

Voice Annunciations for ADI Guidance

Vertical Guidance

Vertical guidance is displayed for a traffic-avoidance maneuver. Traffic avoidance is ensured by adjusting or maintaining:

• an ADI pitch attitude outside the displayed red RA regions

Note: If the traffic aircraft also has TCAS and an operating mode S transponder, vertical guidance is coordinated with the traffic aircraft.

Display Symbology

The RA traffic symbol is a filled red square with an accompanying data tag when the traffic aircraft is providing altitude information.

The data tag appears in red and contains the following information about the traffic aircraft:

- a two-digit number proceeded with a "+" or a "-" sign and positioned above or below the RA symbol. This number represents, in hundreds of feet, the relative vertical position and altitude difference between the airplane and the traffic aircraft.
- a vertical arrow appears to the right of the RA symbol when the traffic aircraft is either climbing or descending in excess of 500 feet per minute.

The RA is displayed as follows:

HSI

- When the red TRAFFIC message appears and the traffic aircraft is within the selected display range, the traffic symbol's relative position is displayed.
- When the traffic aircraft is outside the selected range, the red OFFSCALE message appears.
- When TCAS is unable to track the traffic aircraft's bearing, the red RA symbol is displayed below the TRAFFIC message.

Traffic Advisories (TA) and Displays

A Traffic Advisory (TA) is a prediction that traffic aircraft will enter the TCAS collision airspace within approximately 35 to 40 seconds. TAs are intended to assist the crew in establishing visual contact with the traffic aircraft.

When TCAS issues a TA:

- · a voice alert sounds
- symbology is displayed

767 Flight Crew Operations Manual

Voice Alert

When a TA is predicted, TRAFFIC, TRAFFIC sounds once.

Display Symbology

The TA traffic symbol is a filled amber circle with an accompanying data tag when the traffic aircraft is providing altitude information.

The data tag appears in amber and contains the following information about the traffic aircraft:

- a two-digit number proceeded with a "+" or a "-" sign and positioned above or below the TA symbol. This number represents, in hundreds of feet, the relative vertical position and altitude difference between the airplane and the traffic aircraft.
- a vertical arrow appears to the right of the TA symbol when the traffic aircraft is either climbing or descending in excess of 500 feet per minute.

The TA is displayed as follows:

HSI

- When the amber TRAFFIC message appears and the traffic aircraft is within the selected display range, the traffic symbol's relative position is displayed.
- When TCAS is unable to track the traffic aircraft's bearing, the amber TA symbol is displayed below the TRAFFIC message.
- When the traffic aircraft is outside the selected range, the amber OFFSCALE message appears.

Automatic TA and RA Display

TCAS automatically displays RA and TA symbols on the HSI when:

- · a RA or TA occurs, and
- neither pilot has pushed the EFIS Traffic (TFC) Switch, and
- the HSI Mode Selector is in the VOR, APP, or MAP mode, and
- the TCAS Mode Selector is in TA ONLY or TA/RA

Proximate Traffic and Other Traffic Displays

Proximate Traffic is a traffic aircraft that is neither a RA nor a TA but is within:

- · six miles laterally, and
- 1,200 feet vertically

Other Traffic is a traffic aircraft that is neither a RA, TA, or Proximate Traffic

When TCAS identifies Proximate Traffic or Other Traffic:

• symbology is displayed

767 Flight Crew Operations Manual

Display Symbology

The Proximate Traffic symbol is a filled diamond and the Other Traffic symbol is a hollow diamond. Both Proximate Traffic and Other Traffic symbols are displayed with an accompanying data tag when the traffic aircraft is providing altitude information.

The data tag contains the following information about the traffic aircraft:

- a two-digit number proceeded with a "+" or a "-" sign and positioned above or below the Proximate or Other Traffic symbol. This number represents, in hundreds of feet, the relative vertical position and altitude difference between the airplane and the traffic aircraft.
- a vertical arrow appears to the right of the Proximate or Other Traffic symbol when the traffic aircraft is either climbing or descending in excess of 500 feet per minute.

Proximate Traffic and Other Traffic are displayed as follows:

HSI

- When Proximate Traffic is within the selected display range, the traffic aircraft's relative position is displayed as a filled white diamond.
- When Other Traffic is within the selected display range, the traffic aircraft's relative position is displayed as an unfilled white diamond.

TCAS Voice Annunciations

Voice Annunciations for ADI Guidance

Voice Annunciation	Condition	Response
TRAFFIC, TRAFFIC	TCAS has issued a TA	Attempt to visually locate the traffic
CLIMB, CLIMB	Present ADI pitch attitude is within the red RA regions	Adjust ADI pitch attitude to remain outside the red RA regions
DESCEND, DESCEND	Present ADI pitch attitude is within the red RA regions	Adjust ADI pitch attitude to remain outside the red RA regions
ADJUST VERTICAL SPEED ADJUST	TCAS requires change in pitch attitude Present ADI pitch attitude is within the red RA regions	Adjust ADI pitch attitude to remain outside the red RA regions
MONITOR VERTICAL SPEED	Present ADI pitch attitude is outside the red RA regions	Continue to keep ADI pitch attitude outside the red RA regions

767 Flight Crew Operations Manual

Voice Annunciation	Condition	Response
MAINTAIN VERTICAL SPEED MAINTAIN	Present ADI pitch attitude is outside the red RA regions	Continue to keep ADI pitch attitude outside the red RA regions
CLIMB, CROSSING CLIMB CLIMB, CROSSING CLIMB	Present ADI pitch attitude is within the red RA regions Airplane will climb through the traffic aircraft's altitude	Adjust ADI pitch attitude to remain outside the red RA regions
MAINTAIN VERTICAL SPEED CROSSING MAINTAIN	Present ADI pitch attitude is outside the red RA regions Airplane will pass through the traffic aircraft's altitude	Continue to keep ADI pitch attitude outside the red RA regions
DESCEND, CROSSING DESCEND DESCEND, CROSSING DESCEND	Present ADI pitch attitude is within the red RA regions Airplane will descend through the traffic aircraft's altitude	Adjust ADI pitch attitude to remain outside the red RA regions
INCREASE CLIMB, INCREASE CLIMB INCREASE DESCENT, INCREASE DESCENT	TCAS requires change in pitch attitude Present ADI pitch attitude is within the red RA regions	Adjust ADI pitch attitude to remain outside the red RA regions
CLIMB, CLIMB NOW CLIMB, CLIMB NOW	Previous vertical guidance was to descend Present ADI pitch attitude is within the red RA regions	Climb and adjust ADI pitch attitude to remain outside the red RA regions
DESCEND, DESCEND NOW DESCEND, DESCEND NOW	Previous vertical guidance was to climb Present ADI pitch attitude is within the red RA regions	Descend and adjust ADI pitch attitude to remain outside the red RA regions
ADJUST VERTICAL SPEED ADJUST	Minimum ADI pitch attitude required to ensure separation has decreased Present ADI pitch attitude is outside the red RA regions	Adjust ADI pitch attitude Continue to keep ADI pitch attitude outside the red RA regions

767 Flight Crew Operations Manual

Voice Annunciation	Condition	Response
CLEAR OF CONFLICT	Vertical guidance is no longer displayed and traffic symbology changes to TA	Attempt to visually locate the traffic aircraft
	Separation between the airplane and the traffic aircraft is increasing	
	CLEAR OF CONFLICT will not sound if TCAS can no longer predict the track of the traffic aircraft	

Inhibits

INCREASE DESCENT RAs are inhibited below approximately 1,450 feet radio altitude.

DESCEND RAs are inhibited below approximately 1,100 feet radio altitude.

RAs are inhibited below approximately 1,000 feet radio altitude. Below approximately 1,000 feet when the TA/RA mode is selected on the transponder panel, the TA mode is enabled automatically. All TCAS voice annunciations are inhibited below approximately 500 feet radio altitude.

Note: All TCAS alerts are inhibited by the following

- · PWS Annunciations
- · GPWS Immediate-Alert Annunciations
- Windshear Immediate-Alert Annunciations

Non-Normal Operations

HSI Messages

When the HSI message:

- TCAS OFF is displayed, neither TA ONLY nor TA/RA is selected with the TCAS Mode Selector. The system cannot display symbology or vertical guidance. Voice Annunciations will not occur.
- TCAS FAIL is displayed, the system cannot display symbology or vertical guidance. Voice Annunciations will not occur.
- TCAS OFF does not display if TCAS FAIL is annunciated.

767 Flight Crew Operations Manual

EICAS Messages

When the EICAS advisory message:

- TCAS is displayed, the system cannot display symbology or vertical guidance. Voice annunciations will not occur.
- TCAS OFF is displayed, neither TA ONLY nor TA/RA is selected with the TCAS Mode Selector. The system cannot display symbology or vertical guidance. Voice annunciations will not occur.

Note: The TCAS OFF message is inhibited below approximately 400 feet radio altitude.

767 Flight Crew Operations Manual

Intentionally Blank

767 Flight Crew Operations Manual

Warning Systems **EICAS Messages**

Chapter 15 Section 30

Warning Systems EICAS Messages

The following EICAS messages can be displayed.

GPWS

Message	Level	Light	Aural	Condition
ALT CALLOUTS	Advisory			Altitude callouts are no longer provided.
GND PROX SYS	Advisory			Ground proximity alerts may not be provided.
TERR OVRD	Advisory			Ground proximity terrain override switch is in OVRD.
TERR POS	Advisory			Terrain position data has been lost.
WINDSHEAR SYS	Advisory			Windshear alerts may not be provided.

TCAS

Message	Level	Light	Aural	Condition
TCAS	Advisory			The TCAS system is inoperative.
TCAS OFF	Advisory			The TCAS system is off. Inhibited below 400 feet radio altitude.

Configuration

Message	Level	Light	Aural	Condition
FLAPS	Warning	CONFIG	Siren	Flaps are not in a takeoff position when either engine's thrust is in the takeoff range on the ground.

767 Flight Crew Operations Manual

Message	Level	Light	Aural	Condition
GEAR NOT DOWN	Warning	CONFIG	Siren	Any landing gear is not down and locked when either thrust lever is closed below 800 feet radio altitude or when flaps are in a landing position.
PARKING BRAKE	Warning	CONFIG	Siren	Parking brake is set when either engine's thrust is in the takeoff range on the ground.
SPOILERS	Warning	CONFIG	Siren	Speedbrake lever is not DOWN when either engine's thrust is in the takeoff range on the ground.
STABILIZER	Warning	CONFIG	Siren	Stabilizer is not within the greenband when either engine's thrust is in the takeoff range on the ground.

Miscellaneous

Message	Level	Light	Aural	Condition
ALTITUDE ALERT	Caution	ALT ALERT	Beeper	Airplane has deviated from the selected altitude.
EICAS CONT PNL	Advisory			EICAS control panel is inoperative.
EICAS DISPLAY	Advisory			One EICAS CRT is inoperative.
OVERSPEED	Warning	OVSPD	Siren	Airspeed has exceeded Vmo/Mmo.